Logik für Informatiker Logic for computer scientists

First-order resolution

Till Mossakowski, Lutz Schröder

WiSe 2011/12

- generalises propositional resolution to first-order logic
- is a proof system that is well-suited for efficient implementation
- many automated first-order provers are based on resolution: SPASS, Prover9, Vampire
- also interactive provers for higher-order logic are based on resolution: Isabelle, HOL, HOL-light

Satisfiability and logical consequence

Logical consequence can be reduced to (un)satisfiability: The logical consequence $\mathcal{T} \models S$ holds if and only if $\mathcal{T} \cup\{\neg S\}$ is unsatisfiable.

Note: Resolution is about satisfiability.

The sentence

$$
\forall x \exists y \operatorname{Neighbor}(x, y)
$$

is logically equivalent to the second-order sentence

$$
\exists f \forall x \operatorname{Neighbor}(x, f(x))
$$

In first-order logic, we have the Skolem normal form

$$
\forall x \operatorname{Neighbor}(x, f(x))
$$

Theorem

A sentence $S \equiv \forall x \exists y P(x, y)$ is satisfiable iff its Skolem normal form $\forall x P(x, f(x))$ is.
Every structure satisfying the Skolem normal form also satisfies S. Moreover, every structure satisfying S can be turned into one satisfying the Skolem normal form. This is done by interpreting f by a function which picks out, for any object b in the domain, some object c such that they satisfy $P(x, y)$.

Unification of terms

$$
\{P(f(a)), \forall x \neg P(f(g(x)))\}
$$

is satisfiable, but

$$
\{P(f(g(a))), \forall x \neg P(f(x))\}
$$

is not. This can be seen with unification.
Terms t_{1}, \ldots, t_{n} are unifiable, if there is a substitution of terms for some or all the variables in t_{1}, \ldots, t_{n} such that the terms that result from the substitution are syntactically identical terms.

Example

$$
f(g(z), x), \quad f(y, x), \quad f(y, h(a))
$$

are unifiable by substituting $h(a)$ for x and $g(z)$ for y.

Goal: shift all quantifiers to the top-level

$$
\begin{array}{ll}
(\forall x P) \wedge Q \leadsto \forall x(P \wedge Q) & \\
P \wedge(\exists x P) \wedge Q \leadsto \exists x(P \wedge Q) \\
P \wedge(\forall x) \leadsto \forall x(P \wedge Q) & P \wedge(\exists x Q) \leadsto \exists x(P \wedge Q) \\
(\forall x P) \vee Q \leadsto \forall x(P \vee Q) & \\
P \vee P) \vee Q \leadsto \exists x(P \vee Q) \\
P \vee(\forall x Q) \leadsto \forall x(P \vee Q) & P \vee(\exists x Q) \leadsto \exists x(P \vee Q) \\
\neg \forall x P \leadsto \exists x(\neg P) & \neg \exists x P \leadsto \forall x(\neg P) \\
(\forall x P) \rightarrow Q \leadsto \exists x(P \rightarrow Q) & \\
P \rightarrow P) \rightarrow Q \leadsto \forall x(P \rightarrow Q) \\
P \rightarrow(\forall x Q) \leadsto \forall x(P \rightarrow Q) & P \rightarrow(\exists x Q) \leadsto \exists x(P \rightarrow Q) \\
P \leftrightarrow Q \leadsto(P \rightarrow Q) \wedge(Q \rightarrow P) &
\end{array}
$$

Alpha-renaming (change of bound variables)

The Prenex normal form algorithm assumes that all variables in a formula are distinct. This can be achieved by α-renaming:
$\forall x P(x) \sim \forall y P(y)$
$\exists x P(x) \sim \exists y P(y)$

Resolution for FOL

Suppose that we have a set \mathcal{T} of sentences an want to show that they are not simultaneously first-order satisfiable.
(1) Put each sentence in \mathcal{T} into prenex form, say

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots P\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)
$$

(2) Skolemize each of the resulting sentences, say

$$
\forall x_{1} \forall x_{2} \ldots P\left(x_{1}, f_{1}\left(x_{1}\right), x_{2}, f_{2}\left(x_{1}, x_{2}\right), \ldots\right)
$$

using different Skolem functions for different sentences.
(3) Put each quantifier free matrix P into conjunctive normal form, say

$$
P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}
$$

where each P_{i} is a disjunction of literals.
(9) Distribute the universal quantifiers in each sentence across the conjunctions and drop the conjunction signs, ending with a set of sentences of the form

$$
\forall x_{1} \forall x_{2} \ldots P_{i}
$$

(0) Change the bound variables in each of the resulting sentences so that no variable appears in two of them.
(0) Turn each of the resulting sentences into a set of literals by dropping the universal quantifiers and disjunction signs. In this way we end up with a set of resolution clauses.
(1) Use resolution and unification to resolve this set of clauses

$$
\frac{\left\{C_{1}, \ldots, C_{m}\right\},\left\{\neg D_{1}, \ldots, D_{n}\right\}}{\left\{C_{2} \theta, \ldots C_{m} \theta, D_{2} \theta, \ldots, D_{n} \theta\right\}}
$$

if $C_{1} \theta=D_{1} \theta$ (θ is a unifier of C_{1} and $\left.D_{1}\right)$

Example I

Is the following argument valid?

$$
\begin{aligned}
& \forall x(P(x, b) \vee Q(x)) \\
\forall & \forall \\
- & \forall \mathrm{P}(\mathrm{P}(\mathrm{f}(\mathrm{y}) \vee \mathrm{y}), \mathrm{b}) \vee \mathrm{Q}(\mathrm{f}(\mathrm{y}))
\end{aligned}
$$

Reformulated: is the following set unsatisfiable?

$$
\begin{aligned}
& \forall x(P(x, b) \vee Q(x)) \\
& \forall y(\neg P(f(y), b) \vee Q(y)) \\
& \neg \forall y(Q(y) \vee Q(f(y))
\end{aligned}
$$

Step 1: Prenex normal form

$$
\begin{aligned}
& \forall x(P(x, b) \vee Q(x)) \\
& \forall y(\neg P(f(y), b) \vee Q(y)) \\
& \exists y \neg(Q(y) \vee Q(f(y))
\end{aligned}
$$

Step 2: Skolemization

$$
\begin{aligned}
& \forall x(P(x, b) \vee Q(x)) \\
& \forall y(\neg P(f(y), b) \vee Q(y)) \\
& \neg(Q(c) \vee Q(f(c))
\end{aligned}
$$

Since the existential quantifier was not preceeded by any universal quantifier, we need a 0 -ary function symbol, that is, an individual constant c.

Step 3: Conjunctive normal form

$$
\begin{aligned}
& \forall x(P(x, b) \vee Q(x)) \\
& \forall y(\neg P(f(y), b) \vee Q(y)) \\
& \neg Q(c) \wedge \neg Q(f(c))
\end{aligned}
$$

Step 4: Drop conjunctions

$$
\begin{aligned}
& \forall x(P(x, b) \vee Q(x)) \\
& \forall y(\neg P(f(y), b) \vee Q(y)) \\
& \neg Q(c) \\
& \neg Q(f(c))
\end{aligned}
$$

Step 5: change bound variables: nothing to do.

Step 6: Drop universal quantifiers and disjunctions, and step 7: do resolution

- $\{P(x, b), Q(x)\}$
(2) $\{\neg P(f(y), b), Q(y)\}$
- $\{\neg Q(c)\}$
- $\{\neg Q(f(c))\}$
- $\{Q(y), Q(f(y))\} \quad 1,2$ with $f(y)$ for x
- $\{Q(f(c))\} 3,5$ with c for y
- $\square 4,6$

Example II

Is the following argument valid?
From
"Everyone admires someone who admires them unless they admire Quaid."
we can infer
"There are people who admire each other, at least one of whom admires Quaid."

$$
\begin{aligned}
& \forall x[\neg A(x, q) \rightarrow \exists y(A(x, y) \wedge A(y, x))] \\
& \exists x \exists y[A(x, q) \wedge A(x, y) \wedge A(y, x)]
\end{aligned}
$$

Reformulated: is the following set unsatisfiable?

$$
\begin{aligned}
& \forall x[\neg A(x, q) \rightarrow \exists y(A(x, y) \wedge A(y, x))] \\
& \neg \exists x \exists y[A(x, q) \wedge A(x, y) \wedge A(y, x)]
\end{aligned}
$$

Step 1: Prenex normal form

$$
\begin{aligned}
& \forall x \exists y[\neg A(x, q) \rightarrow(A(x, y) \wedge A(y, x))] \\
& \forall x \forall y \neg[A(x, q) \wedge A(x, y) \wedge A(y, x)]
\end{aligned}
$$

Step 2: Skolemization

$$
\begin{aligned}
& \forall x[\neg A(x, q) \rightarrow(A(x, f(x)) \wedge A(f(x), x))] \\
& \forall x \forall y \neg[A(x, q) \wedge A(x, y) \wedge A(y, x)]
\end{aligned}
$$

Step 3: Conjunctive normal form

$$
\begin{aligned}
& \forall x[(A(x, q) \vee A(x, f(x))) \wedge(A(x, q) \vee A(f(x), x))] \\
& \forall x \forall y[\neg A(x, q) \vee \neg A(x, y) \vee \neg A(y, x)]
\end{aligned}
$$

Step 4: Drop conjunctions

$$
\begin{aligned}
& \forall x(A(x, q) \vee A(x, f(x))) \\
& \forall x(A(x, q) \vee A(f(x), x)) \\
& \forall x \forall y[\neg A(x, q) \vee \neg A(x, y) \vee \neg A(y, x)]
\end{aligned}
$$

Step 5: change bound variables.

$$
\begin{aligned}
& \forall x(A(x, q) \vee A(x, f(x))) \\
& \forall y(A(y, q) \vee A(f(y), y)) \\
& \forall z \forall w[\neg A(z, q) \vee \neg A(z, w) \vee \neg A(w, z)]
\end{aligned}
$$

Step 6: Drop universal quantifiers and disjunctions, and step 7: do resolution

(1) $\{A(x, q), A(x, f(x))\}$
(2) $\{A(y, q), A(f(y), y)\}$
(3) $\{\neg A(z, q), \neg A(z, w), \neg A(w, z)\}$
(9) . . [homework: fill in the rest]

