Logik für Informatiker Xmas special

Till Mossakowski

WiSe 2009/10

Existence of Santa Clause

Theorem. Santa Clause exists.

Proof.

Assume to the contrary, that Santa Clause does not exist.
By \exists-Intro, there exists something that does not exist.
This is a contradiction. Hence, the assumption that Santa Clause does not exist must be wrong.
Thus, Santa Clause exists. \square

Existence of Santa Clause

Theorem. Santa Clause exists.
Proof.
Assume to the contrary, that Santa Clause does not exist.
By \exists-Intro, there exists something that does not exist.
This is a contradiction. Hence, the assumption that Santa Clause does not exist must be wrong.
Thus, Santa Clause exists. \square

All reindeers have the same color

Theorem. Any number of reindeers have the same color. Proof. By induction.
Basis: one reindeer has the same color (obviously!).
Inductive step: suppose that any collection of n reindeers has the same color. We need to show that $n+1$ reindeers have the same color, too. By induction hypothesis, the first n reindeers have the same color. Take out the last reindeer of these and replace it with the $n+1$ st. Again by induction hypothesis, these have the same color. Hence, all $n+1$ reindeers have the same color. \square

All reindeers have the same color

Theorem. Any number of reindeers have the same color.
Proof. By induction.
Basis: one reindeer has the same color (obviously!).
Inductive step: suppose that any collection of n reindeers has the same
color. We need to show that $n+1$ reindeers have the same color, too.
By induction hypothesis, the first n reindeers have the same color. Take
out the last reindeer of these and replace it with the $n+1$ st. Again by
induction hypothesis, these have the same color. Hence, all $n+1$
reindeers have the same color. \square

All reindeers have the same color

Theorem. Any number of reindeers have the same color.
Proof. By induction.
Basis: one reindeer has the same color (obviously!).
Inductive step: suppose that any collection of n reindeers has the same color. We need to show that $n+1$ reindeers have the same color, too. By induction hypothesis, the first n reindeers have the same color. Take out the last reindeer of these and replace it with the $n+1$ st. Again by induction hypothesis, these have the same color. Hence, all $n+1$ reindeers have the same color.

Why the date of XMas cannot be surprising

Son: It is boring that XMas always is on the 24th.
Father: OK. This year, we will celebrate XMas on a day in the week from 23th to 29th. You will not know the date beforehand. Son: Good! Then it cannot be the 29th - if we hadn't celebrated it until the 28 th, I would know beforehand that it must be the 29th, since this is the last day of the week! Moreover, it cannot be the 28th - if we hadn't celebrated it until the 27th, I would know beforehand that it must be the 28th (the 29th already has been excluded above).
Son (cont'd): Similarly, it can be neither the 27 th, nor the 26 th, nor the 25th, nor the 24th, nor the 23th.
Hence, you cannot fulfill you promise that I won't know the date beforehand.
Father: You will see, you won't know the date beforehand.

Why the date of XM as can be surprising

After all, XMas was celebrated on the 27th.
The son was quite surprised.

A scheduling problem

A camel must travel 1000 miles across a desert to the nearest city. She has 3000 bananas but can only carry 1000 at a time. For every mile she walks, she needs to eat a banana. What is the maximum number of bananas she can transport to the city?

