Logik für Informatiker
 Logic for computer scientists

Quantifiers

Till Mossakowski, Lutz Schröder

WiSe 2011/12

Quantifiers: Motivating examples

> $\forall x$ Cube (x) ("All objects are cubes.")
> $\forall x$ (Cube $(x) \rightarrow$ Large $(x))$ ("All cubes are large.")
> $\forall x$ Large(x) ("All objects are large.")

$$
\exists x \text { Cube(x) }
$$

"There exists a cube."

$$
\exists x(\text { Cube }(x) \wedge \operatorname{Large}(x))
$$

"There exists a large cube."

$$
\begin{aligned}
\text { All P's are Q's. } & \forall x(P(x) \rightarrow Q(x)) \\
\text { Some P's are Q's. } & \exists x(P(x) \wedge Q(x)) \\
\text { No P's are Q's. } & \forall x(P(x) \rightarrow \neg Q(x)) \\
\text { Some P's are not Q's. } & \exists x(P(x) \wedge \neg Q(x))
\end{aligned}
$$

Note:
$\forall x(P(x) \rightarrow Q(x))$ does not imply that there are some $P^{\prime} s$. $\exists x(P(x) \wedge Q(x))$ does not imply that not all $P^{\prime} s$ are $Q^{\prime} s$.

A first-order signature consists of

- a set of predicate symbols with arities, like Smaller ${ }^{(2)}$, Dodec ${ }^{(1)}$, Between ${ }^{(3)}, \leq^{(2)}$, including propositional symbols (nullary predicate symbols), like $A^{(0)}, B^{(0)}, C^{(0)}$, (written uppercase)
- its names or constants for individuals, like a, b, c, (written lowercase)
- its function symbols with arities, like $f^{(1)},+{ }^{(2)}, \times^{(2)}$.

Usually, arities are omitted.
In the book, the terminology "language" is used. "Signature" is more precise, since it exactly describes the ingredients that are needed to generate a (first-order) language.

$$
\begin{array}{rlrl}
t: & :=a & & \text { constant } \\
t::=x & & \text { variable } \\
& \mid f^{(n)}\left(t_{1}, \ldots, t_{n}\right) & & \text { application of function symbols } \\
& & \text { to terms }
\end{array}
$$

Usually, arities are omitted.
Variables are: t, u, v, w, x, y, z, possibly with subscripts.

$$
\begin{aligned}
F: & :=p^{(n)}\left(t_{1}, \ldots, t_{n}\right) & & \text { application of predicate s } \\
& \mid \perp & & \text { contradiction } \\
& \mid \neg F & & \text { negation } \\
& \mid\left(F_{1} \wedge \ldots \wedge F_{n}\right) & & \text { conjunction } \\
& \mid\left(F_{1} \wedge \ldots \vee F_{n}\right) & & \text { disjunction } \\
& \mid\left(F_{1} \rightarrow F_{2}\right) & & \text { implication } \\
& \mid\left(F_{1} \leftrightarrow F_{2}\right) & & \text { equivalence } \\
& \mid \forall \nu F & & \text { universal quantification } \\
& \mid \exists \nu F & & \text { existential quantification }
\end{aligned}
$$

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

The outermost parenthese of a well-formed formula can be omitted:

$$
\operatorname{Cube}(x) \wedge \operatorname{Small}(x)
$$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \operatorname{LeftOf}(x, y)$	x is free, y is bound
$($ Cube $(x) \wedge \operatorname{Small}(x))$ $\rightarrow \exists y \operatorname{LeftOf}(x, y)$	x is free, y is bound
$\exists x(\operatorname{Cube}(x) \wedge \operatorname{Small}(x))$	Both occurrences of x are bound
$\exists x \operatorname{Cube}(x) \wedge \operatorname{Small}(x)$	The first occurrence of x is bound, the second one is free

Sentences

A sentence is a well-formed formula without free variables.

$$
\begin{gathered}
\operatorname{Cube}(a) \vee \operatorname{Tet}(b) \\
\forall x(\operatorname{Cube}(x) \rightarrow \operatorname{Large}(x)) \\
\forall x((\operatorname{Cube}(x) \wedge \operatorname{Small}(x)) \rightarrow \exists y \operatorname{LeftOf}(x, y))
\end{gathered}
$$

Semantics of quantification

- We need to fix some domain of discourse.
- $\forall x S(x)$ is true iff for every object in the domain of discourse with name $n, S(n)$ is true.
- $\exists x S(x)$ is true iff for some object in the domain of discourse with name $n, S(n)$ is true.
- Not all objects need to have names - hence we assume that for objects, names n_{1}, n_{2}, \ldots can be invented "on the fly".

The game rules

Form	Your Commitment	Player to move	Goal
$\mathrm{P} \vee \mathrm{Q}$	TRUE FALSE	you Tarski's World	Choose one of P, Q that is true.
$P \wedge Q$	TRUE FALSE	Tarski's World you	Choose one of P, Q that is false.
$\exists x \mathrm{P}(\mathrm{x})$	TRUE FALSE	you Tarski's World	Choose some \boldsymbol{b} that satisfies the wff $P(x)$.
$\forall x P(x)$	TRUE FALSE	Tarski's World you	Choose some \boldsymbol{b} that does not satisfy $P(x)$.

Logical consequence for quantifiers

$\forall x($ Cube $(x) \rightarrow$ Small $(x))$
$\forall x$ Cube(x)
$\forall x$ Small(x)
$\forall x$ Cube(x)
$\forall x$ Small(x)
$\forall x($ Cube $(x) \wedge$ Small $(x))$

However: ignoring quantifiers does not work!

$\exists x($ Cube $(\mathrm{x}) \rightarrow$ Small $(\mathrm{x}))$
$\exists x$ Cube(x)
$\exists x$ Small(x)
$\exists x$ Cube(x)
$\exists x$ Small(x)
$\exists x($ Cube $(\mathrm{x}) \wedge$ Small $(\mathrm{x}))$

$$
\exists x \operatorname{Cube}(x) \vee \exists x \neg \operatorname{Cube}(x)
$$

is a logical truth, but

$$
\forall x \operatorname{Cube}(x) \vee \forall x \neg \operatorname{Cube}(x)
$$

is not. By contrast,

$$
\forall x \text { Cube }(x) \vee \neg \forall x \text { Cube }(x)
$$

is a tautology.

