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WiSe 2011/12

Till Mossakowski, Lutz Schröder Logic



Completeness of propositional logic

Theorem (Completeness theorem). Let T be a set of propositional
sentences, and S be a propositional sentence. If S is a tautological
consequence of T (T |= S), then T ` S .
Recall: T |= S means that each valuation satisfying T also
satisfies S .
T ` S means that S is derivable from T using the rules of Fitch.
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Proof of propositional completeness

Call a set of sentences T formally inconsistent, if T ` ⊥.
Example: {A ∨ B,¬A,¬B}.
Otherwise, T is called formally consistent.
Example: {A ∨ B,A,¬B}
Lemma 1 T ∪ {¬S} ` ⊥ iff T ` S .
Reformulation of completeness: Every formally consistent set of
sentences is tt-satisfiable.
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Completeness of formally complete sets

A set T is formally complete, if for any sentence S in the same
language as T , either T ` S or T ` ¬S .
Lemma 2 (Truth Lemma) For T formally complete and
consistent,

1 T ` R ∧ S iff T ` R and T ` S .

2 T ` R ∨ S iff T ` R or T ` S .

3 T ` ¬S iff not T ` S .

4 T ` R → S iff T 6` R or T ` S .

5 T ` R ↔ S iff ( T ` R iff T ` S).
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Finishing the proof

Lemma 3 Every formally complete and consistent set is
tt-satisfiable.
Lemma 4 A set of sentence is formally complete iff for every
atomic sentence A, either T ` A or T ` ¬A.
Lemma 5 Every formally consistent set of sentences can be
expanded to a formally consistent, formally complete set of
sentences.
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Gödel’s completeness theorem

Theorem (Completeness theorem). Let T be a set of sentences of
a first-order language L and S be a sentence of the same language.
If S is a first-order consequence of T (T |= S), then T ` S .
Recall: T |= S means that each first-order structure satisfying T
also satisfies S .
T ` S means that S is derivable from T using the rules of Fitch.
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Henkin’s proof of Gödel’s theorem

Adding witnessing constants L is enriched to LH by adding infinitely
many constants, the witnessing constants.

The Henkin theory Isolate a theory H in the enriched language LH ,
which contains Henkin witnessing axioms.

The Elimination theorem For any proof with sentences in L or from H as
premises, and a sentence in L as conclusion, we can
eliminate the premises from H from the proof.

The Henkin construction For every truth assignment h assinging true
to all formulas in H, there is a first-order structure Mh

such that Mh makes true all first-order sentence that h
makes true.
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How to obtain Gödel’s theorem

Assume that T |= S .

1 Hence, there is no model of T ∪ {¬S}.
2 By the Henkin construction, there is no assignment h

satisfying T ∪ H ∪ {¬S}.
3 Hence, S is a tautological consequence of T ∪ H.

4 By completeness of propositional logic, T ∪ H ` S .

5 By the elimination theorem, T ` S .
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Adding witnessing constants

For each well-formed formula P of L with exactly one free variable,
add a new constant cP , P’s witnessing constant.
E.g. for Small(x) ∧ Cube(x), we introduce cSmall(x)∧Cube(x).
This process has to be iterated:

L = L0 ⊆ L1 ⊆ L2 ⊆ . . .

E.g. for Smaller(y , cSmall(x)∧Cube(x)), we introduce
cSmaller(y ,cSmall(x)∧Cube(x)).
Each witnessing constant appears in some Ln for the first time. n
is called its date of birth.
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The Henkin witnessing axioms

∃x P(x)→ P(cP(x))

intuitve idea:
if there is something that satisfies P(x), then the object named by
cP(x) provides an example
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The Henkin theory

H1 ∃x P(x)→ P(cP(x)) (witnessing axioms, =̂ ∃Elim)

H2 P(c)→ ∃x P(x) (=̂ ∃Intro)

H3 ¬∀x P(x)↔ ∃x ¬P(x) (reduces ∀ to ∃)

H4 c = c (=̂ =Intro)

H5 (P(c) ∧ c = d)→ P(d) (=̂ =Elim)
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Independence lemma

If cP and cQ are two witnessing constants and the date of birth of
cP is less than or equal to that of cQ , then cQ does not appear in
the witnessing axiom of cP .
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Elimination Theorem

For any proof with sentences in L or from H as premises, and a
sentence in L as conclusion, we can eliminate the premises from H
from the proof.
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Deduction Theorem If T ∪ {P} ` Q, then T ` P → Q.

Lemma 1 If T ` P → Q and T ` ¬P → Q, then T ` Q.

Lemma 2 If T ` (P → Q)→ R,
then T ` ¬P → R, and T ` Q → R.

Lemma 3 Let T be a set of sentences of some first-order language
L, and Q be a sentence. Let P(x) be a formula of L with one free
variable and which does not contain c . If T ` P(c)→ Q and c
does not appear in T or Q, then T ` ∃x P(x)→ Q.
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Lemma 4 Let T be a set of sentences of some first-order language
L, and Q be a sentence of L. Let P(x) be a formula of L with one
free variable and which does not contain c . If
T ∪ {∃x P(x)→ P(c)} ` Q and c does not appear in T or Q,
then T ` Q.
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Lemma 5 Let T be a set of first-order sentences, let P(x) be a
formula with one free variable, and let c and d be constant
symbols. The following are provable in F :

P(c)→ ∃x P(x)
¬∀x P(x)↔ ∃x ¬P(x)

c = c
(P(c) ∧ c = d)→ P(d)
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Elimination Theorem

For any proof with sentences in L or from H as premises, and a
sentence in L as conclusion, we can eliminate the premises from H
from the proof.
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The Henkin construction

For every truth assignment h assinging true to all formulas in H, there
is a first-order structure Mh such that Mh makes true all first-order
sentence that h makes true.
Given h, construct M as follows:

DM: set of constant symbols in LH

M(c) is just c

M(R) is {〈c1, . . . cn〉 | h(R(c1, . . . cn)) = true}
c ≡ d if and only if h(c = d) = true

Mh = M/ ≡
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The truth lemma

For any sentence S of LH , Mh |= S iff h(S) = true.
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Consequences of the Completeness Theorem

Theorem (Compactness theorem) Let T be a set of first-order
sentences in a first-order language L. If every finite subset of T is
first order-satisfiable, then T itself is first-order satisfiable.
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Non-standard models of Peano arithmetic

Let L be the language of Peano arithmetic. Then there exists a
first-order structure M such that

1 M contains all the natural numbers in its domain,

2 M also contains elements greater than all the natural
numbers, but

3 M makes true exactly the same sentences of L as are true
about the natural numbers.
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