
Approximation of Ontologies in CASL

Klaus Lüttich
SFB/TR8 – FB3, Universität Bremen, P.O.B. 33 04 40, 28334 Bremen, Germany

e-mail: luettich@informatik.uni-bremen.de

Abstract. In this paper we present methods to generate a Description Logic (DL)
theory from a given First Order Logic (FOL) theory, such that each DL axiom is
entailed by the given FOL theory. This is obtained by transforming the given FOL
formulas. If this method is applied to an ontology specification in FOL, the resulting
DL specification is still grounded on the same semantics but clearly weaker than
the FOL specification. The benefit of specification in DL is that efficient reasoning
procedures are available as implemented in tools such as Racer, Fact++ or Pellet.
Such ontologies in DL could be used for knowledge representation systems and the
semantic web where efficient reasoning plays a major role. This method can be used
to compile a foundational ontology formalized in FOL, like DOLCE (Descriptive
Ontology for Linguistic and Cognitive Engineering), into DL for use with domain
ontologies formalized in DL, or for the development of domain ontologies based
on the compiled foundational ontology. These weakening strategies are described
using CASL (Common Algebraic Specification Language) and CASL-DL, and will
be integrated into HETS (Heterogeneous Tool Set). Furthermore, this paper includes
examples from DOLCE.

Keywords. Theory Approximation, Knowledge Compilation, CASL, Description
Logic

1. Introduction

Traditionally, Description Logics (DL) [1] or other less expressive formalisms have been
used to describe and reason about knowledge in an efficient way. This is clearly needed
for applications such as the Semantic Web [2] and natural language processing. How-
ever, on the other hand DLs are too weak to formalize a rich axiomatized foundational
ontology such as DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineer-
ing) [3,4]. Therefore CASL [5] (Common Algebraic Specification Language) and even
ModalCASL (an extension of CASL with multi-modalities) will be used for the formal-
ization of DOLCE. That this offers great potential has been previously presented in [6].
One advantage of CASL is the associated tool HETS [7] (Heterogeneous Tool Set). It al-
lows syntax and type checking of CASL and is connected to the semi-automatic theorem
prover Isabelle [8] as well as the automatic first-order reasoner SPASS [9].

This paper offers a bridge between rich axiomatizations in FOL and tractable theo-
ries in DL. It describes an approximation of FOL theories to DL preserving the seman-
tics. This idea is also called knowledge compilation as the knowledge or semantics of a
theory should be kept while the tractability is improved [10,11].

This paper is structured as follows: First we introduce description logic, CASL and
CASL-DL, the languages used in the examples. Then we present the idea of knowledge

compilation in general, and further we present our approach to approximate FOL with
DL. This section is accompanied by an informative example illustrating the method. The
paper ends with a perspective on future work.

2. Logical Foundations

In this section we introduce the logical foundations for our approach: First we briefly
present Description Logics, then we describe the formal languages CASL and CASL-DL.

2.1. Description Logic

Description Logic (DL) has been developed for efficient knowledge representation and
reasoning. Its principle is the distinction between so-called TBoxes and ABoxes. TBoxes
provide the terminology of the knowledge base such as hierarchies of concepts and roles,
and axioms describing which individuals belong to a concept based on relations to other
individuals. These descriptions are formulas with a restricted flow of variables. Further-
more, some predefined datatypes like strings and numbers are available to attach data to
individuals with data-valued roles. ABoxes, on the other hand, represent facts about the
world and the individuals, by axioms with constants (individuals) [1].

DLs have the benefit that the tractability, decidability, and the complexity of the
reasoning systems has been studied very well by now [1]. Another advantage is the great
number of automatic reasoners available, such as Racer [12], FaCT++ [13] or Pellet [14].

2.2. CASL

CASL, the Common Algebraic Specification Language [5], has been designed by COFI,
the Common Framework Initiative for algebraic specification and development. It has
been designed by a large number of experts from different groups, and serves as a de-
facto standard. The design of CASL has been approved by the IFIP WG 1.3 “Founda-
tions of System Specification”. Originally CASL was designed for specifying software
requirements and design, but this paper goes further to explore the use of CASL for the
specification of ontologies [6,15].

CASL consists of two major levels, which are quite independent: basic specifications
and structured specifications. This paper focuses on the basic specification level where
theories are defined in terms of FOL axioms. These axioms are based on signatures in-
troduced by the user. A signature is the declaration of symbols for sorts, predicates, total
and partial functions. Sorts are to be interpreted as non-empty sets and are used for the
types of predicates and functions. Subsort hierarchies are available and axioms can be
formed by the usual first order logical connectives. A sort can be declared to consist only
of values reachable by terms (generated types) or to be isomorphic to a term algebra (free
types). CASL offers loose specification and design specification, where loose specifica-
tion covers only requirements, but leaves representation issues unspecified. For design
specifications it is possible to describe representations of datatypes in great detail.

The present approach uses CASL in a limited way; only predicates with one or two
arguments, functions (operations) with one argument and constants are used. The specifi-
cation of subsorting is not limited. CASL datatype definitions must not contain construc-
tors with arguments; hence only datatypes consisting of subsort embeddings or constant

constructors are allowed. We refer to this sublanguage of CASL as 2-FOL in the rest of
this paper.

2.3. CASL-DL

CASL-DL is a sublanguage of CASL, which is equivalent to the description logic
SHOIN (D) [15,16,1]. Basically, this is a DL with concepts (unary predicates) and roles
(binary predicates), which allows to specify a hierarchy of concepts and a hierarchy of
roles. For roles, only specific axioms are allowed: they can be specified as functional, in-
verse functional, transitive or symmetric, and they can be related to other roles as inverse,
equivalent or as subrole. Also, the range and domain of a role can be specified. Concepts
can be fully defined by, or just imply, certain descriptions. Descriptions either allow us
to describe the negation, union and intersection of descriptions, or they are just another
concept. Further descriptions are role restrictions, which allow limited introduction of
one new variable and either demand the existence of certain relations between members
of two descriptions or restrict the second argument of a role to be in the specified de-
scription. The following paragraph gives a detailed list of CASL constructs allowed in
CASL-DL which can be used for the specification of a SHOIN (D) theory.

Explicitly, the following CASL constructs are allowed in CASL-DL:

• sorts and subsorts, but limited to those having a common maximal supersort called
Thing, used for classes / concepts;

• free types with only the subsort alternative used to define the disjoint union of
concepts;

• subsort definitions;
• a free or generated type with constant constructors is used to define enumerated

concepts where all members are known; a free type implies that all constants have
distinct values;

• predefined datatypes are allowed which have DATA as maximal supersort and
form a hierarchy separate from the concept hierarchy below Thing;

• predicates with an arity of one (possibly empty concepts / classes) or two (roles /
properties) arguments;

• partial functions restricted to one argument (functional roles / properties) and total
constants (individuals);

• types for predicates and functions are only Thing or subsorts of it as subject (first
or only argument position); the object position (second argument or result) is
either typed with Thing or DATA or a subsort of one of these; except for constants
which are typed with Thing or a subsort of it;

• formulas defining predicates and functions with types Thing × Thing and
Thing → Thing, which are restricted to implication, equivalence, symmetry, tran-
sitivity, functional and inverse functional axioms with the further restriction that
functional predicates cannot be transitive; for predicates and functions which re-
late to DATA only equivalence and implication axioms are allowed; additionally,
so-called argument restriction axioms are allowed which allow the implication of
a conjunction of two descriptions (see below) each restricting the arguments of
the role which forms the premise;

• description axioms characterize either named concepts (sorts or unary predicates)
or relate two descriptions via implication (partial definition) or equivalence (com-
plete definition);

• descriptions are the logical constants true and false, concept membership axioms,
negation, union and intersection of descriptions (¬, ∧, ∨), existential quantifica-
tions stating the existence of a relation to some object (or data value) described
by a description, all-value restrictions stating that all fillers (second argument of
predicate or result of partial function) fall into the given description, and has-
value restrictions stating the relation to a particular individual or data value and
cardinality restrictions;

• facts are axioms involving only constants and stating the relation among them (the
ABox).

Further details on the expressiveness of CASL-DL and its relation to OWL DL and
SHOIN (D) can be obtained from [15].

3. Approximating FOL Theories

In [17] a method is described to derive tractable Horn clauses from arbitrary propositional
theories. This method (called knowledge compilation) uses Horn approximation to obtain
a tractable form of the theory for automated reasoning. The approximation produces
a stronger and a weaker set of Horn clauses, which is used in the reasoning process.
Furthermore, [17] shows a sketch for the approximation of arbitrary FOL theories by
Horn clauses. Alvaro del Val studies in [18,11] a general algorithm for FOL Knowledge
Compilation into various sublanguages of FOL, but he mainly focuses on variants of
Horn-languages. Del Val shows that only a weaker theory (which is maximally strong,
s. Sect. 3.2) is needed if only a sublanguage of the target language is allowed for query
answering from the compiled theory [18].

3.1. Approximating 2-FOL by DL Formulas

Inspired by this Horn approximation we have developed a DL approximation of 2-FOL.
Our method tries to find a weaker DL theory that is entailed by the 2-FOL theory. In
terms of CASL structured specifications this is a view:

view ENTAILMENT_OF_DL : EXMPLTHY_DL to EXMPLTHY_FOL

that gives a proof obligation that all axioms in EXMPLTHY_DL are entailed by EXMPL-
THY_FOL. The model theoretic semantics of this view is

Mod(EXMPLTHY_FOL) ⊆ Mod(EXMPLTHY_DL).

Hence we generate a DL theory that is logically weaker than the original theory and that
has a larger set of models.

The signature of the 2-FOL theory is translated by newly introducing one maximal
sort which subsumes all sorts which are concepts and not datatypes in the DL sense if
such is a sort is not available before. This sort is then mapped to the sort Thing. All sorts

2-FOL theory

Generation of
role axioms

Compilation of
role axioms

Compilation of
concept axioms

Sentences
Sentences

Signature

Proof of role
axioms

Selection of role
axioms

DL theory

Addition of
inverse roles

Signature

theory with new
inverse roles

View: DL to
2-FOL

Proof of DL
theory

Figure 1. Flow of data during the generation of DL sentences

not subsumed by this topsort have to be mapped to one of the predefined datatypes in
CASL-DL or must be hidden.

For the generation of the sentences of the approximated theory we distinguish two
cases: (i) generation of axioms for each role (binary predicate) (ii) selection of formulas
by patterns for argument restrictions, implications, equivalence and inverse axioms of
roles and for descriptions of concepts (sorts and unary predicates). These patterns are de-
rived from the allowed constructs in SHIF with reflexive relations, which is a sublogic
of CASL-DL (SHOIN (D)). SHIF has EXPTIME complexity but there exist DL rea-
soners that are highly optimized for this DL, e.g. Racer [12] and FaCT++ [13]. Although
the DL variant we use is theoretically intractable, it is still tractable for practical purposes
[19,20].

Figure 1 shows the schema of the following algorithm. Unlabeled edges transport
a whole theory consisting of signature and sentences to the next node, labeled edges
transport only signatures or sentences, respectively.

3.1.1. Generating role axioms

First we generate for each binary relation symbol in the theory transitive, symmetric,
functional and inverse functional axioms and we try to prove all these axioms within the
original theory. All proved axioms are included in the new theory except for those which
are simultaneously prohibited by SHIF . Here the user has to decide for each role which
of the conflicting axioms should be kept.

3.1.2. Selection of role axioms by patterns

Here only those axioms are considered which involve binary predicates (roles) as premise
or on one side of an equivalence axiom and are quantified over two variables. For the
implications the consequent should either describe a concept for one or both arguments
which yields an argument restriction or is a role application to the same argument vari-
ables (with the same order) as in the premise or is a conjunction of such constructs.
Schematic template of these implications:

∀x,y: s • Rel1(x, y)⇒φ(x, y) and
φ(x, y) ≡ C1(x) | C2(y) | Rel2(x, y) | φ1(x, y) ∧ φ2(x, y)
where Ci are descriptions of concepts and φi are constructed by the same rules as φ

Equivalences where role applications occur on both sides either state that the two
roles are equivalent or that one role is the inverse of the other one. These axioms are
allowed in CASL-DL, hence they are just kept. Other equivalences are checked for con-
junctions with binary predicates (having the same argument order) where each conjunct
with a role yields a consequence of an implication.

Here are some examples of axioms concerning roles:

∀x,y: s • PP(x,y) ⇔P(x,y) ∧¬P(y,x) %(Dd1_Proper_Part)%

where s is either the maximal topsort or a subsort of it. Here PP(x,y) implies the conjunc-
tion and the conjunction has one conjunct that is allowed in DL. So the weak semantics
that is compiled to DL is this

∀x,y: s • PP(x,y) ⇒P(x,y) %(Dd1_Proper_Part_Impl)%

Clearly more than one implication could be derived from such a defining equivalence if
more positive conjuncts are available. If P is transitive then PP is transitive, which can
be proved. Further the symmetry of O can be proved directly from

∀x,y: s • O(x,y) ⇔(∃y: s • P(z,x) ∧P(z,y)) %(Dd2_Overlap)%

All the above proof obligations can be discharged automatically with SPASS [9].

3.1.3. Selection of concept axioms by patterns

The abstraction of formulas describing sorts or unary predicates is slightly more difficult
than for binary predicates as there are recursive constructs of descriptions in CASL-DL.
We focus on the cases where a formula is given as an implication or equivalence and
respectively the premise or one of the equivalent formulas is a sort membership or unary
predicate application. The formula must have only one outer free variable used in the

left and right hand side of the logical connective. The consequent or other side of the
equivalence must match a so-called role restriction: restrictions allow the introduction of
a new variable only together with relation to the outer variable, where the outer variable is
the first argument and the newly introduced variable is the second argument of the binary
predicate. Here is the schema of such formulas where x is the outer variable and y the
newly introduced one: φ(x) ≡ ∀y • R(x, y) ⇒ ψ(y) In case that a predicate application
fails to fall into this pattern, the inverse predicate is tried and introduced into the new
theory if needed. Thus the axiom can be rewritten with the inverse predicate (formula
%(Ad18_rw)% below in Section 3.3 is an example). Furthermore, a formula which is not
universally quantified can be turned in such an implication as required above, with the
sort membership as antecedent.

In summary, a view between the DL theory and the original theory plus inverse
predicate definitions (introduced by the compilation) holds:

spec THY_FOL+ =
THY_FOL

then %def
<inverse-predicate-definitions>

view THEORY_IN_DL_TO_FOL : THY_DL to THY_FOL+

This method abstracts via approximation some 2-FOL theory into a semantically
weaker but tractable DL theory such that for the model classes Mod(THY_FOL+) ⊆

Mod(THY_DL) holds. Such a view and its symbol mapping are constructed as the last
step of the approximation and its proof obligations must be discharged with SPASS (or
Isabelle).

3.2. Is the resulting theory maximally strong?

One important question is not addressed in the above algorithm: Is the resulting DL-
theory maximally strong with respect to the original theory? A DL-theory TDL is maxi-
mally strong with respect to a FOL-theory TFOL iff TDL is weaker than TFOL and equally
strong as every DL-Theory between TDL and TFOL. A maximally strong theory is also
called a minimal upper bound with respect to the original theory [17].

This paper will not give a complete answer to this question. But for roles (binary
predicates) all possible formulas which can be generated with the given signature and
are allowed (together) within a DL theory are kept if they can be proved. Thus, it is
not possible to add further role axioms without leaving the restriction to DL, i.e. for
formulas on roles this approach finds the maximal theory up to equivalence. For concept
descriptions, only very few formulas are selected by patterns for inclusion into the DL
theory. Here it is an open question, how close the approach in this paper comes to a
maximal theory. Further ways of keeping more knowledge of the original theory in the
DL theory and possibly finding a maximal DL theory with respect to the original theory
are the subject of ongoing work.

3.3. Example: Mereology in FOL and CASL-DL

First a 2-FOL theory of mereology is presented which is the 2-FOL part of the FOL frag-
ment of DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) [3,4]

as library MEREOFOL. A mereology provides the basic parthood relations for base con-
cepts (categories) like time interval (T), space region (S) and perdurant (PD). We omit
all ternary predicates (or two argument functions) like sum, product and difference which
are present in the original FOL fragment of DOLCE. The specification PRIMITIVES
gives a subset of the taxonomy with concepts named particular (PT), physical endurant
(PED), spatial location (SL) and temporal location (TL). All subconcepts (subsorts) of
PT are pairwise disjoint, as specified by the free type construct.

library MEREOFOL version 0.1

%{This library is based on “A fragment of DOLCE for CASL”
by Stefano Borgo, Claudio Masolo
LOA-CNR
March 5, 2004}%

spec PRIMITIVES =

sorts PD, PED, S, SL, T, TL
free type PT = sorts PD, PED, S, SL, T, TL

end

spec GENPARTHOOD [sort s] =

pred P : s × s
∀ x, y, z: s
• P(x, x) %(Ad11)%
• P(x, y) ∧ P(y, x) ⇒ x = y %(Ad12)%
• P(x, y) ∧ P(y, z) ⇒ P(x, z) %(Ad13)%

end

spec GENMEREOLOGY [sort s] =

GENPARTHOOD [sort s]
then preds PP(x, y: s) ⇔ P(x, y) ∧ ¬ P(y, x); %(Dd1_Proper_Part)%

O(x, y: s) ⇔ ∃ z: s • P(z, x) ∧ P(z, y); %(Dd2_Overlap)%
At(x: s) ⇔ ¬ (∃ y: s • PP(y, x)); %(Dd3_Atom)%

∀ x, y: s
• ¬ P(x, y) ⇒ ∃ z: s • P(z, x) ∧ ¬ O(z, y) %(Ad14)%
• ∃ z: s • At(z) ∧ P(z, x) %(Ad18)%

then %implies
%% Probable Theorems (1)

∀ x, y, su, su′, p, p′, d, d ′: s
• (∀ z′: s • At(z′) ⇒ P(z′, x) ⇒ P(z′, y)) ⇒ P(x, y) %(Td1)%
• At(x) ⇔ (∀ y′: s • P(y′, x) ⇒ x = y′) %(Td2)%
• (∀ z: s • O(z, x) ⇔ O(z, y)) ⇒ x = y %(Td3)%

end

spec MEREOLOGY =

PRIMITIVES and GENMEREOLOGY [sort T] and
GENMEREOLOGY [sort S] and GENMEREOLOGY [sort PD]

end

Library MEREODL shows the DL theory by applying the rules above to the li-
brary MEREOFOL. The inverse predicates of PP and P marked with _i are introduced to
rewrite axioms %(Dd3_Atom)% and %(Ad18)%. Rewritten axioms are marked with _rw
and axioms for inverse predicates are named either with the label of the original predicate
definition or with the predicate name, and are marked with _inv. Derived implication,
symmetry and transitivity axioms are named like the originating axiom and marked with
respectively _impl, _sym and _trans. For the disambiguation of names they would be just
numbered. Note that generic specifications are just kept in the resulting library of DL
theories. So the structuring and grouping of the original theories is preserved and aids the
readability of the result in this example. The real algorithm will just look at the theory of
the specification to be compiled, but it can be extended to keep the structuring.

library MEREODL version 0.1

%{This library is based on “A fragment of DOLCE for CASL”
by Stefano Borgo, Claudio Masolo
LOA-CNR
March 5, 2004
further it is translated to CASL-DL}%

spec PRIMITIVES_DL =

sorts PD, PED, S, SL, T, TL
free type Thing = sorts PD, PED, S, SL, T, TL

end

spec GENPARTHOOD_DL [sort s] =

pred P : s × s
∀ x, y, z: s
• P(x, y) ∧ P(y, z) ⇒ P(x, z) %(Ad13)%

end

spec GENMEREOLOGY_DL [sort s] =

GENPARTHOOD_DL [sort s]
then preds PP : s × s;

PP_i(x, y: s) ⇔ PP(y, x); %(Dd1_Proper_Part_inv)%
O(x, y: s) ⇔ O(y, x); %(Dd2_Overlap_sym)%
At(x: s) ⇔ ¬ (∃ y: s • PP_i(x, y)); %(Dd3_Atom_rw)%
P_i(x, y: s) ⇔ P(y, x) %(P_inv)%

∀ x, y, z: s
• ∃ z′: s • P_i(x, z′) ∧ At(z′) %(Ad18_rw)%
• PP(x, y) ⇒ P(x, y) %(Dd1_Proper_Part_impl)%
• PP(x, y) ∧ PP(y, z) ⇒ PP(x, z) %(Dd1_Proper_Part_trans)%

end

spec MEREOLOGY_DL =

PRIMITIVES_DL and GENMEREOLOGY_DL [sort T] and
GENMEREOLOGY_DL [sort S] and GENMEREOLOGY_DL [sort PD]

end

The view from MEREOLOGY_DL to MEREOLOGY that we proved to show the cor-
rectness of the approximation is presented below. For the inverse predicate definitions
again a generic specification INVPP_P is used as the original axioms were defined in a
generic specification. The instantiations are also derived from the instantiations of GEN-
MEREOLOGY used in MEREOLOGY.

from MEREOFOL get MEREOLOGY

from MEREODL get MEREOLOGY_DL

spec INVPP_P [sort s
preds PP, P : s × s] =

preds PP_i(x, y: s) ⇔ PP(y, x);
P_i(x, y: s) ⇔ P(y, x)

end

spec MEREOLOGY_INV =
MEREOLOGY

and INVPP_P [sort T
preds PP, P : T × T]

and INVPP_P [sort S
preds PP, P : S × S]

and INVPP_P [sort PD
preds PP, P : PD × PD]

end

view MEREOLOGY_DL_TO_FOL :
MEREOLOGY_DL to MEREOLOGY_INV =

sorts Thing 7→ PT, T 7→ T, S 7→ S, PD 7→ PD, TL 7→ TL,
SL 7→ SL, PED 7→ PED

end

4. Conclusion

We have presented a method for compiling the knowledge of a 2-FOL theory into a
tractable DL theory. Further, we have given a method for deriving proof obligations to
ensure that the approximated theory subsumes the FOL theory. This is done by construct-
ing a view that shows the refinement from the approximated DL theory to the original
theory. Also the derived proof obligations written as views can be structured along the
original theory, so that the user easily finds the originating specifications. This method of
approximation generates only a weaker approximation (rather than also a stronger one).
This is sufficient if the query language is a sublanguage of the target language [18]. Thus,
with this method a formal underpinning for applied ontologies can be generated that is
based on a foundational ontology and approximates its semantics. Such a foundational
ontology can be formalized in a very expressive language without losing the connection
to tractable application ontologies.

4.1. Future Work

Further extensions to this approach should be investigated such as the encoding of n-ary
predicates into binary predicates while not cluttering the whole theory with complicated
formulas. It should be investigated how to preserve the structuring of the original theory
such that the resulting DL theory will be more readable.

In addition we can examine the quality of the compiled theory, i.e. check whether it
is maximally strong with respect to the original (or as close as possible, but stronger and
in DL). The generation of the DL theory and the proof of the generated view will be im-
plemented within the HETS framework, using SPASS (or if necessary Isabelle). We ex-
pect that the approximated theory can in any case be proved to be a logical consequence
of the original automatically with SPASS.

Moreover it is worth studying an application to the entire theory of DOLCE and to
develop rich domain ontologies based on this, e.g. for Spatial Cognition. Furthermore,
one should have a look at keeping some concrete domains such as integers which could
be expressed in CASL (with axiomatization) and CASL-DL (only as literals). This would
compile into SHIF(D), which is a DL that is still practically tractable and a sublogic of
CASL-DL.

Acknowledgments

This paper has been supported by Deutsche Forschungsgemeinschaft (DFG) in the
SFB/TR8 “Spatial Cognition”. We thank Stefano Borgo, Nino Trainito, Till Mossakowski,
Claudio Masolo, John Bateman, Stefan Wölfl, Scott Farrar, Lutz Schröder, Robert Ross,
Wencke Lüttich and Nicola Guarino for discussions and ideas. Finally we thank two
anonymous referees for their advice and comments.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May 2001.
[3] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening Ontologies with

DOLCE. In A. Gómez-Pérez and V. R. Benjamins, editors, EKAW, volume 2473 of LNCS, pages 166–
181. Springer Verlag; Berlin; http://www.springer.de, 2002.

[4] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and L. Schneider. WonderWeb deliver-
able D17. The wonderWeb Library of Foundational Ontologies and the DOLCE ontology. Preliminary
Report (ver. 2.0, 15-08-2002).

[5] CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS 2960 (IFIP Series).
Springer Verlag; Berlin; http://www.springer.de, 2004.

[6] K. Lüttich and T. Mossakowski. Specification of Ontologies in CASL. In A. C. Varci and L. Vieu,
editors, Formal Ontology in Information Systems – Proceedings of the Third International Conference
(FOIS-2004), volume 114 of Frontiers in Artificial Intelligence and Applications, pages 140–150. IOS
Press; Amsterdam; http://www.iospress.nl, 2004.

[7] T. Mossakowski. The Heterogeneous Tool Set. Available at www.tzi.de/cofi/hets, University
of Bremen.

[8] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic.
Springer Verlag; Berlin; http://www.springer.de, 2002.

[9] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic. SPASS version 2.0.
In A. Voronkov, editor, Automated Deduction – CADE-18, volume 2392 of Lecture Notes in Computer
Science, pages 275–279. Springer Verlag; Berlin; http://www.springer.de, July 27-30 2002.

[10] B. Selman and H. Kautz. Knowledge Compilation Using Horn Approximation. In Proceedings of the
Ninth National Conference on Artificial Intelligence (AAAI-91), pages 904–909, 1991.

[11] A. del Val. First order LUB approximations: characterization and algorithms. Artif. Intell., 162(1-2):7–
48, 2005.

[12] V. Haarslev and R. Möller. Racer System Description. In R. Goré, A. Leitsch, and T. Nipkow, editors,
IJCAR, volume 2083 of Lecture Notes in Computer Science, pages 701–706. Springer Verlag; Berlin;
http://www.springer.de, 2001.

[13] I. Horrocks. FaCT++. Available at http://owl.man.ac.uk/factplusplus/.
[14] E. Sirin, M. Grove, B. Parsia, and R. Alford. Pellet OWL reasoner. http://www.mindswap.org/

2003/pellet/index.shtml, May 2004.
[15] K. Lüttich, T. Mossakowski, and B. Krieg-Brückner. Ontologies for the Semantic Web in CASL. In

J. Fiadeiro, editor, Recent Trends in Algebraic Development Techniques, 17th International Workshop
(WADT 2004), volume 3423 of Lecture Notes in Computer Science, pages 106–125. Springer Verlag;
Berlin; http://www.springer.de, 2005.

[16] I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description Logic Satisfiability.
In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proc. of the 2003 International Semantic Web
Conference (ISWC 2003), number 2870 in Lecture Notes in Computer Science, pages 17–29. Springer
Verlag; Berlin; http://www.springer.de, 2003.

[17] B. Selman and H. A. Kautz. Knowledge Compilation and Theory Approximation. J. ACM, 43(2):193–
224, 1996.

[18] A. del Val. An Analysis of Approximate Knowledge Compilation. In IJCAI (1), pages 830–836, 1995.
[19] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role hierarchies. J.

Log. Comput., 9(3):385–410, 1999.
[20] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD

thesis, RWTH Aachen, 2001.

