
Specification of ontologies in CASL *

Klaus Lüttich, Till Mossakowski
{luettich,till}@tzi.de
University of Bremen, Germany

Abstract. This paper proposes to use CASL (Common Algebraic Specification Lan-
guage; designed by CoFI – Common Framework Initiative) for formalising ontologies
in FOL. The major advantage of CASL over other specification techniques is its static
strong typing and subtyping. Namely, using sorts (types) instead of unary predicates
for the ontological categories gives the possibility to find unintended application of
n-ary predicates during the type checking of CASL. Another advantage of CASL is
its structuring facilities that provide renaming and hiding of symbols used in speci-
fications and the instantiation of parametrised specifications. All this is supported by
an evolving tool set for syntax and type analysis, called HETS (Heterogeneous Tool
Set), that provides the connection to various provers (interactive and automatic). The
tool set allows the combination and detection of various different logics and sublog-
ics. There is a further specialisation of CASL related to the Semantic Web ontology
language OWL-DL called CASL-DL (CASL-Description Logic). It gives, as a sublan-
guage of CASL, the ability to use automatic reasoners like Racer for inferences while
using HETS for type checking of the predicates. A consistent view of the same on-
tology in CASL (for expressiveness) and CASL-DL (for easier automated reasoning
with tools like Fact and Racer) is provided by using HETS. Moreover, the first-order
axioms can be kept when using a first-order prover. It is well known that there are
first-order provers that are as fast as Fact or Racer on description logic fragments, thus
combining the best of both worlds. We use HETS as a tool to exploit this possibility.

Introduction

The aim of our proposal is to use CASL as a development language for ontologies. Starting
from a very basic and loose foundational ontology up to highly optimised applied ontologies,
everything can be developed within one consistent framework. All this work is supported by
a whole set of tools integrated via HETS (Heterogeneous Tool Set). The tool set keeps track
of all the proofs and also provides some versioning of specifications. This approach brings to-
gether the advantages of having both expressive ontologies and tool support. Via the detection
of certain sublogics even very effective reasoners could be used with FOL ontologies.

This paper is structured as follows: first we describe the language CASL and its back-
ground. The next section shows some advantages of the typed and readable language CASL

over some other specification formalisms. A further section gives a fairly long example to il-
lustrate the usage of CASL as an ontology specification language. The following two sections
outline the language CASL-DL, a CASL restricted to Description Logic, and its correspon-
dence to OWL-DL. Finally, the Heterogeneous Tool Set is discussed and an application of
the theorem prover Isabelle [1] to the example is shown.

∗This paper has been supported by Deutsche Forschungsgemeinschaft in the SFB/TR8 ”Spatial Cognition”.

1 CASL

CASL, theCommon Algebraic Specification Language[2], has been designed by COFI, the
Common Framework Initiativefor algebraic specification and development. It has been de-
signed by a large number of experts from different groups, and serves as a de-facto standard.
The design of CASL has been approved by the IFIP WG 1.3 “Foundations of Systems Speci-
fications”.

CASL consists of several majorlevels, which are quite independent and may be under-
stood (and used) separately:

Basic specificationsare written in many-sorted, first-order logic. Subsorts (interpreted as
injective embeddings) increase flexibility, while retaining a strong type system. Partial
functions with possibly undefined values are allowed as well. Finally, the CASL basic
specifications provide powerful and concise constructs for specifying datatypes, which in
the presence of subsorts also can be used to specify disjoint, non-disjoint and exhaustive
unions of sorts.

Structured specificationsallow translation, reduction, union, and extension of specifications.
A simple form of generic (parametrised) specifications is provided, allowing specifica-
tions to be re-used in different contexts.

Architectural specificationsdefine how models of a specification may be constructed out of
models of simpler specifications.

Libraries allow the distributed storage and retrieval of (particular versions of) named speci-
fications.

Major libraries of validated CASL specifications are freely available on the Internet, and
the specifications can be reused simply by referring to their names. Tools are provided to
support practical use of CASL: checking the correctness of specifications and proving facts
about them.

While CASL was originally designed for specifying requirements and design for soft-
ware, in this work we show that CASL can also perfectly suit as a language for formalizing
ontologies.

2 Advantages of CASL in contrast to other formalisms

This section describes CASL in contrast to untyped FOL written in LATEX and KIF. The main
advantages of CASL are (1) strong typing with subtyping (2) structuring of specifications
for reuse and parametrisation and (3) tool support with pretty printing in LATEX and (4) the
connection to various reasoners.

2.1 Correspondence of Unary Predicates and Sorts

A common way of representing and specifying ontologies in first-order logic is to use unary
predicates for concepts or categories. This is done, for example, in the DOLCE ontology [3].
In CASL the hierarchy of categories can be achieved by exploiting the subtyping. The devision
of categories into (disjoint) subcategories is shown in Fig. 1. We propose to use this feature of
CASL to distinguish categories from unary predicates representing a certain feature as shown
in Fig. 3. There thesort srepresents a category and thepred At : srepresents a feature present
for some individuals ofs.

sorts C < A; D, E < B %% subsumption declarations
free typeTOP::= sort A, B %% disjoint partition ofTOP
pred rel : E× B %% predicate declaration
op g : E %% declaration of an individual
∀ x: E; z: TOP
• rel(x, g) %% correct application ofrel
• rel(z, g) %% application with type error

Figure 1: Examples of Declarations and Definitions

The main advantage of this technique is an early detection of false or unintended predicate
application. For example, the second axiom in Fig. 1 has a typing error because the z is of a
more general type than the profile ofrel insists on. Ifrel should be applicable to the sortTOP
in general, then the profile ofrel has to be adjusted as well. The type correct application in
the example without changing the profile ofrel would be an explicit cast to the subsort with
z as E. With this, a projecting function fromTOP into E is called.

2.2 Structuring of Specifications

CASL is equipped with various structuring facilities for specifications: (1) naming, (2) exten-
sion and union of specifications, (3) renaming and hiding of symbols and (4) parametrisation
of specifications. The last feature and a larger example illustrating the structuring mechanisms
are discussed in more detail in Sect. 3.

Naming of specificationscan be used to group parts of the ontology into sub-theories or
sub-domains. These parts could also include formulas marked as theorems which could be
proved only within a certain part of an ontology. Whenever a named specification is used in
another context these theorems are treated as proven and can be used in further proofs like
axioms.

Extensions and unionsof specifications are used to combine basic specifications and in-
stantiated specifications with the CASL keywordsthen andand. Basic specifications contain
the declarations and definitions of symbols as well as the axioms regarding these symbols.
By instantiation of named specifications either parametrised or unparametrised specifications
can be reused in different contexts.

Renaming and the hiding of symbolsis used to keep symbols separate that otherwise would
be identified, because one major principle in CASL is “same name, same thing”. Renaming
can also be used to do the converse within the union of separate specifications. Furthermore,
unwanted or unneeded symbols like auxiliary predicates can be hidden.

2.3 Readable Syntax and automatic translation to LATEX

The Lisp notation of KIF [4] is not very readable. CASL provides an input syntax with sym-
bols closely related to mathematical notions, e.g.∨ is input as\/ . All logical symbols are
naturally used in infix or prefix position and have their usual precedences. And HETS, the
Heterogeneous Tool Set, provides an automatic translation to LATEX. Identifiers can be built of
various symbols and the arguments of predicates (and functions) can be placed at nearly every

place among or before and after the symbols. These are called generalised mixfix identifiers.
For every introduced identifier the user can give a different way how it should be displayed
in LATEX. This leads to very nice looking documents, as can be seen in the examples.

3 Example: First Order Fragment of DOLCE in C ASL

This whole section is based on a fragment of DOLCE (Descriptive Ontology for Linguistic
and Cognitive Engineering) [3] used as an example to show how useful and practical it is
to write ontologies in CASL. Actually, DOLCE is now being formalized in CASL at the
Laboratory of Applied Ontology in Trento, with help of our group in Bremen.

Firstly, we give the declaration of the basic categories. Secondly, we give a definition of
a generic parthood which forms a partial order onsort s. At the right margin labels for the
axioms are given for referencing them in proofs.

specPRIMITIVES =
%% Basic Categories

sorts PD, PED, S, SL, T, TL < PT

free typePT ::= sort PD, PED, S, SL, T, TL

end

specGENPARTHOOD [sort s] =
pred P : s× s

PT Particular
PD Perdurant, Occurance
PED Physical Endurant
S Space Region
SL Spatial Location
T Time Interval
TL Temporal Location

∀ x, y, z: s

• P(x, x) %(Ad11)%
• P(x, y) ∧ P(y, x) ⇒ x = y %(Ad12)%
• P(x, y) ∧ P(y, z) ⇒ P(x, z) %(Ad13)%

end

Figure 2: Primitive Categories and Generic Parthood Specification

The specification GENPARTHOOD is now extended to a generic mereology1 with defini-
tions of proper part (PP), overlapping (O) and atomic (At). These are all predicates typed with
thesort s given as parameter. Lines starting with %% are comments and those starting with
% are annotations. The annotation%implies given after athen lets HETS generate a proof
obligation that these theorems are following from the so far given axioms (see section 6). In
instantiations of GENMEREOLOGY these theorems are just treated as usual axioms.

After proving the theorems once, they can be used to give a mereology on time interval
(T), space region (S) and perdurant (PD) just by instantiation of GENMEREOLOGYwith the
appropriate argument specifications.

4 CASL-DL – a sublanguage of CASL

CASL-DL is a sublanguage of CASL restricted to the power ofSHOIN (D) [5], the Descrip-
tion Logic underlying OWL-DL. All constructs known fromSHOIN (D) are made available
either as FOL formulas and algebraic declarations or via instantiation of predefined specifi-
cations. CASL-DL uses sorts as concepts and subsorting for the taxonomy of concepts. For
concepts which depend on some role likeYoungeither sorts or typed unary predicates can be

1In order to make the examples easier to understand, the definitions of binary sum, binary product and binary
difference are omitted; for the same reason also various axioms are left out.

specGENMEREOLOGY [sort s] =
GENPARTHOOD [sort s]

then
predsPP(x, y: s) ⇔ P(x, y) ∧ ¬ P(y, x); %(Dd1 ProperPart)%

O(x, y: s) ⇔ ∃ z: s• P(z, x) ∧ P(z, y); %(Dd2 Overlap)%
At(x: s) ⇔¬ ∃ y: s• PP(y, x); %(Dd3 Atom)%

then
%% Ground Axioms (2)

∀ x, y: s
• ¬ P(x, y) ⇒ (∃ z: s• P(z, x) ∧ ¬ O(z, y)) %(Ad14)%
• ∃ z: s• At(z) ∧ P(z, x) %(Ad18)%

then %implies
∀ x, y, su, su′, p, p′, d, d′: s
• (∀ z′: s• At(z′) ⇒ P(z′, x) ⇒ P(z′, y)) ⇒ P(x, y) %(Td1)%
• (∀ z: s• O(z, x) ⇔ O(z, y)) ⇒ x = y %(Td3)%

end

Figure 3: Part of a Generic Mereology Specification

specMEREOLOGY=
PRIMITIVES

then
%% Ad7, Ad8, Ad9 and Ad10 are generated by instantiation of GenMereology

GENMEREOLOGY [sort T]
then

GENMEREOLOGY [sort S]
then

GENMEREOLOGY [sort PD]
end

Figure 4: Towards a Mereology on Time Intervals, Space Regions and Perdurants

used. Unary predicates are needed for concepts that potentially have no individuals, because
the carrier sets of sorts are always assumed as non-empty.

Furthermore, CASL-DL is limited to use only binary predicates, corresponding to roles
known from Description Logics [6]. The roles are declared with types in terms of sorts, such
that every predicate has a domain and range. Unintended usage of roles is also found during
the type checking. Roles can be declared with multiple profiles. This overloading of predicate
symbols is interpreted as one role restricted to the union of each arguments sorts. The role
hierarchy is formed with implications. (See Fig. 5 and [7])

Complete concept definitions are given as subsort definitions in CASL. So only individuals
fulfilling the formula defining the subsort belong to the newly defined concept. Concepts for
which all individuals can be enumerated are defined as free types with the individuals given as
the only possible constructors. Concepts that have only partial definitions are given as loose
subsorts with axioms describing the knowledge about these concepts. Individuals are defined
in terms of constant operations declared to be of a certain type. Facts on individuals are just
axioms involving only constant operations and no variables.

Unqualified number or cardinality restrictions on roles in definitions of concepts are
formed with special predicates derived from the instantiation of a parametrised specifica-
tion (see Fig. 5). The usage of a fully typed predicatehasCarwithoutThingas a filler shows

specSAMPLE PERS=
sorts Person< Thing;

Woman, Man
free typePerson::= sorts Woman, Man
predsparentOf : Person× Person;

childOf : Person× Person;
motherOf: Woman× Person

∀ c, p: Person; m: Woman
• parentOf(p, c) ⇔ childOf(c, p) %(inverse roles)%
• motherOf(m, c) ⇒ parentOf(m, c) %(role subsumption)%
sorts Parent= {p: Person• ∃ c: Person• parentOf(p, c)}; %(parent definition)%

Mother= {m: Woman• ∃ c: Person• motherOf(m, c)} %(mother definition)%
end

specSAMPLE GOODS=
sorts Goods< Thing;

EdibleGoods, NonEdibleGoods;
Car < NonEdibleGoods

free typeGoods::= sorts EdibleGoods, NonEdibleGoods
end

specSAMPLECOMB =
SAMPLE PERSand SAMPLE GOODS

then
free typeThing::= sorts Person, Goods
∀ g1, g2: Person; g′: Goods
• parentOf(g’, g2) %(ill typed axiom)%

then
GENCARDINALITY [sortsPerson, Car

pred hasCar: Person× Car]
then

pred CarCollector(p: Person) ⇔ minCardinality[hasCar](p, 5) %(concept definition)%
end

Figure 5: CASL-DL example

that the type safety can be checked independently without increasing the complexity of the
reasoning with cardinality restrictions. Thus the translated OWL-DL version of the definition
of CarCollectordoes not involve the restriction ofhasCarto be filled only withCar.

Also a limited part of basic data types of CASL are usable within CASL-DL. These include
i.e. numeric and string values, and they are separated from the sorts representing concepts.
Different specifications of these data types are provided by a library, such that every data type
can be instantiated on its own. This library also provides the GENCARDINALITY specification
for cardinality constraints.

Translations ofCASL to CASL-DL We want to integrate a projection “function” in HETS

which translates ontologies written in CASL to CASL-DL ontologies. The taxonomy will be
translated automatically, as well as all binary predicate and unary function declarations. The
translation of other predicate and function declarations and axioms will be semi-automatic
to aid the development of a light-weight ontology from a given FOL ontology preserving as
much of the intended meaning as possible. The user of the translation has several options

depending on the complexity of his axioms:

• n-ary predicate and function declarations, withn > 2, can be encoded with several new
binary predicates,

• axioms which can be rewritten to meet the CASL-DL constraints are simply kept (in the
rewritten form),

• disjunctions and conjunctions where some disjuncts or conjuncts can partly be rewritten
are kept while the not translatable ones are dropped, and

• the user can provide a CASL-DL formula marked as simplifying a FOL formula which
then has to be proved to be implied by the FOL formula.

All resulting encodings and rewritings and dropped axioms are displayed to the user in
CASL or CASL-DL formulas for acceptance. They are clearly marked as CASL or CASL-DL.
This results in a script that can be reused in the case changes were made to the underlying
FOL ontology. Then only translations where changed axioms or changed declarations are
involved have to be reconsidered. This script is also a documentation of the translation useful
for customers who want an applied light weight version of a well developed CASL ontology.

5 CASL-DL and OWL-DL

We provide a translation of OWL-DL documents to CASL-DL and vice versa, in a way that
the OWL-DL ontology is optimised in the sense of CASL’s strong typing (s. Table 1 for a
summary). By relying on the entailment of OWL DL inSHOIN (D) shown in [8, 9] we
have constructed a formal description of the translation in [7]. While OWL-DL is untyped
and CASL-DL is typed, we interpret the classes of OWL-DL as types in CASL-DL. Thus
class definitions in OWL-DL are translated to sort declarations and axioms in CASL-DL.
However, for the case that the user really wants to have a unary predicate we provide an
annotation property in OWL-DL that leads to a translation of the class to a unary predicate in
CASL-DL. OWL-DL property definitions are translated either to declarations of predicates or
partial functions and axioms. Individuals in OWL-DL are constant operations in CASL-DL.
All facts present in OWL-DL are translated to axioms involving only constant operations.

SHOIN (D) OWL CASL-DL

concept class sort or unary predicate
subconcept subclass subsort
number restriction cardinality instantiation of parametrised specification
role property binary predicate
role inclusion subproperty implication
individual individual constant operation
> class Thing maximum super sort
datatype XML datatype predefined datatypes

Table 1: Correspondences betweenSHOIN (D), CASL-DL and OWL-DL

Names of symbols are very different in OWL-DL and CASL-DL. While the former in-
sists on unique names based on URIs [10], the latter supports overloading of symbols since
they can be distinguished by their types. The URIs are maintained in CASL-DL via custom

namespace annotations analogous to XML namespaces [11]. Overloaded binary predicates
are translated a bit differently from non-overloaded ones. The argument sorts yield two unions
of classes (inSHOIN (D): S1 t ... t Sn) built from the sorts for the first and second argu-
ment. These constructs are then used in OWL-DL property definitions for domain and range
attributes. Overloaded unary predicates yield subclass definitions in OWL-DL.

6 Applying the Heterogeneous Tool Set and the Prover Isabelle to Ontologies

The Heterogeneous Tool Set HETS is a tool for analysis and proof management of heteroge-
neous specifications and theories. That is, it can deal with a multitude of formalisms, such as
those introduced above: CASL, CASL-DL, OWL and modal logic. Its architecture is depicted
in Fig. 6. HETS includes parsing and static analysis tools for a number of languages, as well
as tools for translations among them (like the translations addressed in the previous sections).
Moreover, it also provides translations to tool-supported logics and interfaces to respective
theorem provers, such as Isabelle/HOL [1].

Interfaces

(Signature, Sentences)

Static analysis

Abstract syntax

Parser

Basic specifications

Text

XML, ATerms

(logic−specific tools
for CASL and extensions)

Theorem prover
(e.g. ELAN−CASL)

Consistency checker

(e.g. HOL−CASL)
Rewriter

(e.g. CCC)

Graph of CASL sublanguages
and extensions

PFOL= SubFOL=

Eq=

FOL=

CASL

SB−CASL

CSP−CASL

CASL−LTL CoCASL

HasCASL

Interfaces

Static analysis

Abstract syntax

Parser

Text

XML, ATerms

Structured and architectural
specifications

Development graph

Management of proofs & change

Heterogeneous proof engine

MAYA

Figure 6: Architecture of the heterogeneous tool set

When (a small part of) the formalization of the DOLCE ontology in CASL is loaded into
HETS, a window with a development graph appears (cf. Fig. 7). The dashed arrow starting
from the node labelledGenMereologyto an unlabelled node represents a proof obligation.
It can be tackled with the theorem prover Isabelle. Therefore, HETS translates the CASL

specification into an Isabelle/HOL theory. We do not show the signature and axioms of this
theory here, since it just repeats the CASL declarations. Also, the axiom names used in the
proofs stem from the CASL specifications. Finally, the formulas that have to be proved are
listed as theorems, but without proof — it is to the user to fill in the proofs.

The first proof (of the intended consequenceTd1) shows that if every atomic part ofx is
a part ofy, thenx is a part ofy. This is easily proved by feeding the axioms relevant for the
involved concepts into the automatic tacticbest .

Figure 7: A development graph in the heterogeneous tool set

The second proof (of the intended consequenceTd3) shows that two objects having the
same overlapping parts are equal. The proof is more involved here; it needs a lemma that
infers a parthood relation from the equivalence of the (expansion of the definition of) overlap-
ping relation. Actually, we found that Isabelle with the language Isar can be used to formalize
proofs in a way that is very close to proofs of the same theorems done with pencil and paper.

theorem Td2: "! x :: s . (At x) = (! y’ :: s . P y’ x --> x = y’)"
proof -

from Ad14 Ad18 Ad13 Dd2_Overlap
show ?thesis by best

qed

lemma lemma1:
assumesaa:"ALL z .(EX u . P u z & P u x) = (EX u . P u z & P u y)"
shows "P x y"

proof -
have h:"ALL v . At v & P v x --> P v y"
proof

fix v show "At v & P v x --> P v y"
proof

assume ab:"At v & P v x"
with Ad11 have "EX u . P u v & P u x" by blast
with aa have "EX u . P u v & P u y" by simp
then obtain u where uv: "P u v & P u y" ..
with ab Dd3_Atom Dd1_Proper_Part Ad12 have "u=v" by blast
with uv show "P v y" by simp

qed
qed
with Td1 show "P x y" by blast

qed

theorem Td3: "! x y . (! z . (O z x = O z y)) --> x = y"
proof -

have "!! x y. (ALL z. O z x = O z y) ==> x = y"
proof -

fix x y assume p:"(ALL z. O z x = O z y)"
with Dd2_Overlap
have a:"ALL z .(EX u . P u z & P u x) = (EX u . P u z & P u y)"

by simp
with lemma1 have "P x y" by blast
moreover
from a lemma1 have "P y x" by blast
ultimately show "x = y" using Ad12 by simp

qed
thus ?thesis by blast

qed

Conclusion

We have shown how the specification language CASL can be used for the definition and
specification of ontologies. The main advantages of this approach are

• strong typing, allowing the static detection of errors while keeping flexibility through the
modelling of subconcepts as subsorts,

• powerful structuring constructs, allowing the reuse of definitions in ontologies, and also
a more economic way of theorem proving: for a parameterized specification, a theorem
needs to be proved only once, but then it carries over to all instantiations,

• and last but not least a readable and standardized input syntax (together with an automatic
formatting).

We have interfaced the theorem prover Isabelle with the heterogeneous tool set HETS.
The integration of further provers (e.g. tailored towards specific sublogics of CASL) as well

as consistency checkers into HETS is the subject of current research. An interesting open
question is whether the decomposition of models into smaller ones given by CASL architec-
tural specifications provides a practically useful way of reducing the consistency problem of
larger ontology specifications into that of smaller ones.

References

[1] T. Nipkow, L. C. Paulson, and Markus Wenzel.Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Springer Verlag, 2002.

[2] CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS 2960 (IFIP Series). Springer,
2004.

[3] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening ontologies with dolce.
In Gómez-Ṕerez and Benjamins [12], pages 166–181.

[4] M. R. Genesereth and R. E. Fikes. Knowlegde interchange format version 3.0 reference manual. Stanford
Logic Group, Report Logic-92-1http://logic.stanford.edu/sharing/papers/kif.ps ,
June 1992.

[5] I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description Logic Satisfiability. In
D. Calvanese, G. De Giacomo, and E. Franconi, editors,Proceedings of 2003 International Workshop on
Description Logics, volume 81 ofCEUR Workshop Poceedings, 2003.

[6] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The Description
Logic Handbook. Cambridge University Press, 2003.

[7] K. L üttich, T. Mossakowski, and B. Krieg-Brückner. Ontologies for the Semantic Web in CASL. In Recent
Trends in Algebraic Development Techniques, LNCS. Springer, WADT 2004. submitted.

[8] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satisfiability. In
D. Fensel, K. Sycara, and J. Mylopoulos, editors,Proc. of the 2003 International Semantic Web Conference
(ISWC 2003), number 2870 in Lecture Notes in Computer Science, pages 17–29. Springer, 2003.

[9] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making of a
web ontology language.Journal of Web Semantics, 1(1):7–26, 2003.

[10] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic syntax. IETF
Draft Standard (RFC 2396)http://www.ietf.org/rfc/rfc2396.txt , August 1998.

[11] T. Bray, D. Hollander, and A. Layman, editors. Namespaces in XML. W3C Recommendationhttp:
//www.w3.org/TR/REC-xml-names/ , 14 January 1999.

[12] A. Gómez-Ṕerez and V. R. Benjamins, editors.Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web, 13th International Conference, EKAW 2002, Siguenza, Spain, October
1-4, 2002, Proceedings, volume 2473 ofLNCS. Springer, 2002.

