Logik für Informatiker
 Logic for computer scientists

Multiple Quantifiers

Till Mossakowski, Lutz Schröder

WiSe 2011/12

Multiple quantifiers

$$
\forall x \exists y \operatorname{Likes}(x, y)
$$

is very different from

$$
\exists y \forall x \operatorname{Likes}(x, y)
$$

Figure 11.1: A circumstance in which $\forall x \exists y$ Likes (x, y) holds versus one in which $\exists y \forall x$ Likes (x, y) holds. It makes a big difference to someone!

Goal: shift all quantifiers to the top-level
Rules for conjunctions and disjunctions

$$
\begin{array}{ll}
(\forall x P) \wedge Q \leadsto \forall x(P \wedge Q) & (\exists x P) \wedge Q \leadsto \exists x(P \wedge Q) \\
P \wedge(\forall x Q) \leadsto \forall x(P \wedge Q) & P \wedge(\exists x Q) \leadsto \exists x(P \wedge Q) \\
(\forall x P) \vee Q \leadsto \forall x(P \vee Q) & (\exists x P) \vee Q \leadsto \exists x(P \vee Q) \\
P \vee(\forall x Q) \leadsto \forall x(P \vee Q) & P \vee(\exists x Q) \leadsto \exists x(P \vee Q)
\end{array}
$$

Prenex Normal Form (cont'd)

Rules for negations, implications, equivalences

$$
\begin{array}{ll}
\neg \forall x P \leadsto \exists x(\neg P) & \neg \exists x P \leadsto \forall x(\neg P) \\
(\forall x P) \rightarrow Q \leadsto \exists x(P \rightarrow Q) & (\exists x P) \rightarrow Q \leadsto \forall x(P \rightarrow Q) \\
P \rightarrow(\forall x Q) \leadsto \forall x(P \rightarrow Q) & P \rightarrow(\exists x Q) \leadsto \exists x(P \rightarrow Q) \\
P \leftrightarrow Q \leadsto(P \rightarrow Q) \wedge(Q \rightarrow P) &
\end{array}
$$

Prenex Normal Form: example

What is the prenex normal form of

$$
\exists x \operatorname{Cube}(x) \rightarrow \forall y \operatorname{Small}(y)
$$

Proof methods for quantifiers

Universal elimination
Universal statments can be instantiated to any object.
From $\forall x S(x)$, we may infer $S(c)$.
Existential introduction
If we have established a statement for an instance, we can also establish the corresponding existential statement.

From $S(c)$, we may infer $\exists x S(x)$.

Example

```
\forallx[Cube(x) }->\mathrm{ Large(x)]
\forallx[Large(x) }->\mathrm{ LeftOf(x, b)]
Cube(d)
\existsx[Large(x)}\wedge\operatorname{LeftOf(x, b)]
```


Existential elimination

From $\exists x S(x)$, we can infer things by assuming $S(c)$ in a subproof, if c is a new name not used otherwise.
Example: Scotland Yard searched a serial killer. The did not know who he was, but for their reasoning, they called him "Jack the ripper".
This would have been an unfair procedure if there had been a real person named Jack the ripper.

Example

$$
\begin{aligned}
& \forall x[\text { Cube }(x) \rightarrow \operatorname{Large}(x)] \\
& \forall x[\operatorname{Large}(x) \rightarrow \operatorname{LeftOf}(x, b)] \\
& \exists x \operatorname{Cube}(x) \\
& \exists x[\operatorname{Large}(x) \wedge \operatorname{LeftOf}(x, b)]
\end{aligned}
$$

Universal generalization (introduction)

If we introduce a new name c that is not used elsewhere, and can prove $S(c)$, then we can also infer $\forall x S(x)$.
Example:
Theorem Every positive even number is the sum of two odd numbers.
Proof Let $n>0$ be even, i.e. $n=2 m$ with $m>0$. If m is odd, then $m+m=n$ does the job. If m is even, consider $(m-1)+(m+1)=n$.

Arguments involving multiple quantifiers

$$
\begin{aligned}
& \exists y[\operatorname{Girl}(\mathrm{y}) \wedge \forall x(\operatorname{Boy}(\mathrm{x}) \rightarrow \operatorname{Likes}(\mathrm{x}, \mathrm{y}))] \\
& \forall x[\operatorname{Boy}(\mathrm{x}) \rightarrow \exists \mathrm{y}(\operatorname{Girl}(\mathrm{y}) \wedge \operatorname{Likes}(\mathrm{x}, \mathrm{y}))]
\end{aligned}
$$

$\forall x[\operatorname{Boy}(\mathrm{x}) \rightarrow \exists y(\operatorname{Gir}(\mathrm{y}) \wedge \operatorname{Likes}(\mathrm{x}, \mathrm{y}))]$
$\exists y[\operatorname{Gir}(\mathrm{y}) \wedge \forall x(\operatorname{Boy}(\mathrm{x}) \rightarrow \operatorname{Likes}(\mathrm{x}, \mathrm{y}))]$

A (counter)example

Common Algebraic Specification Language

- strongly typed; types are declated using the sort keyword sort Blocks
- predicates have to be declared with their types preds Cube, Dodec, Tet: Blocks
- propositional variables $=$ nullary predicates preds A,B,C : ()
- constants have to be declared with their types ops a,b,c: Blocks

Example CASL specification: blocks

spec Tarski1 = sort Blocks
preds Cube, Dodec, Tet, Small, Medium, Large : Blocks ops a,b,c : Blocks
. not $a=b$. not $a=c$. not $b=c$
. Small(a) => Cube(a) \%(small_cube_a) \%
. Small(a) <=> Small(b) \% (small_a_b) \%
. Small(b) $\backslash /$ Medium(b) $\%($ small_medium_b) \%
. Medium(b) => Medium(c) \%(medium_b_c)\%
. Medium (c) => Tet(c) \%(medium_tet_c) \%
. not Tet(c) \% (not_tet_c) \%
. Cube (a)
. Cube(b)
\% (cube_a) \% \%implied
\% (cube_b) \% \%implied

Universal Elimination
 (\forall Elim)

$$
\begin{array}{l|l}
\forall x S(x) \\
\vdots \\
S(c)
\end{array}
$$

Existential Introduction

(\exists Intro)

$$
\begin{array}{l|l}
& S(c) \\
\vdots \\
& \triangleright x S(x)
\end{array}
$$

Example: \forall-Elim and \exists-Intro

$\forall x[$ Cube $(x) \rightarrow$ Large $(x)]$
$\forall x[\operatorname{Large}(x) \rightarrow \operatorname{LeftOf}(x, b)]$
Cube(d)
$\exists x[\operatorname{Large}(x) \wedge \operatorname{LeftOf}(x, b)]$

Existential Elimination (\exists Elim):

Where c does not occur outside the subproof where it is introduced.

Example: ヨ-Elim

```
\forallx[Cube(x) }->\mathrm{ Large(x)]
\forallx[Large(x) }->\mathrm{ LeftOf(x, b)]
\existsx Cube(x)
\existsx[Large(x)^LeftOf(x, b)]
```

General Conditional Proof (\forall Intro):

Where c does not occur outside the subproof where it is introduced.

Example: General Conditional Proof

```
\forallx[Cube(x) }->\mathrm{ Large(x)]
\forallx[Large(x) }->\mathrm{ LeftOf(x,b)]
\forallx[Cube(x) }->\mathrm{ LeftOf(x, b)
```

Universal Introduction (\forall Intro):

Where c does not occur outside the subproof where it is introduced.

Prenex normal form (reminder)

$\exists x$ Cube $(x) \rightarrow \forall y S m a l l(y)$
$\forall x \forall y(C u b e(x) \rightarrow$ Small $(y))$

Example with multiple quantifiers

$$
\begin{aligned}
& \exists y[\operatorname{Girl}(\mathrm{y}) \wedge \forall x(\operatorname{Boy}(\mathrm{x}) \rightarrow \operatorname{Likes}(\mathrm{x}, \mathrm{y}))] \\
& \forall x[\operatorname{Boy}(\mathrm{x}) \rightarrow \exists \mathrm{y}(\operatorname{Girl}(\mathrm{y}) \wedge \operatorname{Likes}(\mathrm{x}, \mathrm{y}))]
\end{aligned}
$$

Example: de Morgan's Law

$$
\left\lvert\, \begin{aligned}
& \neg \forall x \mathrm{P}(\mathrm{x}) \\
& -\exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}\right.
$$

(is not valid in intuitionistic logic, only in classical logic)

Example: The Barber Paradox

$$
\begin{aligned}
& \exists z \exists x[\operatorname{ManOf}(x, z) \wedge \forall y(\operatorname{ManOf}(y, z) \rightarrow \\
& (\operatorname{Shave}(x, y) \leftrightarrow \neg \operatorname{Shave}(y, y)))]
\end{aligned}
$$

