Logik für Informatiker Logic for computer scientists

First-order structures

Till Mossakowski, Lutz Schröder

WiSe 2011/12

A first-order structure $\mathfrak M$ consists of:

- a nonempty set $D^{\mathfrak{M}}$, the *domain of discourse*;
- for each *n*-ary predicate *P* of the language, a set 𝔐(*P*) of *n*-tuples ⟨x₁,...,x_n⟩ of elements of *D*^𝔐, called the *extension* of *P*. The extension of the identity symbol = must be {⟨x, x⟩ | x ∈ D^𝔐};
- for any name (individual constant) c of the language, an element $\mathfrak{M}(c)$ of $D^{\mathfrak{M}}$.

A variable assignment in \mathfrak{M} is a (possibly partial) function g defined on a set of variables and taking values in $D^{\mathfrak{M}}$. Given a well-formed formula P, we say that the variable assignment g is appropriate for P if all the free variables of P are in the domain of g, that is, if g assigns objects to each free variable of P.

$[t]_g^{\mathfrak{M}}$ is

- $\mathfrak{M}(t)$ if t is an individual constant, and
- g(t) if t is a variable.

æ

Additionally,

- never $\mathfrak{M} \models \bot[g]$;
- always $\mathfrak{M} \models \top [g]$.
- A structure \mathfrak{M} satisfies a sentence P,

$$\mathfrak{M}\models P,$$

if $\mathfrak{M} \models P[g_{\emptyset}]$ for the empty assignment g_{\emptyset} .

$$D^{\mathfrak{M}} = \{a, b, c\}$$

$$\mathfrak{M}(\mathit{likes}) = \{ \langle \mathsf{a}, \mathsf{a} \rangle, \langle \mathsf{a}, \mathsf{b} \rangle, \langle \mathsf{c}, \mathsf{a} \rangle \}$$

$$\mathfrak{M} \models \exists x \exists y (Likes(x, y) \land \neg Likes(y, y))$$
$$\mathfrak{M} \models \neg \forall x \exists y (Likes(x, y) \land \neg Likes(y, y))$$

▲母 ▶ ▲ 臣

æ

< E

Proposition Let \mathfrak{M}_1 and \mathfrak{M}_2 be structures which have the same domain and assign the same interpretations to the predicates and constant symbols in P. Let g_1 and g_2 be variable assignments that assign the same objects to the free variables in P. Then

 $\mathfrak{M}_1 \models P[g_1]$ iff $\mathfrak{M}_2 \models P[g_2]$

A sentence P is a *first-order consequence* of a set \mathcal{T} of sentences if and only if every structure that satisfies all the sentences in \mathcal{T} also satisfies P.

A sentence P is a *first-order validity* if and only if every structure satisfies P.

A set \mathcal{T} of sentences is called *first-order satisfiable*, if there is a structure satisfies each sentence in \mathcal{T} .

Theorem If $\mathcal{T} \vdash S$, then S is a first-order consequence of \mathcal{T} .

Proof: By induction over the derivation, we show that any sentence occurring in a proof is a first-order consequence of the assumption in force in that step.

An assumption is *in force* in a step if it is an assumption of the current subproof or an assumption of a higher-level proof.

For rules involving subproofs that work with fresh constants, we need to use satisfaction invariance.

The basic shape axioms

- $\forall x (Tet(x) \lor Dodec(x) \lor Cube(x))$

SameShape introduction and elimination axioms

- $\forall x \forall y ((SameShape(x, y) \land Cube(x)) \rightarrow Cube(y))$
- $\forall x \forall y ((SameShape(x, y) \land Tet(x)) \rightarrow Tet(y))$

Two structures are *isomorphic* if there is a bijection between their domains that is compatible with extensions of predicate and interpretation of constants.

Assume the language Cube, Tet, Dodec, SameShape

Lemma For any structure satisfying the shape axioms, there is an isomorphic Tarski's world structure.

Theorem Let S be a sentence. If S is a Tarski's world logical consequence of \mathcal{T} , then S is a first-order consequence of \mathcal{T} plus the shape axioms.