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Abstract. This paper describes a sublanguage of Casl, called Casl-
DL, that corresponds to the Web Ontology Language (OWL) being used
for the semantic web. OWL can thus benefit from Casl’s strong typing
discipline and powerful structuring concepts. Vice versa, the automatic
decision procedures available for OWL DL (or more precisely, the un-
derlying description logic SHOIN (D)) become available for a sublan-
guage of Casl. This is achieved via translations between Casl-DL and
SHOIN (D), formalized as so-called institution comorphisms.

1 Introduction

The internationally standardized Web Ontology Language (OWL) [10] is a major
contribution to the upcoming Semantic Web [11, 5] that proposes a new form
of web content meaningful to computers. One problem of the documents on the
web is the restricted ability to search for certain topics without any knowledge
how an author or organisation names the concept. Another problem results form
multimedia files like audio or movie files which cannot be indexed by techniques
available today; the meaning must be given by meta data. However, just giving a
text describing a piece of multimedia yields only a very limited aid for searching.

Therefore, the W3C (World Wide Web Consortium) and Tim Berners Lee
proposed the Semantic Web, where the meaning is given by shared and extended
ontologies that provide organised knowledge about certain domains; thus the
contents of the web is accessible by computers. Hence, it becomes possible e.g. to
search for the least cost of a phone call from Singapore to Germany. The visitor
from Europe does not need any knowledge of the foreign language, because
the query is given in a semantic-based language that is also provided by the
Singapore telephone company. Indeed, with Swoogle [1], a first search engine for
OWL and RDF documents is available.

In this work, we interface OWL with the specification language Casl [6, 9].
Casl provides a strong typing discipline, which allows to find conceptual errors
at an early phase. Moreover, powerful structuring constructs allow the modu-
larization of large theories into manageable pieces. Both features are present in
OWL in a very limited form only. We hence propose a sublanguage of Casl,
called Casl-DL, which corresponds to OWL DL in expressive power, but which
retains the above mentioned advantages. Casl-DL can also be used to interface
Casl with efficient decision procedures that are available for description logics.



The paper is organised as follows: Section 2 recalls the underlying description
logic SHOIN (D) of OWL DL. Section 3 describes the Web Ontology Language
OWL DL. Section 4 introduces Casl and the sublanguage Casl-DL. Section 5
continues with translations between OWL DL and Casl-DL. Section 6 concludes
the paper. Last but not least an appendix collects some tables showing the
concrete translations between SHOIN (D) and Casl-DL constructs including
semantics for the SHOIN (D) constructs.

2 SHOIN (D)

SHOIN (D) is an expressive description logic [3, 19, 18]. Its main purpose is
the definition of hierarchies of concepts and roles. In terms of logic, concepts
are unary and roles are binary predicates. The general properties of concepts
and roles are collected in a so-called TBox. By contrast, the ABox represents a
particular database, i.e. defines individuals to belong to concepts and roles. It
also defines concepts and roles involving predefined datatypes. See Fig. 1 for an
example of a TBox describing the class definitions of a family.

Woman ≡ Person u Female
Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild.Person
Father ≡ Man u ∃hasChild.Person
Parent ≡ Mother t Father

Grandmother ≡ Mother u ∃hasChild.Parent
MotherWithManyChildren ≡ Mother u > 3 hasChild

Wife ≡ Woman u ∃hasHusband.Man

Fig. 1. Example TBox: Family

The standard description logic that is the base of all description logics is
called ALC. ALC has a notation for the universal concept > and the bottom
concept ⊥ (representing the always true and the empty predicate). Moreover,
new concepts can be built with unions, intersections and complements of con-
cepts. Finally, concepts can be universally or existentially projected along roles
(e.g. ∃hasChild.Person means the concept that consists of all individuals having
some person as their child).

The logic ALCR+ adds the possibility to specify roles to be transitive. This
logic is also abbreviated by S, which is the first letter of the name SHOIN (D).
Likewise, the other letters are used for various features of description logics
[3, pp.494-495]. The letter H adds role hierarchies (i.e., the possibility to specify
inclusions between roles) and the letter I adds inverse roles (i.e. the possibility to
generate a new role by just swapping the arguments of a given role). Unqualified
number restrictions and nominals are added by N and O. The former allow



stating that any individual is related to at most (or at least) n individuals by
a given role. This way, the functionality of relations can be specified. Nominals
allow for explicitly enumerating the members of a concept. Datatypes are added
by the suffix (D). The order of the letters does not really matter, so SHOIN (D)
is sometimes called SHION (D). A SHOIN (D) axiom is either an equality or
inclusion between concepts, or an inclusion between roles. A SHOIN (D) TBox
consists of a set of SHOIN (D) axioms. The semantics of such a TBox is the set
of all single-sorted first-order models interpreting concepts as unary and roles
as binary relations, and satisfying the TBox axioms (see Figs. 12 and 13 for the
SHOIN (D) syntax and Tables 1 to 7 for its semantics).

2.1 Tools for SHOIN (D)

A crucial motivation for the use of description logics is that they usually cor-
respond to decidable fragments of first-order logic. Indeed, there is a decision
procedure for satisfiability and subsumption of SHIN (D) concepts (SHIN (D)
is SHOIN (D) without nominals) that runs in non-deterministic exponential
time, but performs much better for practical examples [24]. This has been the
basis of efficient tools for OWL DL such as FaCT [17]. The tool Pellet [23] uses a
combination of known algorithms for SHIN (D) and SHON (D) (SHOIN (D)
without inverse properties). It is provably sound but incomplete with respect to
the whole of SHOIN (D). The design of a decision procedure for the whole of
SHOIN (D) is an open problem.

The Guarded Fragment of first-order logic has attracted much attention since
it has shown to be decidable [2]. Note that many description logics (as well as
propositional modal logic) can be translated into the guarded fragment. However,
this does not hold for SHOIN (D) due to the presence of transitive roles and
counting. Indeed, adding either of these features to the guarded fragment results
in an undecidable logic.

3 OWL DL

OWL is not a single language, it has three sublanguages that can be ordered
according to their expressiveness. The underlying idea of the W3C was to provide
languages that were very expressive on the one hand but also useful in automated
reasoning processes useful for the Semantic Web. The following species of OWL
are available, starting with the most expressive language:

OWL Full provides unrestricted access to all OWL constructs. As RDF Sche-
ma, it does not enforce a strict separation of classes, properties, individuals
and data values. Hence, there are e.g. no constraints on using a concept,
called class in OWL, as an individual at the same time [10, Sect.8.1]. This
corresponds to some untyped higher-order logic, leading to non-well-founded
sets as semantics.



OWL DL restricts the constructs of OWL in such a way that they correspond
to some fragment of first-order logic (actually, roughly to SHOIN (D)). In
particular, all axioms must form a tree-like structure. This means e.g. that
every reference to a name in a “subclass of” axiom implies the presence of a
declaration that this name refers to a class.

OWL Lite adds further constraints to OWL DL that lead to a straight-forward
and easy implementation (whereas OWL DL tries to reach the very limits
of description logics). For example, it disallows nominals (oneOf, hasValue),
union and negation of class descriptions.

Note that neither OWL DL nor OWL Full provide full quantifier logic, but only
some restricted forms of quantification corresponding to description logics. We
will work with OWL DL here, since it comes closest to the typed first-order
fragment of OWL, and we aim at a translation to the typed first-order language
Casl. Moreover, apart from the need to involve non-well-founded sets, OWL
Full has the additional drawback that no worked-out formal semantics exists, to
our knowledge.

3.1 Classes (Concepts) in OWL DL

OWL DL can be understood as syntactic sugar on top of SHOIN (D), with
a slightly new terminology. Concepts are called classes in OWL DL. The uni-
versal concept > is named class Thing, the empty concept ⊥ is named class
Nothing. New classes are introduced with either complete or partial descrip-
tions. Complete descriptions are introduced by axioms stating equivalence of
classes (=equality of concepts), while partial descriptions only specify a subclass
(=subconcept) relation to a given class, which means that they are quite loose.
Furthermore, the “one of” class axiom gives a complete definition by enumerat-
ing all individuals belonging to this class. Additionally, classes can be specified
to be disjoint with other classes.

Classes can also be specified via restrictions. Cardinality restrictions specify
a lower or upper bound or an exact number of properties that must be present.
More precisely, this means that an individual belongs to such a class if and only
if the number of individuals that it is related to (via some property, which is a
binary relation) meets the specified bounds. “All values from” restrictions allow
restricting the values that belong to a class or a role to come from another given
class. It is also possible to demand a property to be present in relation to another
class. A further restriction defines a class by having a property with (=relation
to) a certain value. These restrictions are possible with object properties and
datatype properties (see Sect. 3.2 and 3.3).

3.2 Properties (Roles) in OWL DL

Binary relations between individuals, called roles in SHOIN (D), are called
properties in OWL DL. They are divided into two types: Datatype properties
relate classes to datatypes (see Sect. 3.3 for the allowed datatypes), while object



properties relate classes with classes. The first type of properties can only have
other datatype properties as super-properties. Both types of properties can be
restricted to a certain domain and range. Without the definition of a domain
and range, every class can be related with every other class or datatype by a
given property. By giving a domain and range, the property looses this over-
loadingpossibility. Another way of restricting a property to a certain datatype
or class is possible by giving an “all values from” class axiom.

Datatype properties can be defined as the sub-property of and as equivalent
to another datatype property. Furthermore, it is possible to specify a datatype
property to be functional.

Object properties can have the same axioms regarding subsumption, equiv-
alence and functionality as datatype properties. Additionally, properties can be
defined to be symmetric, transitive, functional, inverse functional, or the in-
verse of another property. OWL also has annotation properties, which have no
semantic meaning given by the OWL recommendation.

3.3 XML Schema Datatypes in OWL DL

OWL DL treats the datatypes allowed in SHOIN (D) somewhat differently
than SHOIN (D). Datatypes are restricted to some XML Schema Datatypes.
These are numeric datatypes for integers and various subsets of the integers and
for decimal, float and double numbers. Strings and various specialized versions
of strings are allowed as well as base64 and hexadecimal encoded binary data.
Finally, various time and date specific datatypes are allowed. There is no way of
defining further datatypes than those listed in [22, Sect.2.1].

3.4 Facts

Axioms describing the membership of individuals in classes and describing re-
lations between individuals are called facts in OWL DL. In description logics,
a set of such axioms is often called an ABox (Fig. 2). It is possible to state
that an individual belongs to several classes. Implicitly, every individual is of
class Thing, because this is the implicit maximal superclass. For properties, it is
possible to provide either datatype or object values that are related. Finally, it
is possible to state that several names denote different individuals, or the same
individual.

Mother(MARY) Father(PETER)
hasChild(MARY,PETER) hasChild(PETER,HARRY)
hasChild(MARY,PAUL)

Fig. 2. Example ABox: Family individuals



4 Casl-DL

Casl, the Common Algebraic Specification Language [9], has been designed by
CoFI, the Common Framework Initiative for algebraic specification and devel-
opment. It has been designed by a large number of experts from different groups,
and serves as a de-facto standard. The design of Casl has been approved by the
IFIP WG 1.3 “Foundations of System Specification”.

Casl consists of several major levels1, which are quite independent and may
be understood (and used) separately:

Basic specifications are written in many-sorted first-order logic. Subsorts (in-
terpreted as injective embeddings) increase flexibility, while retaining a strong
type system. Partial functions with possibly undefined values are distin-
guished from total functions. Finally, Casl basic specifications provide pow-
erful and concise constructs for specifying datatypes, which, in the presence
of subsorts, may also be used to specify disjoint, non-disjoint and exhaustive
unions of sorts.

Structured specifications allow translation, reduction, union, and extension
of specifications. A simple form of generic (parameterized) specifications is
provided, allowing specifications to be re-used in different contexts.

Libraries allow the distributed storage and retrieval of (particular versions of)
named specifications.

Major libraries of validated Casl specifications are freely available on the
Internet, and the specifications can be reused simply by referring to their names.
Tools are provided to support the practical use of Casl: checking the correctness
of specifications, proving facts about them, etc.

While Casl has originally been designed for specifying requirements and de-
sign of software, we show here that Casl is also perfectly suited as a language
for formalizing ontologies. In particular, we propose to use Casl sorts and sub-
sorts for the development of a class hierarchy, and Casl binary predicates with
axioms for the development of properties. This leads to a cleaner methodology
for developing ontologies. With the aid of “strongly typed” ontologies it will be
easier to avoid inconsistencies.

The sublanguage of Casl corresponding to SHOIN (D), called Casl-DL, is
described as a syntactic restriction w.r.t. Casl. It contains sorts, subsorts, free
and generated data types. The sorts Thing and DATA are assumed to be present
in all signatures, and each sort must be a subsort of either of these. Figure 3
presents all declarations of sorts, predicates and functions possible in Casl-DL.
Disjointness of concepts is defined easily with free type definitions with subsorts
in Casl. Predicates are restricted to unary and binary predicates, where binary
predicates relate Thing either with Thing or with DATA or relate subsorts of
Thing with subsorts of Thing or DATA. Overloading is allowed, but the first
position of the predicate must be a subsort of Thing and the second position
must be filled either with a subsort of Thing or with one of the predefined
1 We omit Casl architectural specifications, since these seem not so relevant here.



sorts S1, ..., Sn < S (subsort declaration)
sorts S1 = ... = Sn (sort equivalence)
sort S1 = { x : S • φ(x)} (subsort definition)
sort Ddr = { x : D • x = v1 ∨ ... ∨ x = vn} (data range subsort definition)
generated type S ::= o1|...|on (generated sort)
free type S ::= o1|...|on (enumerated free sort)
generated type S ::= sorts S1, ..., Sn (generated sort)
free type S ::= sorts S1, ..., Sn (free sort)
ops o1, ..., on : Thing (function declaration)
ops o1, ..., on : S (function declaration)
ops f1, ..., fn : S →? SD (partial function declaration)
preds P1, ...Pn : Thing (predicate declaration)
preds R1, ..., Rn : S × SD (predicate declaration)

where Si are subsorts of Thing and S is Thing or a subsort of it, and
where o1, ..., on are constant operations, and
where SD stands for either Thing or DATA or a subsort of these
where D stands for a subsort of DATA

Fig. 3. Declarations, sort and type definitions of Casl-DL

datatypes that are subsorts of DATA. Figure 5 shows some of the predefined
data types in Casl-DL. Only partial functions with one argument of sort Thing
(or a subsort of it) and with result of either type Thing or DATA (or a subsort
of these) and 0-ary (constant) functions of type Thing (or typed with a subsort
of it) are allowed. Formulas for binary predicates are restricted to those given by
Fig. 4, with the further restriction that axioms for functional predicates cannot
be combined with the transitivity axiom. For predicates and functions which
relate to DATA only equivalence and implication axioms are allowed.

Descriptions are formulas that restrict the extension of a description, set-like
combinations of descriptions or assertions of membership in a named concept
as shown in Fig. 6. The formulas regarding the cardinality of predicates are
obtained through the instantiation of the predefined parameterized specifica-
tion GenCardinality (s. Fig. 10). Special axioms restricting the sort DATA
and subsorts of it are presented in Fig. 7. Implicit embedding to supersorts and
explicit downcast to subsorts in terms are allowed. Also, terms with nested func-
tion symbols are supported. Figure 8 shows all axioms of Casl-DL built upon
descriptions. Finally axioms relating constant operations are described in Fig. 9.

To illustrate the way in which we would like to write ontologies in Casl-DL,
we give a short example in Fig. 11. Actually, it has been obtained as a result
of a translation described in the next section; a direct specification in Casl-DL
may be more concise at some places, e.g.

sort Mother = {x : Woman • ∃y : Person • hasChild(x, y)}.

The example shows the definition of the concept Child that has exactly two
parents. In description logics, so-called cardinality constraints are often used to
denote this. In Casl-DL, a (predefined) generic specification is used to introduce



∀x : S1; y : S3 •R(x, y) ⇒ Q(x, y) (implication)
∀x : S1; y : S3 •R(x, y) ⇔ Q(x, y) (equivalence)
∀x : S1; y : S2 •R(x, y) ⇔ R(y, x) (symmetry)
∀x : S1; y : S2 •R(x, y) ⇔ Q(y, x) (inverse)
∀x, y : S1; z : S2 •R(x, z) ∧R(y, z) ⇒ x = y (inverse functional)
∀x : S1; y : S2 •R(x, y) ⇒ φ(x) ∧ ψ(y)a (argument restriction)
∀x : S1; y : S4 •R(x, y) ⇒ φ(x) ∧ δ(y)a (argument restriction)
∀x : S1; y : S3 • f(x) = y ⇒ Q(x, y) (implication)
∀x : S1; y : S3 • f(x) = y ⇒ g(x) = y (implication)
∀x : S1; y : S3 • f(x) = y ⇔ Q(x, y) (equivalence)
∀x : S1; y : S3 • f(x) = y ⇔ g(x) = y (equivalence)
∀x : S1; y : S2 • f(x) = y ⇔ f(y) = x (symmetry)
∀x : S1; y : S2 • f(x) = y ⇔ Q(y, x) (inverse)
∀x : S1; y : S2 • f(x) = y ⇔ g(y) = x (inverse)
∀x, y : S1; z : S2 • f(x) = z ∧ f(y) = z ⇒ x = y (inverse functional)
∀x, y : S1; z : S2 •R(x, y) ∧R(y, z) ⇒ R(x, z) (transitivity)
∀x : S1; y : S2 • f(x) = y ⇒ φ(x) ∧ ψ(y)a (argument restriction)
∀x : S1; y : S4 • f(x) = y ⇒ φ(x) ∧ δ(y)a (argument restriction)

where S1, S2 is either Thing or a subsort of it, and
where S3 is either DATA or Thing or a subsort of these
where S4 is either DATA or a subsort of it

a one of the conjuncts may be omitted

Fig. 4. Predicate axioms in Casl-DL

XMLLiteral float

nonPositiveInteger

double

DATA

long

integer

decimal

nonNegativeInteger

boolean string

Fig. 5. Some of the predefined datatypes in Casl-DL and their subsort relations



φ(x), ψ(x) ::= true | false |
x ∈ S | (sort membership)
P (x) | (concept membership)
¬φ(x) | (description negation)
φ(x) ∧ ψ(x) | (description union)
φ(x) ∨ ψ(x) | (description intersection)
∃y : S •R(x, y)a | (existential quantification)
∃y : S •R(x, y) ∧ φ(y)a | (existential quantification)
∀y : S •R(x, y) ⇒ φ(y)a | (value restriction)

R(x, o)b | (has value restriction)
R(x, v)c | (has value restriction)

x = o1 ∨ ... ∨ x = on
b | (one of restriction)

minCardinality[P ](x, n)d | (cardinality restriction)

maxCardinality[P ](x, n)d | (cardinality restriction)

cardinality[P ](x, n)d | (cardinality restriction)
∃y : D • U(x, y)e | (existential quantification)
∃y : DATA • U(x, y) ∧ δ(y)e | (existential quantification)
∀y : DATA • U(x, y) ⇒ δ(y)e | (value restriction)
φ(f(x)) | (existential quantification)
def f(x) ⇒ φ(f(x)) (value restriction)

a where S is either Thing or a subsort of it
b where o, oi is an individual, aka ground term, of sort Thing
c where v is a ground term of sort DATA
d where n is a ground term of sort Nat
e where D is either DATA or a subsort of it

Fig. 6. Formulas for Descriptions in Casl-DL

δ(x) ::= x ∈ D | (datatype membership)
x = v1 ∨ ... ∨ x = v2 (one of)

where D is a subsort of DATA and
where v1...vn are ground terms of DATA

Fig. 7. Formulas for DATA in Casl-DL

∀x : Thing • φ(x) ⇒ ψ(x) (partial definition)
∀x : Thing • φ(x) ⇔ ψ(x) (complete definition)
∀x : S • ψ(x) (complete definition)

where S is a subsort of Thing

Fig. 8. Description axioms allowed in Casl-DL



•R(o1, o2) (predicate application)
•R(o, v) (predicate application)
•f(o1) = o2 (function application)
•f(o) = v (function application)
•o ∈ S (membership in sort)
•φ(o) (description of o)
•o1 = o2 (same object)
•¬ o1 = o2 (different object)

where oi and o denote 0-ary constant operations of sort Thing or a
subsort of it, and
where v is a ground term of sort DATA, and
where S is a subsort of Thing

Fig. 9. Axioms Relating Constants

cardinality predicates for a given predicate. So, the instantiation of GenCardi-
nality with pred hasChild yields a new predicate cardinality[hasChild](p, n)
that holds if and only if the Person p is exactly related to n Persons with the
predicate hasChild.

spec GenCardinality [sorts Subject, Object
pred predicate : Subject × Object ] =

{ Set [sort Object ]
reveal Set [Object ], ] , ε , Nat, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, @@ ,

≥ , ≤
then op toSet : Subject → Set [Object ]

∀ x : Subject ; y : Object • predicate(x, y) ⇔ y ε toSet(x )
preds minCardinality [predicate](s: Subject ; n: Nat) ⇔ ] toSet(s) ≥ n;

maxCardinality [predicate](s: Subject ; n: Nat) ⇔ ] toSet(s) ≤ n;
cardinality [predicate](s: Subject ; n: Nat) ⇔ ] toSet(s) = n

} hide Pos, toSet, Set [Object ], ] , ε , ≤ , ≥

spec PredefinedConcepts =
sort Thing
pred Nothing : Thing
∀ x : Thing • ¬ Nothing(x ) %(empty concept Nothing)%

Fig. 10. Casl-DL Prelude

5 Translations Between Casl-DL and OWL DL

This paper provides a translation of OWL DL documents to Casl-DL and
vice versa, in a way that an OWL DL ontology is optimised in the sense of



spec Family =
PredefinedConcepts

then sorts Person, Female < Thing ;
Woman < Person;
Woman < Female;
Woman = {x : Thing • x ∈ Person ∧ x ∈ Female};
Man < Person;
Man = {x : Thing • x ∈ Person ∧ ¬ x ∈ Woman}

pred hasChild : Person × Person
sorts Mother < Woman;

Mother = {x : Thing • x ∈ Woman ∧
∃ y : Person • hasChild(x as Woman, y)};

Father < Man;
Father = {x : Thing • x ∈ Man ∧

∃ y : Person • hasChild(x as Man, y)};
Parent < Person %% smallest common supersort

generated type Parent ::= sorts Mother, Father
sorts Grandmother < Mother ;

Grandmother = {x : Thing • x ∈ Mother ∧
∃ y : Parent • hasChild(x as Mother, y)}

then GenCardinality [sort Person < Thing
pred hasChild : Person × Thing ]

then sorts MotherWithManyChildren < Mother ;
MotherWithManyChildren =

{x : Thing • (x ∈ Mother) ∧
minCardinality [hasChild ](x as Mother, 3 )}

preds hasHusband : Woman × Man;
Wife(w : Person) ⇔
w ∈ Woman ∧ ∃ m: Man • hasHusband(w as Woman, m)

end

Fig. 11. Translation of the OWL-DL TBox from Fig.1 into Casl-DL

Casl’s strong typing. By relying on the translations between OWL DL and
SHOIN (D) from [18, 19], we just need to define the translation along the syntax
of SHOIN (D). The remaining OWL DL specialties are dealt with as follows.
An ontology imported via an import annotation is translated to a specification in
Casl-DL and named with a part of the URI [4] of the OWL document. Then the
“importing ontology” is an extension of the imported ontology. When defining
the translation, we encountered the difficulty that in every OWL document other
ontologies could be referenced directly as an URI pointing to a name defined in
another OWL document. This problem is solved by localisation of the names
as described in the semantics document of OWL [22, Sect.5.1]. The URIs are
maintained via custom namespace annotations analogous to XML namespaces
[7].

Figures 12 and 13 show the syntax production rules for the constructs of
SHOIN (D). Tables 1 to 7 (see the appendix) describe in detail the SHOIN (D)
constructs, their semantics (according to standard description logic semantics



C,D ::= A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C uD | (intersection)
C tD | (union)
{o1, ...} | (nominals)
∀R.C | (value restriction)
∃R.C | (existential quantification)
R : o | (has value restriction)
> n R | (Unqualified
6 n R | number
= n R restriction)

Fig. 12. Syntax for the Description of Concepts in SHOIN (D)

R,S ::= S | (atomic role)
R− (inverse role)

Fig. 13. Syntax for the Description of Roles in SHOIN (D)

as given by [19]), and their translation to Casl-DL. Here, ∆I is the domain
of individuals disjoint from the domain of data values ∆I

D. All the sorts are
subsorts either of DATA (for datatypes), or of Thing. Class descriptions denoted
as C or C1...Cn are translated to formulas with one free variable in Casl-DL.
[[C]](x) is the translation of description C in Casl-DL with the free variable x.

In principle, there are two variants of axioms: (1) partial concept axioms
and (2) complete concept axioms, presented in Table 1. Table 2 shows axioms
for some special cases that can be translated more succinctly (but note that
these translations are semantically equivalent to those that could be derived
from Tables 1 and 3). For example, a class axiom that defines a named concept
can be translated either to a formula of the form x ∈ A ⇔ x ∈ C1 ∧ ...∧ x ∈ Cn,
or to a subsort definition (where A stands for the name that is given to the class
in definition). All variables in the tables without an explicit typing are of type
Thing.

The translation of OWL DL to Casl-DL is not entirely adequate in the
sense that OWL DL admits empty classes, while subsorts in Casl-DL must
be non-empty. However, note that unnamed classes are translated to formulas
in Casl-DL, and the latter may well be unsatisfiable, i.e. denoting the empty
class. Only named classes are translated to subsorts. Generally, we feel that
named classes should be non-empty from a conceptual point of view. However,
for the case that the user really wants to have a possibly empty class, we provide
an annotation in OWL DL that leads to a translation of the class to a unary
predicate in Casl-DL.

The translation from Casl-DL back to SHOIN (D) (OWL DL) results from
the same tables given for the translation from SHOIN (D) to Casl-DL by
reading them from right to left. Of course, this is not well-defined in cases where
a certain Casl-DL construct is reached (via the left-to-right translation) either



from several SHOIN (D) constructs, or from none at all. In the first case, we just
define the back translation to be the first SHOIN (D) construct in the table that
fits. The second case can occur only for a limited number of constructs, for which
we employ a special treatment: (1) Overloaded binary predicates are translated a
bit differently from non-overloaded ones. The argument sorts yield two constructs
of the form S1 t ... t Sn built from the sorts for the first and second argument.
These constructs are then used in SHOIN (D) formulas for domain and range
formulas (s. Tables 5 and 6). (2) The definitions for named classes resulting
from unary predicates are marked with an OWL DL annotation. (3) Complete
definitions of the form ∀x : S • φ(x) are transformed to ∀x : Thing • x ∈ S ⇔
φ(x) and this formula is then translated. (4) Subsort definitions of the form sort
S1 = { x : S • φ(x)} are transformed to sort S1 = { x : Thing • ¬x ∈ S ∨ φ(x)}
before the translation.

5.1 Translations as Comorphisms

The translations can be shown to be institution comorphisms in the sense of
[13]. First, we present briefly the involved signatures, sentences, models and
satisfaction of SHOIN (D) and Casl-DL, giving rise to institutions in the sense
of [14]. Then we show the signature, sentence and model mappings, giving rise
to institution comorphisms.

The signatures in SHOIN (D) consist of several sets: (1) a set of concepts,
(2) a subset of primary concepts, (3) a set of individual-valued roles, (4) a set of
data-valued roles, (5) a set of individuals and (6) a set of axioms for subconcept
relations, domain and range of roles, functional roles and concept membership.
Productions of SHOIN (D) concepts are shown in Fig. 12 and 13. They are
used to form sentences like A ≡ C or A v C, where A is a concept name and C
is a concept. SHOIN (D) models consist of: (1) a set ∆I of individuals and a set
∆I

D of data values, (2) a subset AI ⊆ ∆I for each concept A in the signature, (3)
an element of AI for every individual, (4) a binary relation for every role: either
(a) RI ⊆ AI

1 ×AI
2 (individual valued roles) or (b) RI ⊆ AI ×DI with DI ⊂ ∆I

D

(data-valued roles).The satisfaction relation between models and sentences is
defined inductively in the obvious way.

Signatures of Casl-DL consist of: (1) a set of sorts, (2) a subsort hierarchy
(which is just a pre-order) subsuming all sorts under the sort Thing, (3) a set
of unary and binary typed relations, (4) a set of unary typed functions and
(5) a set of typed constants. Productions of Casl-DL sentences are given in
Fig. 4 to 9. Casl-DL models consist of non-empty carrier sets for each sort
and an injective function for each subsort relation. Each predicate symbol is
associated with a predicate declared on the appropriate carrier set. Each function
symbol corresponds to a partial function between the appropriate carrier sets.
Satisfaction is defined as standard in partial first-order logic.

Comorphism from SHOIN (D) to Casl-DL. Signature mappings: (1) Pri-
mary concepts are mapped to sorts and subconcept axioms of primary concepts



yield a subsort declaration. (2) All non-primary concepts are mapped to unary
predicates on either Thing or their supersort according to the subconcept axioms.
(3) Individual-valued roles with functionality axiom yield a unary operation and
the others a binary predicate. According to the type of a role the operation or
predicate is typed either with Thing or a subsort of it. If a formula is given as
type instead of a primary concept (mapped to a sort) argument restriction ax-
ioms are generated. (4) Data-valued roles with functionality axiom yield a unary
operation and the others a binary predicate. According to the type of a role the
operation or predicate is typed either with Thing or a subsort of it in the (first)
argument position and with DATA or or a subsort of it as result / in second
argument position. (5) Individuals are mapped to operations either typed with
Thing or with a subsort of it. (6) From subconcept axioms, which involve con-
cepts mapped to unary predicates, implications are generated. The mappings of
sentences are shown in Tab. 1 to 7. A subsorted Casl-DL model with injections
can be translated to a subsorted model with inclusions by taking the colimit
of the inclusion diagram, see [15] for details. From this, it is straightforward to
construct a SHOIN (D) model.

Comorphism from Casl-DL to SHOIN (D). Signature mapping: (1) All
subsorts of Thing and sort Thing itself are mapped to primary concepts. The
subsort hierarchy yields subsumption axioms. (2) Unary relations are mapped
concepts as well. Each type of a predicate gives a subsumption axiom. (3) Bi-
nary relations are mapped to either individual-valued properties or data-valued
properties according to their type. (4) Unary functions are mapped to either
individual-valued properties or data-valued properties according to their type
and yield a functionality axiom. (5) Constant operations are mapped to individ-
uals of those primary concepts where their sorts have been mapped to. Tables. 1
to 7 show the mapping of sentences by reading them from right to left. Fur-
ther details are given above how to map the sentences. A SHOIN (D)-model is
mapped to Casl-DL by interpreting the subsorts of Thing with interpretations
of the corresponding concepts in SHOIN (D), and similarly for the predicates
and individuals. Partial functions are interpreted by taking the interpretation of
the corresponding binary role in SHOIN (D); by the axiomatization, it is the
graph of a partial function.

The model translations of both comorphisms are inverse to each other. As
a consequence, the institution comorphisms can be used to borrow, in a sound
and complete way [8], any proof system that works for either of the two logics
also for use with the other one.

6 Conclusion and Future Work

We have defined a sublanguage Casl-DL of Casl that corresponds to the web
ontology language OWL DL (where DL refers to the sublanguage corresponding
to a description logic), and we have described a translation between OWL DL
and Casl-DL in detail. We believe that the main benefit of Casl-DL is the



strong typing discipline, which may lead to detection of conceptual errors at a
very early stage. By mapping OWL DL’s classes and subclasses to Casl’s sorts
and subsorts, we inherit the flexibility of subsorting while retaining the strong
type system. Moreover, Casl-DL offers the possibility to distinguish between a
subsort and a unary predicate. Although this distinction is not relevant seman-
tically, it has some conceptual importance [16]. We therefore propose Casl-DL
as a language that can be used directly to specify ontologies. Moreover, via the
correspondence to OWL DL, efficient tools (like FaCT [17] and Pellet [23]) pro-
viding decision procedures for (a large fragment of) OWL DL can also be used
for Casl-DL.

A further advantage of Casl-DL is that it naturally comes with Casl’s pow-
erful structuring constructs. By contrast, OWL DL and other description logic
languages only have quite limited ways to structure and combine ontologies. In
fact, the only way that is recommended is a transitive import of other ontolo-
gies. To stay within OWL DL requires not to import the OWL Ontology, but
to reference all names via URIs. Here Casl’s structuring capabilities provide a
much more elaborate and cleaner approach, by using hiding and translation of
symbols. An interesting question is then the interaction of Casl’s structuring
concepts with the use of tools like FaCT and Pellet. We expect that the het-
erogeneous tool set Hets [21] will be a good starting point for answering this
question. We also plan to implement the translations described in this paper
within Hets.

From an ontological point of view, it would be better not to use Casl-DL for
the development of ontologies but a more expressive language. Often KIF [12] (a
first order language with Lisp-like syntax) is used for this purpose. But KIF lacks
support for structuring ontologies in a nice way. Hence, it would be a good idea to
use (full first-order) Casl instead of KIF to develop ontologies: as stated above,
Casl provides strong typing and good structuring facilities. In this case, efficient
tools like FaCT and Pellet are no longer applicable. Some ontology designers
therefore provide their ontology both in a first-order version (e.g. in KIF) and
in a description logic version (e.g. in OWL DL) [20]. However, the process of
restricting first-order logic to description logic can hardly be automated, and
keeping two different version of a document consistent manually is tedious and
error-prone. We believe that it is more promising to use tools like the SPASS
prover [25] that both support full first-order logic and, when applied to formulas
from a suitable description logic fragment, such as Casl-DL, reach the efficiency
of specialized tools like FaCT.

In general, we think that for mediating between different languages and
tools, translations (formally realized as institution comorphisms) are extremely
important. We have sketched two such comorphisms (between Casl-DL and
SHOIN (D)); future work will extend this to a graph of formalisms and trans-
lations.
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Appendix: Translation Tables

Table 1. Base Concept Axioms for the TBox

SHOIN (D) Semantics Casl-DL

C1 v C2 CI1 ⊆ CI2 ∀x : Thing • [[C1]](x) ⇒ [[C2]](x)

C1 ≡ C2 CI1 = CI2 ∀x : Thing • [[C1]](x) ⇔ [[C2]](x)

Table 2. Derived Concept Axioms for the TBox

SHOIN (D) Semantics Casl-DL

∀R.¬A t C (∀R.¬A t C)I =
{x|∀y.〈x, y〉 ∈ RI → y ∈ (¬AI∪C)I}

∀y : A • R(x, y) ⇒ [[C]](y)

∃R.A u C (∃R.A u C)I =
{x|∃y.〈x, y〉 ∈ RI → y ∈ AI ∩ CI}

∃y : A • R(x, y) ∧ [[C]](y)

SHOIN (D) Semantics Casl-DL

A v C1 u ... u Cn AI ⊆ CI1 ∩ ... ∩ CIn ∀x : Thing • x ∈ A⇒ [[C1]](x) ∧ ... ∧ [[Cn]](x)

A ≡ C1 u ... u Cn AI = CI1 ∩ ... ∩ CIn sort A = {x : Thing
• [[C1]](x) ∧ ... ∧ [[Cn]](x)}a

A1 v A2 AI1 ⊆ AI2 sorts A1 < A2

A ≡ A1 t ... tAn AI = AI1 ∪ ... ∪AIn generated type A ::= sorts A1, ..., An
b

A1 ≡ A2 AI1 = AI2 sorts A1 = A2

A ≡ {o1, ..., on} AI = {oI1 , ..., oIn} generated type A ::= o1|...|on
c

C1 u C2 ≡ ⊥ CI1 ∩ CI2 = ∅ ∀x : Thing • [[C1]](x) ⇒ ¬[[C2]](x)

a if Ci is an atomic concept, a subsort declaration for A is generated
b if pairwise disjointness axioms for A1, ..., An are present a free type definition is

used; an axiom is generated that A is a subsort of the smallest common supersort
of A1, ..., An

c if axioms are present that o1, ..., on are all different individuals, a free type definition
is used



Table 3. Descriptions of Concepts

SHOIN (D) Semantics Casl-DL

Descriptions (C) [[C]]

A AI ⊆ ∆I x ∈ A for sorts
A(x) for predicates

> >I = ∆I true

⊥ ⊥I = ∅ false

C1 u ... u Cn CI1 ∩ ... ∩ CIn [[C1]](x) ∧ ... ∧ [[Cn]](x)

C1 t ... t Cn CI1 ∪ ... ∪ CIn [[C1]](x) ∨ ... ∨ [[Cn]](x)

¬C (¬C)I = ∆I \ CI ¬[[C]](x)

{o1, ..., on} ({o1, ..., on})I = {oI1 , ..., oIn} x = o1 ∨ ... ∨ x = on

∀R.C (∀R.C)I =
{x|∀y.〈x, y〉 ∈ RI → y ∈ CI}

∀y : Thing • R(x, y) ⇒ [[C]](y)a

∃R.C (∃R.C)I = {x|∃y.〈x, y〉 ∈ RI ∧y ∈ CI} ∃y : Thing • R(x, y) ∧ [[C]](y)b

∃R.A (∃R.A)I = {x|∃y.〈x, y〉 ∈ RI ∧ y ∈ AI} ∃y : A • R(x, y)

R : o (R : o)I = {x|〈x, oI〉 ∈ RI} R(x, o)

> n R (> n R)I = {x|]({y.〈x, y〉 ∈ RI}) ≥ n} see discussion of
6 n R (6 n R)I = {x|]({y.〈x, y〉 ∈ RI}) ≤ n} GenCardinality in Fig. 10
= n R (= n R)I = {x|]({y.〈x, y〉 ∈ RI}) = n} for the definition of number re-

strictions in Casl-DL

∀U.D (∀U.D)I =
{x|∀y.〈x, y〉 ∈ UI → y ∈ DI}

∀y : DATA • U(x, y) ⇒ [[D]](y)c

∃U.D (∃U.D)I = {x|∃y.〈x, y〉 ∈ UI∧y ∈ DI} ∃y : DATA • U(x, y) ∧ [[D]](y)d

∃U.D0 (∃U.D0)
I = {x|∃y.〈x, y〉 ∈ UI ∧ y ∈

DI
0 }

∃y : D0 • U(x, y)e

U : v (U : v)I = {x|〈x, vI〉 ∈ UI} U(x, v)

> n U (> n U)I = {x|]({y.〈x, y〉 ∈ UI}) ≥ n} see discussion of
6 n U (6 n U)I = {x|]({y.〈x, y〉 ∈ UI}) ≤ n} GenCardinality and Fig. 10
= n U (= n U)I = {x|]({y.〈x, y〉 ∈ UI}) = n} for the definition of number re-

strictions in Casl-DL

a if R is declared as functional the formula is def R(x) ⇒ [[C]](R(x))
b if R is declared as functional the formula is [[C]](R(x))
c if U is declared as functional the formula is def U(x) ⇒ [[D]](U(x))
d if U is declared as functional the formula is [[D]](U(x))
e where D0 is a data type name



Table 4. Declaration of Data Ranges, Roles, Individuals and Data Values

SHOIN (D) Semantics Casl-DL

Data Ranges (D) [[D]]

D DI ⊆ ∆ID x ∈ D
{v1, ..., vn} {v1, ..., vn}I = {vI1 , ..., vIn} y = v1 ∨ ... ∨ y = vn

a

Object Properties (R)

R RI ⊆ ∆I ×∆I pred R : Thing × Thing

Datatype Properties (U)

U UI ⊆ ∆I ×∆ID pred U : Thing × DATA

Individuals (o)

o oI ∈ ∆I op o : Thing

Data Values (v)

v vI ∈ ∆ID some constant term of a pre-
defined datatype

a for typing of binary predicates they are named subsorts of DATA (s.
Fig. 3 (data range subsort definition))

Table 5. TBox Axioms for General Properties

SHOIN (D) Semantics Casl-DL

U v Ui UI ⊆ UIi ∀y : DATA • U(x, y) ⇒ Ui(x, y)

> 1 U v Ci UI ⊆ CIi ×∆ID ∀x : Thing
• minCardinality [U ](x, 1) ⇒ [[Ci]](x)

a

> 1 U v Ai UI ⊆ AIi ×∆ID pred U : Ai ×DATAb

> v ∀U.Di UI ⊆ ∆I ×DI
i pred U : Thing ×Dbc

U1 = U2 UI1 = UI2 U1(x, y) ⇔ U2(x, y)

R v Ri RI ⊆ RIi R(x, y) ⇒ Ri(x, y)

> 1 R v Ci RI ⊆ CIi ×∆I ∀x : Thing
• minCardinality [R](x, 1) ⇒ [[Ci]](x)

a

> 1 R v Ai RI ⊆ AIi ×∆I pred R : Ai × Thingb

> v ∀R.Cj RI ⊆ ∆I × CIj ∀x : Thing
• true ⇒ ∀y : Thing • R(x, y) ⇒ [[Cj ]](y)

a

> v ∀R.Aj RI ⊆ ∆I ×AIj pred R : Thing ×Aj
b

R = R−0 RI = (RI0 )− R(x, y) ⇔ R0(y, x)

R = R− RI = (RI)− R(x, y) ⇔ R(y, x)

> v 6 1 R− (RI)− is functional R(x, z) ∧R(y, z) ⇒ x = y

Tr(R) RI = (RI)+ R(x, y) ∧R(y, z) ⇒ R(x, z)

R1 = R2 RI1 = RI2 R1(x, y) ⇔ R2(x, y)

a for Ci and/or Cj of form A1t ...tAn overloaded predicate profiles of all pairs
are constructed; other description formulas for Ci and/or Cj yield argument
restriction formulas in Casl-DL

b if both domain and range are specified U gets type Ai ×D
c D is either a datatype name or a named datatype range derived from [[Di]]
d if both domain and range are specified R gets type Ai ×Aj



Table 6. TBox Axioms for Functional Properties

SHOIN (D) Semantics Casl-DL

> v 6 1 U UI is functional op U : Thing →? Da

> v 6 1 R RI is functional op R : Thing →? Thing

U v Ui UI ⊆ UIi ∀y : DATA • U(x) = y ⇒ Ui(x, y)
b

> 1 U v Ci UI ⊆ CIi ×∆ID ∀x : Thing
• minCardinality [U ](x, 1) ⇒ [[Ci]](x)

cd

> 1 U v Ai UI ⊆ AIi ×∆ID op U : Ai →? DATAe

> v ∀U.Di UI ⊆ ∆I ×DI
i op U : Thing →? Dae

U = U1 UI = UI1 U(x) = y ⇔ U1(x, y)
f

R v Ri RI ⊆ RIi R(x) = y ⇒ Ri(x, y)
b

> 1 R v Ci RI ⊆ CIi ×∆I ∀x : Thing
• minCardinality [R](x, 1) ⇒ [[Ci]](x)

cd

> 1 R v Ai RI ⊆ AIi ×∆I op R : Ai →? Thingg

> v ∀R.Cj RI ⊆ ∆I × CIj ∀x : Thing
• true ⇒ def R(x) ⇒ [[Cj ]](R(x))c

> v ∀R.Aj RI ⊆ ∆I ×AIj op R : Thing →? Aj
g

R = R− RI = (RI)− R(x) = y ⇔ R(y) = x

> v 6 1 R− (RI)− is functional R(x) = z ∧R(y) = z ⇒ x = y

R = R1 RI = RI1 R(x) = y ⇔ R1(x, y)
b

a D is either a datatype name or a named datatype range derived from [[Di]]
b if Ui or Ri is also declared as functional this formula is ∀y : SD • q(x) = y ⇒
qi(x) = y where SD is either DATA or Thing and q either U or R

c for Ci and/or Cj of form A1 t ... t An overloaded function profiles of all pairs
are constructed

d where GenCardinality is instantiated with pred q(x : s1; y : s2) ⇔ q(x) = y
where q is either R or U

e if both domain and range are specified U gets type Ai →? D
f if U1 or R1 is also declared as functional the formula is q(x) = y ⇔ q1(x) = y
where q is either U or R

g if both domain and range are specified R gets type Ai →? Aj

Table 7. Axioms for the ABox

SHOIN (D) Semantics Casl-DL

o ∈ A oI ∈ CIi op o : A

o ∈ Ci oI ∈ CIi [[Ci]](o)

〈o, oi〉 ∈ Ri 〈oI , oIi 〉 ∈ RIi Ri(o, oi)
a

〈o, vi〉 ∈ Ui 〈oI , vIi 〉 ∈ UIi Ui(o, vi)
a

o1 = o2 oI1 = oI2 o1 = o2
o1 6= o2 oI1 6= oI2 ¬o1 = o2

a if R is declared as functional the translation result is Ri(o) = oi
b if U is declared as functional the translation result is Ui(o) = vi


