
Logik für Informatiker
Logic for computer scientists

Proof rules for quantifiers

Till Mossakowski, Lutz Schröder

WiSe 2011/12

Till Mossakowski, Lutz Schröder Logic

560 / Summary of Rules

General Conditional Proof

(∀ Intro)

c P(c)

...

Q(c)

. ∀x (P(x) → Q(x))

Universal Introduction

(∀ Intro)

c

...

P(c)

. ∀x P(x)

where c does not occur out-

side the subproof where it is

introduced.

Universal Elimination

(∀ Elim)

∀x S(x)
...

. S(c)

Existential Introduction

(∃ Intro)

S(c)
...

. ∃x S(x)

Existential Elimination

(∃ Elim)

∃x S(x)
...

c S(c)

...
Q

. Q

where c does not occur out-

side the subproof where it is

introduced.

Summary of Rules

Till Mossakowski, Lutz Schröder Logic

560 / Summary of Rules

General Conditional Proof

(∀ Intro)

c P(c)

...

Q(c)

. ∀x (P(x) → Q(x))

Universal Introduction

(∀ Intro)

c

...

P(c)

. ∀x P(x)

where c does not occur out-

side the subproof where it is

introduced.

Universal Elimination

(∀ Elim)

∀x S(x)
...

. S(c)

Existential Introduction

(∃ Intro)

S(c)
...

. ∃x S(x)

Existential Elimination

(∃ Elim)

∃x S(x)
...

c S(c)

...
Q

. Q

where c does not occur out-

side the subproof where it is

introduced.

Summary of Rules

Till Mossakowski, Lutz Schröder Logic

Example: ∀-Elim and ∃-Intro

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]
Cube(d)

∃x[Large(x) ∧ LeftOf(x, b)]

Till Mossakowski, Lutz Schröder Logic

348 / Formal Proofs and Quantifiers

assumption, we can derive some sentence Q not containing the constant c,

then we can conclude that Q follows from the original premises.

Existential Elimination (∃ Elim):

∃x S(x)
...

c S(c)

...
Where c does not occur out-

side the subproof where it is

introduced.
Q

. Q

Again we think of the notation at the beginning of the subproof as the formal

counterpart of the English “Let c be an arbitrary individual such that S(c).”

The rule of existential elimination is quite analogous to the rule of disjunc-

tion elimination, both formally and intuitively. With disjunction elimination,comparison with

∨ Elim we have a disjunction and break into cases, one for each disjunct, and estab-

lish the same result in each case. With existential elimination, we can think

of having one case for each object in the domain of discourse. We are required

to show that, whichever object it is that satisfies the condition S(x), the same

result Q can be obtained. If we can do this, we may conclude Q.

To illustrate the two existential rules, we will give a formal counterpart to

the proof given on page 323.

1. ∀x [Cube(x) → Large(x)]

2. ∀x [Large(x) → LeftOf(x, b)]

3. ∃x Cube(x)

4. e Cube(e)

5. Cube(e) → Large(e) ∀ Elim: 1

6. Large(e) → Elim: 5, 4

7. Large(e) → LeftOf(e, c) ∀ Elim: 2

8. LeftOf(e, c) → Elim: 7, 6

9. Large(e) ∧ LeftOf(e, c) ∧ Intro: 6, 8

10. ∃x (Large(x) ∧ LeftOf(x,b)) ∃ Intro: 9

11. ∃x (Large(x) ∧ LeftOf(x, b)) ∃ Elim: 3, 4-10

Chapter 13

Till Mossakowski, Lutz Schröder Logic

Example: ∃-Elim

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]
∃x Cube(x)

∃x[Large(x) ∧ LeftOf(x, b)]

Till Mossakowski, Lutz Schröder Logic

Universal quantifier rules / 343

To remind ourselves of this crucial restriction, we will introduce a new

graphical device, boxing the constant symbol in question and putting it in boxed constant

front of the assumption. We will think of the boxed constant as the formal

analog of the English phrase “Let c denote an arbitrary object satisfying P(c).”

General Conditional Proof (∀ Intro):

c P(c)

...
Where c does not occur out-

side the subproof where it is

introduced.
Q(c)

. ∀x (P(x) → Q(x))

When we give the justification for universal introduction, we will cite the

subproof, as we do in the case of conditional introduction. The requirement

that c not occur outside the subproof in which it is introduced does not pre-

clude it occurring within subproofs of that subproof. A sentence in a subproof

of a subproof still counts as a sentence of the larger subproof.

As a special case of ∀ Intro we allow a subproof where there is no sentential

assumption at all, just the boxed constant on its own. This corresponds to

the method of universal generalization discussed earlier, where one assumes

that the constant in question stands for an arbitrary object in the domain of

discourse.

Universal Introduction (∀ Intro):

c

...
Where c does not occur out-

side the subproof where it is

introduced.
P(c)

. ∀x P(x)

As we have indicated, we don’t really need both forms of ∀ Intro. Either

form could be eliminated in favor of the other. We use both because the first

is more natural while the second is more often used in logic textbooks (and

so something to be familiar with if you go on to study more logic).

Section 13.1

Till Mossakowski, Lutz Schröder Logic

Example: General Conditional Proof

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]

∀x[Cube(x)→ LeftOf(x, b)

Till Mossakowski, Lutz Schröder Logic

Universal quantifier rules / 343

To remind ourselves of this crucial restriction, we will introduce a new

graphical device, boxing the constant symbol in question and putting it in boxed constant

front of the assumption. We will think of the boxed constant as the formal

analog of the English phrase “Let c denote an arbitrary object satisfying P(c).”

General Conditional Proof (∀ Intro):

c P(c)

...
Where c does not occur out-

side the subproof where it is

introduced.
Q(c)

. ∀x (P(x) → Q(x))

When we give the justification for universal introduction, we will cite the

subproof, as we do in the case of conditional introduction. The requirement

that c not occur outside the subproof in which it is introduced does not pre-

clude it occurring within subproofs of that subproof. A sentence in a subproof

of a subproof still counts as a sentence of the larger subproof.

As a special case of ∀ Intro we allow a subproof where there is no sentential

assumption at all, just the boxed constant on its own. This corresponds to

the method of universal generalization discussed earlier, where one assumes

that the constant in question stands for an arbitrary object in the domain of

discourse.

Universal Introduction (∀ Intro):

c

...
Where c does not occur out-

side the subproof where it is

introduced.
P(c)

. ∀x P(x)

As we have indicated, we don’t really need both forms of ∀ Intro. Either

form could be eliminated in favor of the other. We use both because the first

is more natural while the second is more often used in logic textbooks (and

so something to be familiar with if you go on to study more logic).

Section 13.1

Till Mossakowski, Lutz Schröder Logic

Prenex normal form (reminder)

∃xCube(x)→ ∀ySmall(y)

∀x∀y(Cube(x)→ Small(y))

Till Mossakowski, Lutz Schröder Logic

Example with multiple quantifiers

∃y[Girl(y) ∧ ∀x(Boy(x)→ Likes(x, y))]

∀x[Boy(x)→ ∃y(Girl(y) ∧ Likes(x, y))]

Till Mossakowski, Lutz Schröder Logic

Example: de Morgan’s Law

¬∀x P(x)

∃x ¬P(x)

(is not valid in intuitionistic logic, only in classical logic)

Till Mossakowski, Lutz Schröder Logic

Example: The Barber Paradox

∃z ∃x [ManOf(x , z) ∧ ∀y (ManOf(y , z)→
(Shave(x , y)↔ ¬Shave(y , y)))]

⊥

Till Mossakowski, Lutz Schröder Logic

Induction

Induction is like a chain of dominoes. You need

the dominoes must be close enough together ⇒ one falling
dominoe knocks down the next (inductive step)

you need to knock down the first dominoe (inductive basis)

Note: in the inductive step, branching is
possible.

Till Mossakowski, Lutz Schröder Logic

Induction

Induction is like a chain of dominoes. You need

the dominoes must be close enough together ⇒ one falling
dominoe knocks down the next (inductive step)

you need to knock down the first dominoe (inductive basis)

Note: in the inductive step, branching is
possible.

Till Mossakowski, Lutz Schröder Logic

Inductive definition: Natural numbers

1 0 is a natural number.

2 If n is natural number, then suc(n) is a natural number.

3 There is no natural number whose successor is 0.

4 Two different natural numbers have different successors.

5 Nothing is a natural number unless generated by repeated
applications of (1) and (2).

Till Mossakowski, Lutz Schröder Logic

Recursive definition of functions

∀y(0 + y = y)
∀x∀y(suc(x) + y = suc(x + y))

∀y(0 ∗ y = 0)
∀x∀y(suc(x) ∗ y = (x ∗ y) + y)

Till Mossakowski, Lutz Schröder Logic

Formalization of Peano’s axioms

1 a constant 0

2 a unary function symbol suc

3 ∀n ¬suc(n) = 0

4 ∀m∀n suc(m) = suc(n)→ m = n

5 (Φ(x/0) ∧ ∀n(Φ(x/n)→ Φ(x/suc(n))))→ ∀n Φ(x/n)
if Φ is a formula with a free variable x , and
Φ(x/t) denotes the replacement of x with t within Φ

Till Mossakowski, Lutz Schröder Logic

Inductive proofs

Take Φ(x) := ∀y∀z(x + (y + z) = (x + y) + z). Then

(Φ(x/0) ∧ ∀n(Φ(x/n)→ Φ(x/suc(n))))→ ∀n Φ(x/n)

is just

(∀y∀z(0 + (y + z) = (0 + y) + z)
∧∀n∀y∀z (n + (y + z) = (n + y) + z

→ suc(n) + (y + z) = (suc(n) + y) + z))
→ ∀n∀y∀z (n + (y + z) = (n + y) + z)

With this, we can prove ∀n∀y∀z (n + (y + z) = (n + y) + z)

Till Mossakowski, Lutz Schröder Logic

Inductive datatypes: Lists of natural numbers

1 The empty list [] is a list.

2 If l is a list and n is natural number, then cons(n, l) is a list.

3 Nothing is a list unless generated by repeated applications of
(1) and (2).

Note: This needs many-sorted first-order logic.
We have two sorts of objects: natural numbers and lists.

Till Mossakowski, Lutz Schröder Logic

Recursive definition of functions over lists

length([]) = 0
∀n : Nat ∀l : List (length(cons(n, l)) = suc(length(l)))

∀l : List ([] ++ l = l)
∀n : Nat ∀l1 : List ∀l2 : List

(cons(n, l1) ++ l2 = cons(n, l1 ++ l2))

Till Mossakowski, Lutz Schröder Logic

Inductive proofs over lists

∀l1 : List ∀l2 : List ∀l3 : List
(l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3)

∀l1 : List ∀l2 : List
(length(l1 ++ l2) = length(l1) + length(l2))

Till Mossakowski, Lutz Schröder Logic

