Logik für Informatiker Logic for computer scientists

Description Logics and First-Order Logic

Till Mossakowski, Lutz Schröder

WiSe 2011/12

- A DL-signature $\boldsymbol{\Sigma} = (\boldsymbol{\mathsf{C}},\boldsymbol{\mathsf{R}},\boldsymbol{\mathsf{I}})$ consists of
 - a set **C** of concept names,
 - a set R of role names,
 - a set I of individual names,

For a signature $\Sigma = (\mathbf{C}, \mathbf{R}, \mathbf{I})$ the set of \mathcal{ALC} -concepts over Σ is defined by the following grammar:

(Hets) Manchester syntax

· · · ·
a concept name
Thing
Nothing
not C
C and C
C or C
R some C
R only C

 \mathcal{ALC} stands for "attributive language with complement"

The set of \mathcal{ALC} -Sentences over Σ (Sen(Σ)) is defined as

• $C \sqsubseteq D$, where *C* and *D* are \mathcal{ALC} -concepts over Σ .

Class: C SubclassOf: D

- a: C, where a ∈ I and C is a ALC-concept over Σ. Individual: a Types: C
- $R(a_1, a_2)$, where $R \in \mathbf{R}$ and $a_1, a_2 \in \mathbf{I}$. Individual: a1 Facts: R a2

Given $\Sigma = (\mathbf{C}, \mathbf{R}, \mathbf{I})$, a Σ -model is of form $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}}$ is a non-empty set
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each $A \in \mathbf{C}$
- $R^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$ for each $R \in \mathbf{R}$
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each $a \in \mathbf{I}$

We can extend $\cdot^{\mathcal{I}}$ to all concepts as follows: $T^{\mathcal{I}} = \Delta^{\mathcal{I}}$ $\perp^{\mathcal{I}} = \emptyset$ $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $(\exists R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists y \in \Delta^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}}, y \in C^{\mathcal{I}}\}$ $(\forall R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \forall y \in \Delta^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$

Description Logic: Satisfaction of sentences in a model

$$\begin{split} \mathcal{I} &\models C \sqsubseteq D & \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}. \\ \mathcal{I} &\models a : C & \text{iff} \quad a^{\mathcal{I}} \in C^{\mathcal{I}}. \\ \mathcal{I} &\models R(a_1, a_2) & \text{iff} \quad (a_1^{\mathcal{I}}, a_2^{\mathcal{I}}) \in R^{\mathcal{I}}. \end{split}$$

$$\phi((\mathbf{C}, \mathbf{R}, \mathbf{I})) = (F, P) \text{ with}$$

• $S = \{\text{Thing}\} \text{ (one sort = single-sorted)}$
• $F = \{a : \text{Thing} | a \in \mathcal{I}\} \text{ (constants)}$
• $P = \{A : \text{Thing} | A \in \mathbf{C}\} \cup \{R : \text{Thing} \times \text{Thing} | R \in \mathbf{R}\}$
(predicate symbols)

글▶ 글

•
$$\alpha_x(A) = A(x: \text{Thing})$$

•
$$\alpha_x(\neg C) = \neg \alpha_x(C)$$

•
$$\alpha_x(C \sqcap D) = \alpha_x(C) \land \alpha_x(D)$$

•
$$\alpha_x(C \sqcup D) = \alpha_x(C) \lor \alpha_x(D)$$

•
$$\alpha_x(\exists R.C) = \exists y : \text{Thing.}(R(x, y) \land \alpha_y(C))$$

•
$$\alpha_x(\forall R.C) = \forall y : \text{Thing.}(R(x, y) \to \alpha_y(C))$$

Sentence translation

•
$$\alpha_{\Sigma}(C \sqsubseteq D) = \forall x : \text{Thing.} (\alpha_{x}(C) \rightarrow \alpha_{x}(D))$$

•
$$\alpha_{\Sigma}(a:C) = \alpha_{X}(C)[a/x]^{1}$$

•
$$\alpha_{\Sigma}(R(a,b)) = R(a,b)$$

Model translation (FOL-models are translated to ALC-models!)

• For
$$M' \in \text{Mod}^{FOL}(\phi \Sigma)$$
 define $\beta_{\Sigma}(M') := (\Delta, \cdot')$ with $\Delta = M'_{\text{Thing}}$ and $A' = M'_A, a' = M'_a, R' = M'_R$.

¹Replace x by a.

Translating ALC to FOL: Correctness

Theorem 1: $C^{\mathcal{I}} = \{ m \in M'_{\text{Thing}} | M' + \{ x \mapsto m \} \models \alpha_x(C) \}$ **Proof:** By Induction over the structure of *C*.

•
$$A^{\mathcal{I}} = M'_{A} = \{m \in M'_{\text{Thing}} | M' + \{x \mapsto m\} \models A(x)\}$$

• $(\neg C)^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}}$
 $= {}^{I.H.} \Delta \setminus \{m \in M'_{\text{Thing}} | M' + \{x \mapsto m\} \models \alpha_{x}(C)\}$
 $= \{m \in M'_{\text{Thing}} | M' + \{x \mapsto m\} \models \neg \alpha_{x}(C)\}$

Theorem 2: (Satisfaction condition)

$$\beta(M) \models \varphi \text{ iff } M \models \alpha(\varphi)$$

Theorem 3: (Logical consequence coincides)

$$\Gamma \models \varphi$$
 (in \mathcal{ALC}) iff $\alpha(\Gamma) \models \alpha(\varphi)$ (in FOL)