
Approximation of Ontologies in Casl

Klaus Lüttich

FB3, Universität Bremen, P.O.B. 33 04 40, 28334 Bremen, Germany
luettich@tzi.de

Abstract. In this paper we present methods to generate a Description
Logic (DL) theory from a given First Order Logic (FOL) theory, such
that each DL axiom is entailed by the given FOL theory. This is ob-
tained by rewriting the given FOL formulas. If this method is applied
to an ontology specification in FOL the resulting DL specification is still
grounded on the same semantics but clearly weaker than the FOL specifi-
cation. The benefit of specification in DL is that it is decidable, and that
efficient reasoning procedures are also available as implemented in tools
such as Racer, Fact++ or Pellet. Such ontologies in DL could be used for
knowledge representation systems and the semantic web where efficient
and decidable reasoning plays a major role. These weakening strategies
are described with Casl (Common Algebraic Specification Language),
and one of its sublogics Casl-DL, and will be integrated into Hets (Het-
erogeneous Tool Set).

1 Introduction

Traditionally, Description Logics (DL) [1] or other less expressive formalisms
have been used to describe and reason about knowledge in an efficient way.
This is clearly needed for applications such as the Semantic Web [2] and natural
language processing. However, on the other hand DLs are too weak to formalize
a rich axiomatized foundational ontology such as Dolce (Descriptive Ontology
for Linguistic and Cognitive Engineering) [4, 10]. Therefore Casl [3] (Common
Algebraic Specification Language) and even ModalCasl (an extension of Casl
with multi-modalities) will be used for the formalization of Dolce. That this
offers great potential has been previously presented in [8]. One advantage of
Casl is its tool Hets [11] (Heterogeneous Tool Set). It allows syntax and type
checking of Casl and it is connected to the semi-automatic theorem prover
Isabelle [12] and to the automatic first-order reasoner SPASS [16].

This paper offers a bridge between rich axiomatizations in FOL and tractable
theories in DL. It describes an approximation of FOL theories to DL preserving
the semantics. This idea is also called knowledge compilation as the knowledge
or semantics of a theory should be kept while the tractability is improved [13].

This paper is structured as follows: First we introduce description logics,
Casl and Casl-DL, the languages used for the examples. Then we present the
idea of knowledge compilation in general, and further we present our approach
to approximate FOL with DL. This section is accompanied by an informative

2

example illustrating the method. The paper ends with a perspective on future
work.

2 Logical Foundations

In this section we introduce the logical foundations for our approach: First we
briefly present Description Logics, then we describe the formal languages Casl
and Casl-DL.

2.1 Description Logic

Description Logic (DL) has been developed for efficient knowledge representa-
tion and reasoning. Its principle is the distinction between so-called TBoxes and
ABoxes. TBoxes provide the terminology of the knowledge base such as hierar-
chies of concepts and roles, and axioms describing which individuals belong to
a concept based on relations to other individuals. These descriptions are formu-
las with a restricted flow of variables. Furthermore, some predefined datatypes
like strings and numbers are available to attach data to individuals with data-
valued roles. ABoxes, on the other hand, represent facts about the world and
the individuals, by axioms with constants (individuals) [1].

DLs have the benefit that the tractability, decidability, and the complexity of
the reasoning systems has been studied very well now [1]. Another advantage is
the great number of available automatic reasoners, such as Racer [5], FaCT++
[6] or Pellet [15].

2.2 Casl

Casl, the Common Algebraic Specification Language [3], has been designed by
CoFI, the Common Framework Initiative for algebraic specification and devel-
opment. It has been designed by a large number of experts from different groups,
and serves as a de-facto standard. The design of Casl has been approved by
the IFIP WG 1.3 “Foundations of System Specification”. Originally Casl was
designed for specifying software requirements and design, but this paper goes
further to explore the use of Casl for the specification of ontologies [8, 9].

Casl consists of two major levels, which are quite independent: basic speci-
fications and structured specifications. This paper focuses on the basic specifica-
tion level where theories are defined in terms of FOL axioms. These axioms are
based on symbols introduced by the user in terms of signatures. A signature is
the declaration of symbols for sorts (types), predicates, total and partial func-
tions. Subsort hierarchies are available and axioms can be formed by the usual
first order logical connectives. Casl offers loose specification and design spec-
ification, where loose specification only cover the important requirements, but
leave representation issues underspecified. For design specifications it is possible
to describe representations of datatypes in great detail.

3

This approach uses Casl in a limited way; only predicates with one or two
arguments, functions (operations) with one argument and constants are used.
The specification of subsorting is not limited, except that there must be a max-
imal topsort available that applies to all other sorts in the theory. Datatype
definitions must not contain constructors with arguments; hence only datatypes
consisting of subsort embeddings or constant constructors are allowed. We refer
to this sublanguage of Casl as 2-FOL in the rest of this paper.

2.3 Casl-DL

Casl-DL is a sublanguage of Casl, which is equivalent to the Description Logic
SHOIN (D) [9, 7, 1]. Basically, this is a DL with concepts (unary predicates)
and roles (binary predicates), which allows to specify a hierarchy of concepts
and a hierarchy of roles. For roles only specific axioms are allowed: they can
be specified as functional, inverse functional, transitive or symmetric and they
can be related to other roles as inverse, equivalent or as subrole. Also, the range
and domain of a role can be specified. Concepts can be fully defined by, or just
imply, certain descriptions. Descriptions either allow us to describe the negation,
union and intersection of descriptions, or they are just another concept. Further
descriptions are role restrictions, which allow limited introduction of one new
variable and demand either the existence of a certain number of relations between
members of two descriptions or restrict the second argument of a role to be in
the specified description. The following paragraph gives a detailed list of Casl
constructs allowed in Casl-DL which can be used for the specification of a
SHOIN (D) theory.

The following constructs of Casl are allowed in Casl-DL:

– sorts and subsorts, but limited to those having a common maximal supersort
called Thing, used for classes / concepts;

– free types with only the subsort alternative used to define the disjoint union
of concepts;

– subsort definitions;
– a free or generated type with constant constructors is used to define enu-

merated concepts where all members are known; a free type implies that all
constants have distinct values;

– predefined datatypes are allowed which have DATA as maximal supersort;
– predicates (roles / properties) with an arity of one or two arguments;
– partial functions (functional roles / properties) restricted to one argument

and total constants (individuals);
– types for predicates and functions are only Thing or subsorts of it as subject

(first or only argument position); the object position (second argument or
result) is either typed with Thing or DATA or a subsort of one of these;
except for constants which are typed with Thing or a subsort of it;

– formulas defining predicates and functions with types Thing × Thing and
Thing → Thing, which are restricted to implication, equivalence, symmetry,
transitivity, functional and inverse functional axioms with the further re-
striction that functional predicates cannot be transitive; for predicates and

4

functions which relate to DATA only equivalence and implication axioms
are allowed; additionally, so-called argument restriction axioms are allowed
which allow the implication of a conjunction of two descriptions (see below)
each restricting the arguments of the role which forms the premise;

– description axioms characterize either named concepts (sorts or unary predi-
cates) or relate two descriptions via implication (partial definition) or equiv-
alence (complete definition);

– descriptions are the logical constants true and false, concept membership
axioms, negation, union and intersection of descriptions (¬, ∧, ∨), existen-
tial quantification stating the existence of a relation to some object (or data
value) described by a description, a value restriction that all fillers (second
argument of predicate or result of partial function) fall into the given de-
scription, has value restriction stating the relation to a particular individual
or data value and cardinality restrictions;

– facts are axioms involving only constants and stating the relation among
them (the ABox).

Further details on the expressiveness of Casl-DL and its relation to OWL DL
and SHOIN (D) can be obtained from [9].

3 Approximating FOL Theories

In [14] a method is described to derive tractable Horn clauses from arbitrary
propositional theories. This method (called knowledge compilation) uses Horn
approximation to obtain a tractable form of the theory for automated reasoning.
It is an approximation because a stronger and a weaker set of Horn clauses is used
in the reasoning process. These Horn clauses are derived from the original set of
propositional clauses. Furthermore, [14] shows a sketch for the approximation of
arbitrary FOL theories into Horn clauses.

3.1 Approximating 2-FOL to DL Formulas

Inspired by this Horn approximation we have developed a DL approximation
of 2-FOL. Our method tries to find a weaker DL theory that is entailed by the
2-FOL theory. In terms of Casl structured specifications this is a view :
view Entailment of DL : ExmplThy FOL to ExmplThy DL that gives
a proof obligation that all axioms in ExmplThy DL are entailed by Exmpl-
Thy FOL. The model theoretic semantics of this view is
Mod(ExmplThy FOL) ⊆ Mod(ExmplThy DL). Hence we generate a DL the-
ory that is logically weaker than the original theory and that has a larger set of
models.

The signature of the theory is translated by selecting one maximal topsort
which should subsume all sorts which are concepts and not datatypes in the DL
sense. This sort is then mapped to the sort Thing. All sorts not subsumed by
this topsort have to be mapped to one of the predefined datatypes in Casl-DL
or must be hidden.

5

For the generation of the sentences of the approximated theory we distinguish
two cases: (i) generation of axioms for each role (binary predicate) (ii) selection
of formulas by patterns for argument restrictions, implications, equivalence and
inverse axioms of roles and for descriptions of concepts (sorts and unary pred-
icates). These patterns are derived from the allowed constructs in Casl-DL.
Figure 1 shows the schema of the following algorithm. Unlabeled edges trans-
port a whole theory consisting of signature and sentences to the next node and
for the other cases the edges are labeled.

Generating role axioms. First we generate for each binary relation symbol in
the theory transitive, symmetric, functional and inverse functional axioms and
we try to prove all these axioms within the original theory. All proved axioms
are included in the new theory except for those which are conflicting. Here the
user has to decide for each role which of the conflicting axioms should be kept.

Selection of role axioms by patterns. Here only those axioms are considered
which involve binary predicates (roles) as premise or on one side of an equivalence
axiom and are quantified over two variables. For the implications the consequence
should either describe a concept for one or both arguments which yields an
argument restriction or is a role application to the same argument variables
(with the same order) as in the premise or is a conjunction of such constructs.
Equivalences where on both sides occur role applications either state that the
two roles are equivalent or that one role is the inverse of the other one. These
axioms are allowed in Casl-DL, hence they are just kept. Other equivalences
are checked for conjunctions with binary predicates (having the same argument
order) where each conjunct with a role yields a consequence of an implication.

Here are some examples of axioms concerning roles:

∀x,y : s • PP(x,y) ⇔P(x,y) ∧¬P(y,x) %(Dd1 Proper Part)%

where s is either the maximal topsort or a subsort of it. Here PP(x,y) implies
the conjunction and the conjunction has one conjunct that is allowed in DL. So
the weak semantics that is compiled to DL is this

∀x,y : s • PP(x,y) ⇒P(x,y) %(Dd1 Proper Part Impl)%

Clearly more than one implication could be derived from such a defining equiv-
alence if more positive conjuncts are available. If P is transitive then PP is
transitive, which can be proved. Further the symmetry of O can be proved di-
rectly from

∀x,y : s • O(x,y) ⇔(∃y : s • P(z,x) ∧P(z,y)) %(Dd2 Overlap)%

And we proved all the above proof obligations automatically with SPASS.

6

2-FOL theory

Generation of
role axioms

Compilation of
role axioms

Compilation of
concept axioms

Sentences
Sentences

Signature

Proof of role
axioms

Selection of role
axioms

DL theory

Addition of
inverse roles

Signature

theory with new
inverse roles

View: DL to
2-FOL

Proof of DL
theory

Fig. 1. Flow of data during the generation of DL sentences

7

Selection of concept axioms by patterns. The abstraction of formulas
describing sorts or unary predicates is slightly more difficult than for binary
predicates as there are recursive constructs of descriptions in Casl-DL. We
focus on the cases where a formula is given as implication or equivalence and
respectively the premise or one of the equivalent formulas is a sort membership or
unary predicate application. The formula must have only one outer free variable
used in the left and right hand side of the logical connective. The consequent or
other side of the equivalence must match a so-called role restriction: restrictions
allow the introduction of a new variable only together with relation to the outer
variable, where the outer variable is the first argument and the newly introduced
variable is the second argument of the binary predicate. Here is the schema of
such formulas where x is the outer variable and y the newly introduced one:
φ(x) ≡ ∀y • R(x, y) ⇒ ψ(y) In the case that a predicate application fails to
fall into this pattern, the inverse predicate is tried and introduced into the new
theory. Thus the axiom can be rewritten with the inverse predicate (formula
%(Ad18 rw)% below in Section 3.3 is an example).

So, as our DL theory is weaker than the original theory, a view between the
DL theory and the original theory plus inverse predicate definitions (introduced
by the compilation) holds:

spec ExmplThy FOL+ =
ExmplThy FOL

then %def

<inverse-predicate-definitions>

view Theory in DL to FOL :
ExmplThy DL to ExmplThy FOL+

This method abstracts via approximation some 2-FOL theory into a se-
mantically weaker but tractable DL theory such that for the model classes
Mod(FOL Theory+) ⊆ Mod(DL Theory) holds. Such a view and its sym-
bol mapping is constructed as the last step of the approximation and must be
proved either with SPASS or Isabelle.

3.2 Is the resulting theory maximally strong?

One important question is not addressed in the above algorithm: Is the resulting
DL-theory maximally strong with respect to the original theory? A weaker theory
is maximally strong with respect to the original theory iff it is not possible to
find a theory that is stronger than the already calculated theory and at the same
time weaker as the FOL theory, or if the original FOL-theory is already a valid
DL theory, than this is the maximally strong theory itself. A maximally strong
theory is also called a minimal upper bound with respect to the original theory
[14].

This paper will not give a complete answer to this question, but for roles
(binary predicates) all possible formulas which can be generated with the given

8

signature and are allowed (together) within a DL theory, are kept if they can
be proven. So, here it is not possible to add further axioms without leaving
the restriction to DL. So, for formulas on roles this approach finds the maximal
theory up to equivalence. Certainly this has to be proved, which will be addressed
in the future. For concept descriptions, only very few formulas are selected by
patterns for inclusion into the DL theory. Here it is an open question, how close
the approach in this paper leads to a maximal theory. But, it is ongoing work
to find further ways to keep more knowledge of the original theory within the
DL theory. While this is investigated, also the question of finding a maximal DL
theory with respect to the original theory will be answered.

3.3 Example: Mereology in FOL and Casl-DL

First a 2-FOL theory of mereology is presented which is the 2-FOL part of
the FOL fragment of Dolce (Descriptive Ontology for Linguistic and Cogni-
tive Engineering) [4, 10] as library MereoFOL. A mereology provides the basic
parthood relations for base concepts (categories) like time interval (T), space re-
gion (S) and perdurant (PD). We omit all ternary predicates (or two argument
functions) like sum, product and difference which are present in the original
FOL fragment of Dolce. The specification Primitives gives a subset of the
taxonomy with concepts named particular (PT), physical endurant (PED), spa-
tial location (SL) and temporal location (TL) and all subconcepts (subsorts) of
PT are pairwise disjoint which is specified by the free type. T Nowadays, the
term RCC5 (Region Connection Calculus with 5 basic relations) is applied to
such a theory of mereology, but the term mereology is much older and more
appropriate.

library MereoFOL version 0.1

%{This library is based on “A fragment of DOLCE for CASL”

by Stefano Borgo, Claudio Masolo

LOA-CNR

March 5, 2004}%

spec Primitives =
sorts PD, PED, S, SL, T, TL
free type PT ::= sorts PD, PED, S, SL, T, TL

end

spec GenParthood [sort s] =
pred P : s × s
∀ x, y, z : s
• P(x, x) %(Ad11)%

• P(x, y) ∧ P(y, x) ⇒ x = y %(Ad12)%

• P(x, y) ∧ P(y, z) ⇒ P(x, z) %(Ad13)%

end

9

spec GenMereology [sort s] =
GenParthood [sort s]

then preds PP(x, y : s) ⇔ P(x, y) ∧ ¬ P(y, x); %(Dd1 Proper Part)%

O(x, y : s) ⇔ ∃ z : s • P(z, x) ∧ P(z, y); %(Dd2 Overlap)%

At(x : s) ⇔ ¬ (∃ y : s • PP(y, x)); %(Dd3 Atom)%

∀ x, y : s
• ¬ P(x, y) ⇒ ∃ z : s • P(z, x) ∧ ¬ O(z, y) %(Ad14)%

• ∃ z : s • At(z) ∧ P(z, x) %(Ad18)%

then %implies

%% Probable Theorems (1)

∀ x, y, su, su′, p, p′, d, d′: s
• (∀ z′: s • At(z′) ⇒ P(z′, x) ⇒ P(z′, y)) ⇒ P(x, y) %(Td1)%

• At(x) ⇔ (∀ y′: s • P(y′, x) ⇒ x = y′) %(Td2)%

• (∀ z : s • O(z, x) ⇔ O(z, y)) ⇒ x = y %(Td3)%

end

spec Mereology =
Primitives and GenMereology [sort T] and
GenMereology [sort S] and GenMereology [sort PD]

end

Library MereoDL shows the DL theory by applying the rules above to the
library MereoFOL. The inverse predicates of PP and P marked with i are
introduced to rewrite axioms %(Dd3 Atom)% and %(Ad18)%. Rewritten axioms
are marked with rw and axioms for inverse predicates are named either with
the label of the original predicate definition or with the predicate name, and
are marked with inv. Derived implication, symmetry and transitivity axioms
are named like the originating axiom and marked with respectively impl, sym

and trans. For the disambiguation of names they would be just numbered. Note
that generic specifications are just kept in the resulting library of DL theories.
So the structuring and grouping of the original theories is preserved and aids
the readability of the result in this example. The real algorithm will just look at
the theory of the specification to be compiled, but maybe it can be extended to
keep the structuring.

library MereoDL version 0.1

%{This library is based on “A fragment of DOLCE for CASL”

by Stefano Borgo, Claudio Masolo

LOA-CNR

March 5, 2004

further it is translated to CASL-DL}%

10

spec Primitives DL =
sorts PD, PED, S, SL, T, TL
free type Thing ::= sorts PD, PED, S, SL, T, TL

end

spec GenParthood DL [sort s] =
pred P : s × s
∀ x, y, z : s
• P(x, y) ∧ P(y, z) ⇒ P(x, z) %(Ad13)%

end

spec GenMereology DL [sort s] =
GenParthood DL [sort s]

then preds PP : s × s;
PP i(x, y : s) ⇔ PP(y, x); %(Dd1 Proper Part inv)%

O(x, y : s) ⇔ O(y, x); %(Dd2 Overlap sym)%

At(x : s) ⇔ ¬ (∃ y : s • PP i(x, y)); %(Dd3 Atom rw)%

P i(x, y : s) ⇔ P(y, x) %(P inv)%

∀ x, y, z : s
• ∃ z′: s • P i(x, z′) ∧ At(z′) %(Ad18 rw)%

• PP(x, y) ⇒ P(x, y) %(Dd1 Proper Part impl)%

• PP(x, y) ∧ PP(y, z) ⇒ PP(x, z) %(Dd1 Proper Part trans)%

end

spec Mereology DL =
Primitives DL and GenMereology DL [sort T] and
GenMereology DL [sort S] and GenMereology DL [sort PD]

end

The view from Mereology DL to Mereology that we proved to show the
correctness of the approximation is presented below. For the inverse predicate
definitions again a generic specification InvPP P is used as the original axioms
were defined in a generic specification. The instantiations are also derived from
the instantiations of GenMereology used in Mereology.

from MereoFOL get Mereology
from MereoDL get Mereology DL

spec InvPP P [sort s
preds PP, P : s × s] =

preds PP i(x, y : s) ⇔ PP(y, x);
P i(x, y : s) ⇔ P(y, x)

end

11

view Mereology DL to FOL :
Mereology DL to
{Mereology
and InvPP P [sort T

preds PP, P : T × T]
and InvPP P [sort S

preds PP, P : S × S]
and InvPP P [sort PD

preds PP, P : PD × PD] } =
sorts Thing 7→ PT, T 7→ T, S 7→ S, PD 7→ PD, TL 7→ TL,
SL 7→ SL, PED 7→ PED

end

4 Conclusion

In this paper, we have presented a method to compile the knowledge of a 2-
FOL theory into a tractable DL theory. Further we gave a method to derive
proof obligations to ensure that the approximated theory subsumes the FOL
theory. This is done by constructing a view that shows the refinement from the
approximated DL theory to the original theory. Also the derived proof obligations
written down as views could be structured along the original theory such that
the user easily finds the originating specifications. This method of approximation
only generates a weaker theory; so, with this method a formal underpinning for
applied ontologies can be generated that is based on a foundational ontology
and approximates its semantics. Such a foundational ontology can be formalized
in a very expressive language without losing connection to tractable application
ontologies.

Future Work. Further extensions to this approach should be investigated such
as the encoding of n-ary predicates into binary predicates while not scattering the
whole theory with complicated formulas. It should be investigated how to pre-
serve the structuring of the original theory such that the resulting DL theory will
be more readable. One could think of developing also a stronger approximation,
such that the two compiled theories can be used for efficient reasoning analo-
gously to [14]. In addition we can look at the quality of the compiled theories,
i.e. are they maximally weak or minimally strong with respect to the original.
The generation of the DL theory and the proof of the generated view should be
implemented within Hets and SPASS (or Isabelle). Best would be a proof that
the approximated theory can in any case be proved to be a logical consequence
of the original automatically with SPASS. Moreover it is worth studying an ap-
plication to the entire theory of Dolce and to develop rich domain ontologies
based on this, e.g. for Spatial Cognition. Furthermore, one should have a look
at keeping some concrete domains such as integers which could be expressed in
Casl (with axiomatization) and Casl-DL (only as literals).

12

Acknowledgments. This paper has been supported by Deutsche Forschungs-
gemeinschaft (DFG) in the SFB/TR8 “Spatial Cognition”. We thank Stefano
Borgo, Nino Trainito, Till Mossakowski, Claudio Masolo, John Bateman, Stefan
Wölfl, Scott Farrar, Robert Ross and Nicola Guarino for discussions and ideas.
Finally we thank three anonymous referees for their advices and comments.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, May 2001.

3. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS 2960
(IFIP Series). Springer Verlag; Berlin; http://www.springer.de, 2004.

4. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweet-
ening Ontologies with Dolce. In A. Gómez-Pérez and V. R. Benjamins, ed-
itors, EKAW, volume 2473 of LNCS, pages 166–181. Springer Verlag; Berlin;
http://www.springer.de, 2002.

5. Volker Haarslev and Ralf Möller. Racer System Description. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, IJCAR, volume 2083 of Lecture
Notes in Computer Science, pages 701–706. Springer Verlag; Berlin; http://www.
springer.de, 2001.

6. I. Horrocks. FaCT++. Available at http://owl.man.ac.uk/factplusplus/.

7. I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description
Logic Satisfiability. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proc. of
the 2003 International Semantic Web Conference (ISWC 2003), number 2870 in
Lecture Notes in Computer Science, pages 17–29. Springer Verlag; Berlin; http:
//www.springer.de, 2003.

8. K. Lüttich and T. Mossakowski. Specification of Ontologies in CASL. In Achille C.
Varci and Laure Vieu, editors, Formal Ontology in Information Systems – Proceed-
ings of the Third International Conference (FOIS-2004), volume 114 of Monographs
of the Bremen Institute of Safe Systems (BISS), pages 140–150. IOS Press; Ams-
terdam; http://www.iospress.nl, 2004.

9. K. Lüttich, T. Mossakowski, and B. Krieg-Brückner. Ontologies for the Semantic
Web in CASL. In José Fiadeiro, editor, Recent Trends in Algebraic Development
Techniques, 17th International Workshop (WADT 2004), volume 3423 of Lecture
Notes in Computer Science, pages 106–125. Springer Verlag; Berlin; http://www.
springer.de, 2005.

10. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and L. Schneider.
WonderWeb deliverable D17. The wonderWeb Library of Foundational Ontologies
and the DOLCE ontology. Preliminary Report (ver. 2.0, 15-08-2002).

11. T. Mossakowski. The Heterogeneous Tool Set. Available at www.tzi.de/cofi/

hets, University of Bremen.

12. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Springer Verlag; Berlin; http://www.springer.de, 2002.

13. B. Selman and H. Kautz. Knowledge Compilation Using Horn Approximation. In
Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91),
pages 904–909, 1991.

13

14. Bart Selman and Henry A. Kautz. Knowledge Compilation and Theory Approxi-
mation. J. ACM, 43(2):193–224, 1996.

15. E. Sirin, M. Grove, B. Parsia, and R. Alford. Pellet OWL reasoner. http://www.

mindswap.org/2003/pellet/index.shtml, May 2004.
16. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic.

SPASS version 2.0. In Andrei Voronkov, editor, Automated Deduction – CADE-
18, volume 2392 of Lecture Notes in Computer Science, pages 275–279. Springer
Verlag; Berlin; http://www.springer.de, July 27-30 2002.

