Logik für Informatiker Logic for computer scientists

Till Mossakowski, Lutz Schröder

WiSe 2011/12

LPL book detailed introduction into first-order logic with many exercises

Boole construct truth tables

Tarski's world evaluate logical formulas within a blocks world

Fitch construct proofs

Grinder gives automatic feedback to your solutions \rightarrow requires purchase of the CD (ca. 13 EUR) or the book (ca. 25 EUR, with CD)

Platform for exercises: logic.informatik.uni-bremen.de also reachable via

www.informatik.uni-bremen.de/agbkb/lehre/ws11-12/Logik/

PL1 is the formal language of first-order predicate logic

Why do we need a formal language? ⇒ Slides from Prof. Barbara König, Universität Duisburg-Essen http://jordan.inf.uni-due.de/teaching/ss2010/logik/folien/ folien.pdf

The language of PL1: individual constants

- Individual constants are symbols that denote a person, thing, object
- Examples:
 - Numbers: 0, 1, 2, 3, ...
 - Names: Max, Claire
 - Formal constants: a, b, c, d, e, f, n1, n2
- Each individual constant must denote an existing object
- No individual constant can denote more than one object
- An object can have 0, 1, 2, 3 ... names

The language of PL1: predicate symbols

- Predicate symbols denote a property of objects, or a relation between objects
- Each predicate symbol has an arity that tell us how many objects are related
- Examples:
 - Arity 0: Gate0_is_low, A, B, ...
 - Arity 1: Cube, Tet, Dodec, Small, Medium, Large
 - Arity 2: Smaller, Larger, LeftOf, BackOf, SameSize, Adjoins
 - Arity 3: Between

The interpretation of predicate symbols

- In Tarski's world, predicate symbols have a fixed interpretation, that not always completely coindices with the natural language interpretation
- In other PL1 languages, the interpretation of predicate symbols may vary. For example, ≤ may be an ordering of numbers, strings, trees etc.
- Usually, the binary symbol = has a fixed interpretation: equality

- in propositional logic (Boole):
 - propositional symbols: a, b, c, ...
- in PL1 (Tarski's world):
 - application of predicate symbols to constants: Larger(a,b)
 - the order of arguments matters: Larger(a,b) vs. Larger(b,a)
 - Atomic sentences denote truth values (true, false)

- Function symbols lead to more complex terms that denote objects. Examples:
 - father, mother

- This leads to new terms denoting objects:
 - father(max) mother(father(max))
 - 3*(4+2)
- This also leads to new atomic sentences:
 - Larger(father(max),max)
 - 2<3*(4+2)

A sentence A is a logically valid, if it is true in all circumstances. A sentence A is a satisfiable, if it is true in at least one circumstance.

A circumstance is

- in propositional logic: a valuation of the atomic formulas in the set { true, false }
- in Tarski's world: a block world

・ロト ・回ト ・ヨト ・ヨト

æ

A sentence *B* is a logical consequence of A_1, \ldots, A_n , if all circumstances that make A_1, \ldots, A_n true also make *B* true. In symbols: $A_1, \ldots, A_n \models B$. A_1, \ldots, A_n are called premises, *B* is called conclusion. In this case, it is a valid argument to infer *B* from A_1, \ldots, A_n . If also A_1, \ldots, A_n are true, then the valid argument is sound. A sentence *B* is a logical consequence of A_1, \ldots, A_n , if all circumstances that make A_1, \ldots, A_n true also make *B* true. In symbols: $A_1, \ldots, A_n \models B$. A_1, \ldots, A_n are called premises, *B* is called conclusion. In this case, it is a valid argument to infer *B* from A_1, \ldots, A_n . If also A_1, \ldots, A_n are true, then the valid argument is sound.

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)