Logik für Informatiker Logic for computer scientists

Quantifiers

Till Mossakowski, Lutz Schröder

WiSe 2011/12

Quantifiers: Motivating examples

$$\forall x \; Cube(x) \; (\text{``All objects are cubes.''})$$

 $\forall x \; (Cube(x) \rightarrow Large(x)) \; (\text{``All cubes are large.''})$
 $\forall x \; Large(x) \; (\text{``All objects are large.''})$

$$\exists x \; Cube(x)$$

"There exists a cube."

$$\exists x \ (Cube(x) \land Large(x))$$

"There exists a large cube."

The four Aristotelian forms

All P's are Q's.
$$\forall x(P(x) \rightarrow Q(x))$$

Some P's are Q's. $\exists x(P(x) \land Q(x))$
No P's are Q's. $\forall x(P(x) \rightarrow \neg Q(x))$
Some P's are not Q's. $\exists x(P(x) \land \neg Q(x))$

Note:

 $\forall x(P(x) \to Q(x))$ does not imply that there are some P's. $\exists x(P(x) \land Q(x))$ does not imply that not all P's are Q's.

First-order signatures

A first-order signature consists of

- a set of predicate symbols with arities, like $Smaller^{(2)}, Dodec^{(1)}, Between^{(3)}, \leq^{(2)}$, including propositional symbols (nullary predicate symbols), like $A^{(0)}, B^{(0)}, C^{(0)}$, (written uppercase)
- its names or constants for individuals, like a, b, c, (written lowercase)
- its function symbols with arities, like $f^{(1)}, +^{(2)}, \times^{(2)}$.

Usually, arities are omitted.

In the book, the terminology "language" is used. "Signature" is more precise, since it exactly describes the ingredients that are needed to generate a (first-order) language.

Terms

$$t := a$$
 constant $t := x$ variable $|f^{(n)}(t_1, \dots, t_n)|$ application of function symbols to terms

Usually, arities are omitted.

Variables are: t, u, v, w, x, y, z, possibly with subscripts.

Well-formed formulas

$$F ::= p^{(n)}(t_1, \dots, t_n) \qquad \text{application of predicate symbols} \\ | \perp \qquad \qquad \text{contradiction} \\ | \neg F \qquad \qquad \text{negation} \\ | (F_1 \wedge \dots \wedge F_n) \qquad \text{conjunction} \\ | (F_1 \wedge \dots \vee F_n) \qquad \text{disjunction} \\ | (F_1 \rightarrow F_2) \qquad \text{implication} \\ | (F_1 \leftrightarrow F_2) \qquad \text{equivalence} \\ | \forall \nu F \qquad \qquad \text{universal quantification} \\ | \exists \nu F \qquad \qquad \text{existential quantification}$$

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

Parentheses

The outermost parenthese of a well-formed formula can be omitted:

$$Cube(x) \wedge Small(x)$$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

Free and bound variables

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \; LeftOf(x,y)$	x is free, y is bound		
$(Cube(x) \land Small(x))$	x is free, y is bound		
$ ightarrow \exists y \; LeftOf(x,y)$			
$\exists x \; (Cube(x) \land Small(x))$	Both occurrences of x are bound		
$\exists x \; Cube(x) \land Small(x)$	The first occurrence of x is bound,		
	the second one is free		

Sentences

A sentence is a well-formed formula without free variables.

$$\bot \qquad \qquad A \land B$$

$$Cube(a) \lor Tet(b)$$

$$\forall x \; (Cube(x) \rightarrow Large(x))$$

$$\forall x \; ((Cube(x) \land Small(x)) \rightarrow \exists y \; LeftOf(x,y))$$

Semantics of quantification

- We need to fix some domain of discourse.
- $\forall x \ S(x)$ is true iff for every object in the domain of discourse with name n, S(n) is true.
- $\exists x \ S(x)$ is true iff for some object in the domain of discourse with name n, S(n) is true.
- Not all objects need to have names hence we assume that for objects, names n_1, n_2, \ldots can be invented "on the fly".

The game rules

Form	Your commitment	Player to move	Goal
P∨Q	TRUE	you	Choose one of P, Q that
	FALSE	Tarski's World	is true.
$P \wedge Q$	TRUE	Tarski's World	Choose one of P, Q that
	FALSE	you	is false.
∃х Р(х)	TRUE	you	Choose some b that satisfies
	FALSE	Tarski's World	the wff $P(x)$.
∀x P(x)	TRUE	Tarski's World	Choose some b that does not
	FALSE	you	satisfy $P(x)$.

Logical consequence for quantifiers

However: ignoring quantifiers does not work!

```
 \exists x (Cube(x) \rightarrow Small(x)) \\ \exists x \ Cube(x) \\ \exists x \ Small(x)   \exists x \ Cube(x) \\ \exists x \ Small(x) \\ \exists x \ Cube(x) \land Small(x))
```

Tautologies do not distribute over quantifiers

$$\exists x \ Cube(x) \lor \exists x \ \neg Cube(x)$$

is a logical truth, but

$$\forall x \; Cube(x) \lor \forall x \; \neg Cube(x)$$

is not. By contrast,

$$\forall x \; Cube(x) \lor \neg \forall x \; Cube(x)$$

is a tautology.