
Development of
Structured Ontologies in Casl

Klaus Lüttich

Kumulative Dissertation
zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften

– Dr.-Ing. –

Vorgelegt im Fachbereich 3 (Mathematik und Informatik),
Universität Bremen

3. Mai 2007

ii

Abstract

Ontologies are differentiated in foundational and domain ontologies. As both kinds of on-
tologies are developed under different considerations such as expressivity or efficiency, usu-
ally different formal languages are used. Foundational ontologies are typically specified in
first-order logic or modal logic, since precise definitions are considered more important than
efficiency. Since domain ontologies are applied to large knowledge bases, efficiency is consid-
ered the most important factor. This initiated intensive investigation into description logics,
a less expressive logical formalisms aiming at tractable and efficient reasoning.

In the cumulative thesis at hand the algebraic specification language Casl is studied
for its applicability as an ontology specification language. Both kinds of ontologies, founda-
tional and domain ontologies, are considered. For facilitating the development of ontologies
the notions of strongly typed and structured ontologies are introduced and elaborated by
using Casl as an example. Casl is extended through the support of description logics.
This enables the investigation of the relation between first-order logic and description logic
within structured Casl. Additionally, a knowledge compilation method — preserving basic
properties — for the approximation of first-order logic theories with description logic the-
ories is described, that allows for the development of efficiently usable domain ontologies
based on foundational ontologies.

Moreover, the Heterogeneous Tool Set (Hets), a computer program for the analysis of
Casl specifications, is described and extended to be applied as an ontology development tool.
Particularly, the connection of automated theorem proving systems to Hets is described by
the author, thus easing potentially tedious work on proofs.

The applicability of Casl as ontology specification language is demonstrated by pro-
viding various examples in the context of spatial cognition. In particular, the development
methods of strongly typed and structured ontologies are applied to the analysis of the WWW
navigation metaphor and the representation of route knowledge.

iii

Zusammenfassung

Ontologien werden unterschieden in grundlegende und anwendungsspezifische Ontologien.
Da diese beiden Arten von Ontologien unter verschiedenen Gesichtspunkten wie z.B. Aus-
drucksmächtigkeit oder Effizienz entwickelt werden, kommen in der Regel unterschiedliche
formale Sprachen zum Einsatz. Die grundlegenden Ontologien werden vorwiegend mittels
Prädikatenlogik erster Stufe oder Modallogik spezifiziert, wobei mehr Wert auf die präzise
Definition als auf Effizienz gelegt wird. Da anwendungsspezifische Ontologien häufig mit
großen Wissensbasen eingesetzt werden, gilt Effizienz als der wichtigste Faktor. Dies initiier-
te intensive Forschung an Beschreibungslogiken (ausdrucksschwache Formalismen) mit dem
Ziel, berechenbares und effizientes Schließen zu ermöglichen.

In der vorliegenden kumulativen Dissertation wird die algebraische Spezifikationssprache
Casl auf ihre Einsatzfähigkeit als Spezifikationssprache für Ontologien untersucht. Hierbei
werden grundlegende und anwendungsspezifische Ontologien betrachtet. Um die Entwick-
lung von Ontologien zu erleichtern, werden die Begriffe streng getypte und strukturierte
Ontologie eingeführt und am Beispiel von Casl verdeutlicht. Casl wird um die Unter-
stützung von Beschreibungslogiken erweitert. Dadurch läßt sich in strukturiertem Casl das
Verhältnis von Ontologien in Prädikatenlogik erster Stufe und Beschreibungslogik zueinan-
der untersuchen. Zusätzlich wird eine approximierende Übersetzung von Prädikatenlogik in
Beschreibungslogik, welche grundlegende Eigenschaften bewahrt, dargestellt, um die Ent-
wicklung von effizient einsetzbaren Anwendungsontologien aus grundlegenden Ontologien
zu ermöglichen.

Weiterhin wird das Heterogeneous Tool Set (Hets), ein Computerprogramm zur Analyse
von Casl-Spezifikationen, beschrieben und für den Einsatz als Ontologie-Entwicklungswerk-
zeug erweitert. Insbesondere die Anbindung von automatischen Theorembeweissystemen
wird vom Autor beschrieben. Die Anbindung von automatischen Beweissystemen dient der
Erleichterung von langwierigen Beweisen.

Die Einsatzfähigkeit von Casl als Spezifikationssprache für Ontologien wird an Hand
von mehreren Beispielen aus dem Kontext Raumkognition demonstriert. Hierbei werden
insbesondere die Entwicklungsmethoden für streng getypte und strukturierte Ontologien
eingesetzt, um die WWW-Navigationsmetapher zu analysieren und um Routenwissen zu
repräsentieren.

iv

Contents
List of Figures vi

List of Tables vi

1 Introduction 1

2 Methodology: How to Develop Ontologies in Casl 3
2.1 Origin of Casl . 3
2.2 Strongly Typed Ontologies . 3
2.3 Structuring of Ontologies . 5
2.4 Summary . 9

3 Relation of Ontologies in FOL and DL 10
3.1 Casl-DL — A Description Logic Casl Extension 10
3.2 Comorphisms Relating OWL DL and Casl-DL 14
3.3 Approximation of FOL Theories by Description Logic Theories 15
3.4 Summary . 21

4 Tool Support for Ontologies in Casl 22
4.1 Features of Hets for Ontologies in Casl . 22
4.2 Proof Support for Casl with Automated Theorem Proving Systems 26
4.3 Summary . 30

5 Examples of Ontologies in Casl 31
5.1 Ontology for Wayfinding . 31
5.2 Route Graph Ontologies . 36
5.3 Dolce in Casl . 41
5.4 Route Graph Approximation . 42
5.5 Summary . 43

6 Conclusion 44
6.1 Bibliographical Remarks . 44

Publications by the Author 46
Refereed Publications . 46
Other Publications . 47

References 48

Appendix 53

A Predefined Casl-DL Datatypes 53

B Knowledge Compilation Examples 54
B.1 Complete Reification Example . 54
B.2 Complete Approximation Example . 55

C Specifications Related to Route Graphs 56
C.1 Revised Graph Specifications . 56
C.2 Tramway Route Graph Specifications . 58
C.3 Specification of Linked List . 60

Accumulated Papers 61

v

List of Figures
1 A strongly typed ontology . 4
2 Extension of a specification . 6
3 Parthood in untyped FOL and structured Casl 7
4 Generic specification and instantiation example 7
5 Connection induces partial order . 8
6 Representing a validation of an approximation by a view 10
7 Syntax of SHOIN . 12
8 Proposed Casl-DL prelude . 13
9 Mapping of IntegerLiteral to Int . 14
10 Taxonomy of predefined datatypes in Casl-DL 14
11 Comorphisms and approximation related to Casl-DL 15
12 Schematic representation of query answering with Horn approximations . . . 16
13 Flow of data during the approximation . 17
14 Reification of a ternary predicate . 18
15 Approximation of mereological definitions from Dolce 20
16 Relation of a 2-FOL theory and its approximation in DL 20
17 Currently supported logics of Hets . 22
18 Structure graph of the library RoomsAndServices 23
19 The specification ServicesMap . 24
20 Proof management GUI of Hets . 25
21 Relation of logics, sublogics and translations connected with SoftFOL . . . 28
22 Proof work-flow used for ATP proofs in Hets 29
23 ATP interface instantiated for Spass . 30
24 Research method for explaining the navigation metaphor formally 31
25 Relation of Casl specifications and views, and Haskell programs 32
26 Development of concept “Navigate” . 33
27 Navigate specification based on HumanActivity in Casl 34
28 Shared implementation of world iteration and instantiation 35
29 Views mapping the metaphor specification to the simulations 35
30 Route Graph example scenarios . 36
31 GenGraph provides the starting point for Route Graph specifications 37
32 Design specification of graphs tagged with a Kind 38
33 Revised definition of connected sequences of edges 38
34 View Graph2_implements_GraphOnt 39
35 Abstraction from the tramway devices Route Graph 39
36 Specification of place abstraction . 40
37 Weak Route Graph specification . 41
38 Qualities and physical positions in Dolce . 42
39 List based Route Graph and approximation view 42

List of Tables
1 Correspondences between SHOIN (D), Casl-DL and OWL DL 11
2 DL letters and corresponding constructs . 11
3 Proof status indicators . 24
4 ATP systems provided as Web services by MathServe 27

vi

1 Introduction

Formalised ontologies are applied to achieve the interoperability and integration of different
information systems. These systems are often developed collaboratively, which involves the
negotiation of shared knowledge, which is captured by an ontology. Husserl introduced
a distinction between formal and material ontology (cf. [63]). Foundational and general
“laws” applicable to different domains are captured by formal ontology, whereas material
ontologies deal with specific kinds of entities. This led to the dichotomy of foundational and
domain ontologies [49]. Foundational ontologies describe knowledge at an abstract level by
defining general concepts (such as event, object, or quality) and relations (such as parthood,
constitution, or integrity), whereas domain ontologies define material knowledge in detail,
such as the structure of a particular organisation or company.

Since domain ontologies emerging from different sources most likely have very different
approaches in defining their ontologies — alignment or integration may be needed if such
ontologies are to be combined for a broader coverage. The knowledge described by founda-
tional ontologies is often too abstract for a direct application and is supposed to be refined
for different domains. The term application ontology is also used for domain ontologies,
since these are more often directly applied than foundational ontologies.

These two kinds of ontologies are defined in logical formalisms with rather different char-
acteristics in terms of expressiveness, tool support, or computational efficiency. Foundational
ontologies focus on precise definitions using expressive logics such as first-order logic (FOL)
or modal logic. However, tool support and computational aspects play only a minor role
in the field of foundational ontology. The opposite approach is taken when domain ontolo-
gies are specified. Since they are intended for computational applications dealing with large
knowledge bases in the first place, they are specified in logical formalisms such as description
logics (DL), of which the computational aspects have been studied intensively. These studies
allowed the development of efficient reasoning tools capable of dealing with large knowledge
bases.

Up to now, the concepts of foundational and domain ontologies have been studied inde-
pendently of each other, since no commonly used logical language has been established for
the definition of foundational ontologies. Additionally, the availability of tools dealing with
FOL and DL languages simultaneously is very limited. Thus the relation between founda-
tional and domain ontologies was only studied informally. Since both kinds of ontologies are
specified in logical languages, the term logical theory is also used for ontologies throughout
this thesis.

Various logical languages have been introduced for the specification of ontologies. Most
of them suffer from certain defects such as no formal support for the combination of inde-
pendently developed theories, or the lack of types for the relations which are enforced early
enough for the detection of unintended application of the relations. The need for modulari-
sation of ontologies emerged in the first Workshop on Modular Ontologies (WoMO 2006)1,
which brought together ontology developers with very different backgrounds contributing
rather orthogonal aspects of ontology modularisation. Most ontology specifications include
some kind of typing for relations, usually formulated as axioms; thus the type information
of relations is only used at the level of reasoning, but is not available for type checking, that
might be performed prior to any reasoning.

The Common Algebraic Specification Language (Casl) provides a many-sorted FOL
with powerful, logic independent structuring constructs. It is proposed by this thesis as
an ontology specification language. Casl is suitable for both kinds of ontologies, since the
possibility of extensions towards other logical systems has been a design principle of the Casl
language family. Moreover, the Heterogeneous Tool Set (Hets) provides formal analysis
functions for Casl at the structured and at the logical level, which enables computationally
supported theorem proving within foundational ontologies and the establishment of formal
relations between foundational and domain ontologies given in different logical formalisms.

1Hosted by the International Semantic Web Conference (ISWC 2006).

1

Structure of This Thesis. Section 2 discusses methodological considerations by present-
ing Casl, introducing the notion of strongly typed ontology, and elaborating the structuring
facilities of Casl for the specification of ontologies. Section 3 focuses on the relation of on-
tologies written in FOL and DL: a Casl extension towards DL enables formal analysis of
domain ontologies within Casl, and knowledge approximation allows the transformation
of precise definitions given in FOL by foundational ontologies into computationally efficient
DL theories. Section 4 introduces Hets, which provides various analysis functions for Casl,
and the integration of automated theorem proving (ATP) systems into Hets. This helps the
ontology developer, working with Casl and Hets, to carry out the simple proofs using ATP
systems, while she can restrict interactive proofs within semi-automated theorem proving
systems to interesting and hard theorems. Section 5 presents various ontological specifica-
tions within the context of spatial cognition and spatial representation, where the concepts
of the preceding sections are applied to the development of ontologies. Furthermore, Sec-
tion 6.1 on page 44 provides “Bibliographical Remarks” that detail the contributions by the
author of this thesis to collaboratively authored publications. Publications by the author
are marked differently from other bibliographical references, by e.g. [KL-1].

2

2 Methodology: How to Develop Ontologies in Casl

Contributions to the methodology of developing formal ontologies are made in [KL-8, KL-7,
KL-1]. The author has introduced the advantages of algebraic specification with Casl for
the development of formal ontologies by presentations at the conference Formal Ontology in
Information Systems (FOIS). The benefits of powerful structuring facilities for easier reuse
and easier understanding of large ontologies are demonstrated. Moreover, the notion of
strongly typed ontologies is established. This methodology is developed in collaboration
with LOA, Trento, Italy and is also applied to the development of the foundational ontology
Dolce.

2.1 Origin of Casl

In 1995 the Common Framework Initiative (CoFI) [55] started a unification process for al-
gebraic specification languages and formal software development. Its result is the language
Casl (the Common Algebraic Specification Language) which was subsequently approved
by IFIP2 WG 1.3 (Foundations of System Specification) and serves as a de-facto standard
for algebraic specification. The aim of CoFI has been to develop an algebraic specification
framework for common usage within the already collaborating algebraic specification com-
munity, since many diverse approaches have been developed using different languages and
tools. The goals for this framework included the specification of functional requirements
using formal development simultaneously focusing on libraries, reuse, evolution and tool
interoperability.

The concrete and abstract syntax and formal semantics of Casl, including also libraries
of basic datatypes and relations, have been completely described in the Reference Manual [10]
and illustrated in the User Manual [5]. Casl features a critical selection of known syntactical
constructs from previous algebraic specification contexts. The syntax is expressive, simple
and pragmatic for specifying many-sorted first-order logic (FOL) theories, and it resembles
mathematical notation. The restriction to less expressive sublanguages and the extension,
towards e.g. higher-order logic and modal logic, have been a central point in the discussion
of the language design as a family of languages. Casl subsumes the efforts of various other
algebraic specification approaches regarding modularisation of software and specification of
abstract requirements combined with a relatively straightforward semantics.

Casl uses the category theory notions of institution and comorphism [25] to formally
grasp and relate sublogics of Casl’s many-sorted first-order logic language and its logical
extensions. A basic specification is defined by a signature and a set of sentences over this
signature. A signature is basically a declaration of sorts, predicates and (total or partial)
functions, including type profiles of predicates and functions. A sentence is either an axiom
or a theorem. The semantics of a basic specification is given by a class of models satisfying
the set axioms.

The structuring facilities of Casl are independent of the underlying logic and can be
used for arbitrary logics formalised in terms of institutions. The following section discusses
Casl’s basic specification constructs in the light of ontology specification, and Section 2.3
deals with the structuring constructs of Casl.

2.2 Strongly Typed Ontologies

Commonly used ontology languages such as KIF [22] or plain mathematical LATEX formulas
as used for Dolce [49] do not provide explicit typing of predicates. Thus argument restric-
tion axioms are used instead. If a predicate is used apart from its intended usage, a theorem
prover is needed to discover such errors. OWL [12] provides explicit argument restrictions
for properties, but as they are not required, they are treated as axioms only, which are not
checked statically. All approaches to ontology formalisation so far allow the introduction

2The International Federation for Information Processing (http://www.ifip.org)

3

http://www.ifip.org

of new symbols at any point, which makes it hard to detect mistyped symbols. The OWL
community tries to circumvent these defects by providing graphical ontology engineering
tools like Protégé [37], which allow only the usage of declared symbols within axioms, but
argument restrictions are still not enforced and are only checked by connected DL reason-
ers. The developers of Dolce extensively used LATEX-macros in order to avoid mistyping.
However, there is no tool support for checking or proving formulas written in LATEX.

Casl encourages the usage of many-sorted FOL with subsorts, where each symbol has
to be declared explicitly before it is used in axioms. Unlike plain FOL (e.g. as available in
KIF [22]) every relation and function has a type profile, which is statically checked when a
relation or function is applied to its arguments. Sorts are used instead of unary predicates for
dividing the domain of interest. This has two advantages: (1) Sorts that are not in subsort
relation are disjoint with respect to usage in quantification;3 (2) sentences are easier to read,
if the types of variables are introduced during quantification instead of writing implications
with possibly long premises in front of each formula. A minor drawback — from the point
of view of ontology engineering — is that the carrier set of a sort is non-empty in Casl and
hence sorts cannot be used for concepts like Nothing in OWL [12]. Consequently, unary
predicates are used to model concepts which might have no extension.

spec TypedRelations =
sorts CR, S < PP ;

RGB < CR;
Areas, nodes < S ;
node < nodes;
CityArea < Areas;
Color, SL < PQ

preds pos : RGB × Color ;
pos : node × SL;
pos : CityArea × SL

∀ x : SL; y, y’ : node; z, z’ : CityArea
• pos(z, x) ∧ pos(z’, x) ⇒ z = z’ %(correct 1)%
• pos(y, x) ∧ pos(y’, x) ⇒ y = y’ %(correct 2)%

then pred pos : S × SL
∀ x : SL • ∃ a : S • pos(a, x); %(correct 3)%
∀ y : SL; z, z’ : node
• pos(y, z) ∧ pos(z’, y) ⇒ z = z’ %(no typing 1)%
∀ x : RGB ; y, y’ : SL
• pos(y, x) ∧ pos(y’, x) ⇒ y = y’ %(no typing 2)%

(a)

PP ColorSL

PQ

CR S

RGB nodesAreas

CityArea node

(b)

Figure 1: A strongly typed ontology

Figure 1 models the functional relation pos that provides the positions of physical qual-
ities (subsorts of sort PQ) in some quality spaces (subsorts of sort PP). For each spatial
location (SL) at least one position in a spatial quality space (suborts of S) must be pro-
vided %(correct 3)%. The general idea is to model representations for different information
via qualities which are attached to the objects (which are not specified in TypedRela-
tions). In fact this is an almost unstructured extract of the QualitySpace specification
as instantiated by ApplicationQualities in [KL-1, Section 5].

Symbols of predicates and functions might be used with different type profiles. They
are in overloading relation if the sorts of the profiles are in subsort relation, otherwise such
symbols stand for different relations or functions. To illustrate the power of strong typing
Figure 1a shows the declaration of two subsort hierarchies (graphs shown in Figure 1b)
and the declaration of the predicate pos with different profiles. In fact only two relations
are specified: (1) pos : RGB × Color ; (2) pos : S × SL. However, in the first part of the

3In the models of the theory the carrier sets of sorts might overlap.

4

specification two profiles for pos are declared with sort SL and they are used to specify
that each element in SL can only be related to exactly one element in sort node and one in
CityArea, respectively, (cf. axioms: %(correct 1)% and %(correct 2)%). After the “then” the
predicate pos is overloaded with respect to S and its transitive subsorts node and CityArea;
axiom %(correct 3)% applies via embedding into the supersort S, also to sorts node and
CityArea. Formula %(no typing 1)% is ill typed because the typing of arguments in predicate
application (predication) pos(y, z) is wrong. Although sorts RGB and S have a common
supersort PP, there is no type profile in the specification which would allow a typing of the
predications in the last formula. Hence any overloading must be introduced explicitly.

Another advantage of strongly typed ontologies is a reduced search space for theorem
proving systems which use a typed logic, because all the clumsy premises with unary predi-
cate assertions are “hidden” into quantifiers which introduce typed variables. For the trans-
lation of Casl into logics of automated theorem proving systems see Section 4.2. Although
a strongly typed ontology is mathematically equivalent to an untyped version, the typed
version contains more information.

Other concepts built into Casl are generated and freely generated sorts (denoted as gen-
erated and free type) which are used in the context of software specification for the precise
definition of datatypes. This is achieved by defining constructor functions and/or a parti-
tion into subsorts, where the generatedness restricts the data values to those generated by
constructor terms or steming from the declared subsorts; freeness adds pairwise disjointness
between the ranges of the constructor functions and/or the declared subsorts and injectivity
of the constructors. In the context of ontology development these constructs are useful for
the compact definition of concept partitions with possibly overlapping or disjoint carrier
sets. Furthermore, concepts where all individuals are known and form a set of pairwise
distinct elements can be concisely defined with a free type. Although it is also possible to
define such a finite disjoint partition just with first-order axioms, the use of freely generated
sets is less error-prone and more readable if these axioms are hidden into a type definition
and only introduced by tools for proofs. The complete definition of a class by enumerating
individuals is also possible in OWL DL; however, the distinctness of the individuals has to
be specified separately.

2.3 Structuring of Ontologies

At the Workshop on Modular Ontologies (WoMO 2006)4 the author has presented an inter-
nationally reviewed paper in collaboration with Claudio Masolo and Stefano Borgo [KL-7].
Aim of the workshop was to bring together various approaches to modular ontologies. Since
2003 we collaboratively develop Dolce as a structured ontology in Casl. [KL-7] has been
the first one reporting the benefits of Casl’s structuring facilities for the development of for-
mal ontologies, where an example much more light-weight than Dolce has been introduced.
Also [KL-1] emphases the benefits of structured ontologies especially for spatial cognition
applications like wayfinding.

The development of ontologies evolved since the emergence of the Semantic Web to-
wards a new discipline: ontology engineering. Furthermore, the topic of reuse and sharing
of ontologies has led to the discussion of modular ontologies following similar trends in soft-
ware engineering and other areas. Modularisation techniques are introduced to enhance the
reusability, understandability and scalability, to aid the maintenance of ontologies, and to
improve reasoning with large ontologies. Ontologies are treated as logical theories through-
out this document, hence the term theory is used interchangeably with ontology. In the
field of ontologies the definition of the term module is itself problematic. Upcoming ques-
tions concern e.g. conceptual relevance, integrity and independence of a logical theory. [35]
considers modules as theories which formalise specific domains completely or serve specific
purposes. But modules can also be understood as general theories which can be composed,
specialised and used in different contexts and domains. In the area of knowledge engineering

4Hosted by the International Semantic Web Conference (ISWC 2006).

5

such modules are called components [16, 9]. These differing views of modules led also to
the distinction of material and formal ontology, where the former applies to an ontology
formalising a domain completely. The formal ontology approach is taken here, because Casl
offers techniques for the combination and specialisation of general theories. Of course it is
also possible to completely specify a domain in Casl, but the reuse of such modules is very
limited, because they are much more tailored to one specific task or purpose. A discussion
of principles regarding how many symbol declarations and/or axioms are needed to call a
logical theory a module are beyond the scope of this thesis.

Typical languages used for ontologies provide only a very limited set of import mecha-
nisms; the Knowledge Interchange Format (KIF) [21] even lacks any import mechanism at
all. The authors of e.g. SUMO5 introduced a modularisation via comments, which proves
the need for modularisation of ontologies. OWL [12] offers simple import mechanisms, even
with cyclic imports, where all imported symbols are always visible within the importing
ontology. It is not possible to form the union of two ontologies with an identification of com-
mon symbols, because all symbols defined in one OWL ontology carry fixed, globally unique
names. The import facility of OWL acts much like a textual expansion of the imported
ontology. It is only possible to define, via axioms, that certain concepts are equivalent or
that some individuals are equal, but all symbols are still present.

In contrast to the structuring mechanism found in OWL, Casl [10] provides powerful
structuring facilities. Each file organises a library of named specifications. Specifications
are imported by name from other (predefined) libraries. A named specification is composed
by basic specifications or imported named specifications. A basic specification consists of
a declaration of symbols and a list of FOL sentences. If a basic specification extends a
previous specification (cf. then in Figure 1a), the signature part may be empty, because it
is inherited from the specification being extended.

spec PreOrder =
sort Elem
pred __≤__ : Elem × Elem
∀ x, y, z : Elem
• x ≤ x %(refl)%
• x ≤ z if x ≤ y ∧ y ≤ z %(trans)%

spec PartialOrder =
PreOrder

then ∀ x, y : Elem • x = y if x ≤ y ∧ y ≤ x %(antisym)%

Figure 2: Extension of a specification

Within the definition of a named specification, new specifications are composed by ex-
tension and union, and in both cases symbols common to both specifications are identified.
Figure 2 shows such a named specification PartialOrder extending PreOrder with an
antisymmetry axiom (specifications taken from library CityExample [KL-1]). Renaming
is used to instantiate a specification for different sorts or to give some predicate a more
suitable name. For example, parthood known from Mereology [49, KL-1] has the same
axioms as PartialOrder and hence is formed by importing PartialOrder and renam-
ing predicate __≤__ into P as presented in Figure 3b. Mereology is closely related to
Cohn’s Region Connection Calculus [60, 2] and represents “wholes” in terms of their parts
(parthood), e.g. atomic parts, extensionality, sum, and difference are typical axioms and
definitions. In Dolce [49] a mereological theory is used for e.g. physical endurants (objects
in time), space and time, but without providing any relation to a concrete representation,
whereas [74] discusses a concrete representation of spatial regions with a parthood relation
by open discs in the Euclidian plane (interpreted as metric space).

5The Suggested Upper Merged Ontology [56] developed in SUO-KIF (a simplified version of KIF).

6

Argument Restrictions
(Ad1) P(x, y) → (AB(x) ∨ PD(x)) ∧

(AB(y) ∨ PD(y))
(Ad2) P(x, y) → (PD(x) ↔ PD(y))
(Ad3) P(x, y) → (AB(x) ↔ AB(y))
Ground Axioms
(Ad5) (AB(x) ∨ PD(x)) → P(x, x)
(Ad6) P(x, y) ∧ P(y, x) → x = y
(Ad7) (P(x, y) ∧ P(y, z) → P(x, z)

(a)

spec Parthood =
PartialOrder with __≤__ 7→ P

(b)

. . .
Parthood with s 7→ AB

and Parthood with s 7→ PD
. . .

(c)

Figure 3: Parthood of AB and PD in untyped FOL and structured Casl

The axioms (Ad1) to (Ad7) from [49] shown in Figure 3a are represented by the importing
of the specification Parthood twice with renaming. The argument restriction axioms (Ad1)
to (Ad3) correspond to the declaration of the sorts AB and PD and of the predicate P. The
ground axioms are given for each sort. Such a specification style helps to define strongly
typed ontologies, although the concepts of strongly typed and structured ontologies are
orthogonal and need not to be combined. Named specifications are reused and symbols are
renamed to fit the needs of the new specification by means of the structuring language of
Casl instead of error-prone copy-and-paste techniques. Additionally, a specification built
from smaller, carefully crafted specifications is likely to have less errors than a specification,
where all the basics of i.e. relations or set theory are repeated over and over. Recently,
Barry Smith also pointed out the importance of reuse and consideration of previous work
by contrasting ISO Standard 15926 with commonly known mathematical and ontological
principles [64].

spec QualitySpace[sorts s, q] =
pred pos : s × q %(A6)%
∀ x, x′ : s; y : q • pos(x, y) ∧ pos(x′, y) ⇒ x = x′ %(A7-A8)%

spec ApplicationQualities =
. . .

and QualitySpace [sorts node[sub], SL fit q 7→ SL, s 7→ node[sub]]
and QualitySpace [sorts node[city], SL fit q 7→ SL, s 7→ node[city]]
and QualitySpace [sorts CityArea[Building], SL

fit q 7→ SL, s 7→ CityArea[Building]]
and QualitySpace [sorts CityArea[Area], SL

fit q 7→ SL, s 7→ CityArea[Area]]
then . . .

Figure 4: Generic specification and instantiation example

Generic specifications allow an even more succinct reuse of specifications than importing
with renaming. A generic specification takes specifications as parameters. These specifica-
tions might be very simple, such as declarations of symbols or specifications with axioms
as in a specification of ordered lists of elements with a total order relation. The import of
a generic specification is called instantiation and often involves an explicit fitting symbol
map which associates symbols of the formal parameter specification to symbols of the actual
parameter specification used in the instantiation. Figure 4 shows a generic specification of
quality spaces for different representations of space (example taken from [KL-1]) where a
fitting symbol map is used. Note that by declaring the sort SL in all formal parameters
and taking the union of these four instantiations, the resulting theory has only one sort SL

7

thanks to the “same name same thing”-principle. However, the four type profiles of pos are
not in overloading relation, because the four sorts used as spaces are not related via subsort
relations.

The instantiation of a generic specification, requires a proof that the actual parameter
fits the argument specification. In the case of ordered lists, an instantiation of such lists
with integers yields a proof obligation that the specification of integers provides a total
order relation. In the case of simple parameter specifications as in Figure 4 these proof
obligations can be and are actually discharged automatically, since only the compatibility
of the signatures has to be checked (for tool support see also Section 4 and [KL-11]). Views
are named theory morphisms showing entailment relations between specifications explicitly.
A definition of a view is shown in Figure 5 (the referenced specification PartialOrder is
presented in Figure 2). A view provides a signature morphism which maps the symbols in
the first specification to symbols in the second specification. For the accompanied proof all
sentences of the first specification are translated along the signature morphism and serve as
theorems entailed by the second specification. Hence the model theoretic semantics of the
view in Figure 5 is

Mod({Connection then . . .}) ⊆ Mod(σ(PartialOrder)).

In order to show this relation of the models the entailment below needs to be proved:

{Connection then . . .} |= σ(PartialOrder)

Here σ is the signature morphism between the two specifications given by the symbol map
of the view. More specificaly, the view Connection_induces_PartialOrder yields
proof obligations which show that the relation defined by axiom %(<= def)% actually is a
partial-order relation (see [8, KL-1] for details).

Views can be used instead of specifications for the actual parameter of an instantiation,
e.g. a view showing that a total order relation is entailed by an integer specification might
be used as actual parameter for the instantiation of ordered lists with integers. However, the
signature morphism introduced by a view must exactly match the signatures of the formal
and actual parameter specifications, because a further renaming of symbols when using a
view is not possible. Also, views are useful for just stating the relation of specifications
e.g. showing an approximation (see Section 3.3) or refinement without usage of the view for
instantiations.

spec Connection =
sort Elem
pred __connected__ : Elem × Elem
∀ r, s : Elem
• r connected r %(refl_connected)%
• s connected r ⇒ r connected s %(sym_connected)%
• s = r ⇔ ∀ z : Elem • z connected r ⇔ z connected s %(equal regions)%

view Connection_induces_PartialOrder :
PartialOrder to
{Connection
then pred __≤__(x, y : Elem) ⇔

∀ z : Elem • z connected x ⇒ z connected y %(<= def)%
} =
Elem 7→ Elem, __≤__ 7→ __≤__

Figure 5: Connection induces partial order

Semantic annotations allow the distinction of theorems among the sentences of a the-
ory and indicate the kind of an extension. Theorems are either marked individually with

8

“%implied”, or a whole extension is indicated to consist of theorems by “then %implies”.
The latter annotation disallows signature declarations. Section 4.2 discusses proving of
such theorems with tool support. An import of a theory with implied sentences provides
these sentences as additional axioms. Furthermore, annotations can mark an extension as
conservative (%cons), monomorphic (%mono), or definitional (%def), where the indicating
annotation always follows immediately after the keyword then. The ordering of the anno-
tations listed above is by increasing strength, and an extension marked with %implies is
strictly stronger than a definitional extension (see [10, pp. 110–111, 209] for more details).
These semantic annotations are provided to express the intended kind of the extension, and
a tool like Hets [KL-11] generates appropriate proof obligations for checking this intention
with a suitable theorem prover.

In the field of ontology modularisation, conservative extensions have recently been dis-
cussed in the context of description logics (DL) such as ALCQI [45] and SHOIQ (related
to OWL DL) [27], where syntactical and logical detection algorithms are discussed.

2.4 Summary
The field of ontology development is brought forward by the powerful and expressive lan-
guage Casl developed with extensibility in mind. The original purpose of Casl has been
algebraic software specification — the author of this thesis shows its applicability to ontol-
ogy development. Casl provides many-sorted first-order logic paired with logic independent,
powerful structuring constructs. Casl allows the specification of abstract requirements that
is particularly useful for knowledge representation where the representation of concrete data
is often less important than the relations among abstract individuals modelled as constant
functions. At the same time, Casl is not restricted to description logics like OWL DL
but offers the full expressivity of FOL with a concrete syntax designed towards commonly
known mathematical notation. Hence neither a specialised tool is needed to write a Casl
specification nor does the user have to adopt a hard to remember and hard to read “prefix
language” like KIF. Despite the readable syntax, non-trivial tool support is available for
parsing and manipulation of Casl specifications (see Section 4).

While rewriting Dolce [49] as a structured ontology in Casl, the generation of predicate
profiles and associated axioms has been used extensively. Additionally, alternative specifica-
tions of e.g. Mereology [8] have been provided which can be interchanged for different Dolce
variants sharing the same signature. A simplification and revision of Dolce’s treatment
of physical qualities has been published in [KL-1]; some condensed extract is illustrated in
Figure 4.

9

3 Relation of Ontologies in FOL and DL

Ontologies are mostly applied in the form of Description Logic (DL) in the context of the
Semantic Web [4, 17], and the Web Ontology Language (OWL) [12] has been recommended
as the standard interchange format. OWL DL is the most prominent variant of OWL and
it combines good computational behaviour with a relative high degree of expressiveness.
Furthermore, OWL DL aims at knowledge bases with thousands of facts. In the light of
these discussions, OWL DL has been chosen for the connection of Casl with DL. On the one
hand the author has developed a restricted version of Casl tailored towards OWL called
Casl-DL [KL-10], and on the other hand an algorithm approximating FOL theories as DL
theories has been introduced [KL-4, KL-5].

3.1 Casl-DL — A Description Logic Casl Extension

Providing a direct formal connection of Casl via Casl-DL to OWL DL has several major
advantages:

• many ontologies for the Semantic Web will be written in OWL DL and a translation
of OWL DL into Casl makes these ontologies accessible to ontologies written in Casl
and Casl-DL;

• for DLs like OWL DL specialised efficient reasoners exist which are exploitable via
translations of Casl sublanguages into Casl-DL;

• the integration and alignment of ontologies in DL via rich foundational ontologies in
FOL are formally expressible in Casl with translations of OWL DL into Casl.

Furthermore, given that efficient reasoners exist for description logics like SHIQ or SHIN
(fragments of OWL DL and Casl-DL), these description logics provide a reasonable target
language for approximations of first-order logic ontologies. This allows us to benefit from
ontologies defined by elaborated axioms like Dolce within the context of the Semantic Web
and other application scenarios where short answering times play an important role, which
cannot be provided by general purpose FOL theorem proving systems. Another possible
application scenario for Casl-DL is a validation of domain ontologies as approximations,
where an OWL DL ontology is considered as approximation of a foundational ontology
written in Casl, with a proof of the entailment shown as a view in Figure 6 (see Section 3.3
for more details on approximations).

view Validation_of_OWL_DL_Ontology :
OWL_DL_Ontology to FOL_Ontology

Figure 6: A view representing a validation of an OWL DL
ontology as approximation of a FOL ontology

The Web Ontology Language (OWL) has been established as a W3C recommendation
in 2004 [12, 59] and provides three sublanguages presented in decreasing expressiveness:

OWL full provides unlimited usage of symbols like RDF Schema [7] and corresponds to
some untyped higher-order logic;

OWL DL corresponds to SHOIN (D), some fragment of FOL; it reaches the limits of DLs
in terms of efficient reasoning and expressivity;

OWL Lite limits the DL further, it is equivalent to SHIF(D) where constructs like nomi-
nals are disallowed for improving efficiency.

10

SHOIN (D) OWL DL Casl-DL
concept class sort or unary predicate
subconcept subclass subsort
number restriction cardinality special predicate equivalent to an in-

stantiation of a generic specification
role property binary predicate
role inclusion subproperty implication
individual individual constant operation
> class Thing maximal super sort Thing
⊥ class Nothing empty unary predicate Nothing
datatype XML datatype predefined datatypes

Table 1: Correspondences between SHOIN (D), Casl-DL and OWL DL

The variant OWL DL has been chosen as a starting point for the development of Casl-DL,
since OWL full has a very complicated semantics which lacks any tool support.

In a description logic knowledge is represented by a concept hierarchy with a maximal
concept subsuming all other concepts. Binary roles are used to relate individuals and to
define the coverage of concepts. Only a limited set of axioms is possible for defining char-
acteristics of roles. Datatypes are predefined and not subject to axiomatisation beyond
relations to individuals.

SHOIN (D), equivalent to OWL DL [33], provides a reasonable number of logical con-
structs for dealing with ontologies aiming at efficient reasoning. Although OWL DL and
ordinary DLs [1] use different terminologies for their constructs, the underlying logic is the
same. Table 1 provides an overview of the terms used for some constructs in the different
languages presented in this section. The combination of letters forming a DL language name
immediately gives rise to the expressiveness, e.g. the letter ‘D’ denotes the availability of
predefined datatypes like numbers and strings for the object position or filler of roles (i.e.
the second position of a binary predicate). The detailed correspondences of the other let-
ters to DL constructs has been laid out in [KL-10] following the notation presented in [1,
pp. 494–495]. Still, Table 2 gives a short overview of which DL constructs are abbreviated
by which letter, where the DL constructs are shown in Figure 7 and differentiated from FOL
below.

Compared to first-order logic, a description logic like SHOIN (D) allows only a limited
form of quantification, where exactly two variables are simultaneously available and they are
connected via a role application; e.g. the schematic formula φ(x) ≡ ∀y•R(x, y) ⇒ ψ(y) shows

S extends ALC by transitive roles
H role hierarchies
O nominals
I inverse roles
N unqualified number restrictions
Q qualified number restrictions
F functional roles (only number restriction 6 1R)
AL atomic concepts; top and bottom concept; intersection and value

restriction of arbitrary concepts; existential quantification limited to
top concept

C negation and union of arbitrary concepts
D availability of datatypes

Table 2: DL letters and corresponding constructs

11

C,D ::= A (atomic concept)
| > (universal concept)
| ⊥ (bottom concept)
| ¬A (atomic negation)
| C uD (intersection)
| C tD (union)
| {o1, ...} (nominals)
| ∀R.C (value restriction)
| ∃R.C (existential quantification)
| R : o (has value restriction)
| > n R (Unqualified
| 6 n R number
| = n R restriction)

(a) Concept Descriptions

R,S ::= S (atomic role)
| R− (inverse role)
| R+ (transitive role)

(b) Role Descriptions

C v D (concept inclusion)
R v S (role inclusion)
C ≡ D (concept equality)
R ≡ S (role equality)

C(a) (concept assertion)
R(a, b) (role assertion)

(c) Terminological and
Assertional Axioms

Figure 7: Syntax of SHOIN

the translation of a value restriction into FOL. The syntax presented in Figure 7 essentially
hides variables and restricts implication. Also, only individuals are available for assertions,
and free variables are disallowed. Furthermore, unqualified number restrictions are added
to FOL, which limit or demand the number of relations asserted for each individual in the
described concept. Note that no concept description is allowed for the second argument of
the relation, hence the name unqualified. There are no functions and predicates over the
predefined datatypes available in SHOIN (D), and it is not recommended to define further
datatypes since they will not be recognised by other tools [12, Section 6.1]. So, merely data
literals with built-in equality are supported by OWL DL, SHOIN (D) and also SHIF(D),
thus the relation of individuals with data literals is a possible usage (the only one).

Typically, DLs are not statically typed such that axioms are necessary to restrict roles
to certain concepts. Axioms for roles relating concepts with datatypes are called datatype
properties in OWL DL; their axioms are limited to role inclusion, domain and range defini-
tions. Roles relating concepts are called object properties in OWL DL; the same axioms as
for datatype properties are available plus axioms stating functionality, inverse functionality,
symmetry, transitivity and axioms defining a property to be the inverse of a role. While
ordinary DLs do not distinguish these kinds of roles explicitly, OWL DL has different dec-
laration constructs. Furthermore, not all combinations of axioms for roles are allowed, e.g.
a role may not be simultaneously defined as transitive and used in cardinality constraints;
this applies also to functional roles (global cardinality constraints).

The DL axioms described so far form the TBox of an ontology. They are accompanied
by axioms for the ABox providing concept assertions and relations of individuals. The
TBox defines the terminology and the ABox deals with facts about the individuals in the
knowledge base. With Casl-DL the author focuses on the analysis and definition of TBoxes
where the usage of strongly typed ontologies is inherited from Casl (see Section 2.2 for the
notion of strongly typed ontologies). The definition of large ABoxes has not been an aim
of Casl-DL. This would not be very feasible, since writing assertion axioms in FOL is
a tedious and error-prone process — databases are more suitable for such a task. In an
application, an OWL DL ontology generated from a Casl-DL specification would be used
as TBox, and the individuals and their relations would be kept in a database for persistence
and short answering times. For testing an ontology it is still possible to easily define ABoxes
in Casl-DL. Protégé [23] is a tool aiming at the definition of knowledge bases6 with a large
number of facts by providing easily definable input forms for facts.

Casl-DL provides the same FOL notation as Casl, instead of DL notations, although
the hiding of variable introduction used by DLs might lead to an easier analysis of axioms.

6A knowledge base may be exported into OWL DL or other knowledge representation languages.

12

spec GenCardinality [sorts Subject < Thing
pred predicate : Subject × Thing] =

{Set[sort Thing fit sort Elem 7→ Thing]
reveal Set [Thing],]__, __ε__, Nat, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, __@@__,

__≥__, __≤__
then

op toSet : Subject → Set [Thing]
∀ x : Subject ; y : Thing • predicate(x, y) ⇔ y ε toSet(x);
preds minCardinality [predicate](s : Subject ; n : Nat) ⇔] toSet(s) ≥ n;

maxCardinality [predicate](s : Subject ; n : Nat) ⇔] toSet(s) ≤ n;
cardinality [predicate](s : Subject ; n : Nat) ⇔] toSet(s) = n;

} hide Pos, toSet, Set [Thing],]__, __ε__, __≤__, __≥__

spec PredefinedConcepts =
sort Thing
pred Nothing : Thing
∀ x : Thing • ¬ Nothing(x) %(empty_concept_Nothing)%

Figure 8: Proposed Casl-DL prelude

Only special cardinality constructs are added to Casl which provide easier access to number
restrictions than the originally proposed instantiation of a generic specification. Figure 8
shows the GenCardinality specification which has been introduced as “Casl-DL Prelude”
in [KL-10]. However, Casl-DL specifications are easier to comprehend, when the predicates
for the number restriction are part of the language. Furthermore, the connection of DL
reasoners for Casl-DL is easier to implement when cardinality restrictions are predefined
symbols instead of user defined. So, the predicates minCardinality, maxCardinality and
cardinality are built-in constructs of Casl-DL, and the predicate given in square brackets
needs to be declared with this schematic profile “s × Thing” where s is either Thing or a
subsort of Thing. In summary, Casl-DL is equivalent to SHOIN (D) — it is a restriction
of Casl to SHOI(D) extended by those cardinality predicates (N).

A translation of Casl-DL into Casl preserving structuring still needs to introduce
instantiations of the GenCardinality specification for predicates which are used in number
restrictions. In contrast, a translation of a flattened Casl-DL specification just adds the
required cardinality predicates with their definition without hiding the correspondence to
sets. Furthermore, the concepts sort Thing and pred Nothing and the sentence, labelled
with %(empty_concept_Nothing)%, are always present in a Casl-DL theory and need not
be introduced by import. Again, the translation of Casl-DL theories into Casl adds the
sentence %(empty_concept_Nothing)% from PredefinedConcepts (Figure 8).

Since the structuring elements of Casl are directly available for Casl-DL, all the ad-
vantages described in Section 2.3 apply to Casl-DL, too. Nonetheless, the translation of
Casl-DL into OWL DL needs to take care of expanding hidden parts of the theory for a
complete translation. Where possible the structuring via simple imports and instantiations
might be translated into OWL DL import statements, but in general the easiest translation
of a Casl-DL specification flattens the structuring elements and forms a single theory prior
to the translation. If the OWL DL specification is only supposed to be loaded into a DL
reasoner, the latter approach is preferable since the DL reasoner integrates all sentences
(including the imported ones) into one knowledge base anyway. Thus providing only one
OWL DL file speeds up parsing and analysis of the ontology. However, a structure preserv-
ing translation of Casl-DL specifications into a set of OWL DL ontologies with equivalent
import statements, where each ontology corresponds directly to one named Casl-DL spec-
ification, is more appropriate when the ontology specifications are supposed to be reused
separately.

13

from Basic/Numbers get Int

view Int_implements_IntegerLiteral :
IntegerLiteral to
{Int
then %def

sorts nonPositiveInteger = {i : Int • i ≤ 0};
negativeInteger = {i : nonPositiveInteger • i < 0}

} =
integer 7→ Int, positiveInteger 7→ Pos, nonNegativeInteger 7→ Nat

end

Figure 9: Mapping of IntegerLiteral to Int

The predefined XML Schema datatypes [6] of OWL DL are provided as predefined sig-
nature elements bootstrapped from the Casl library CASL_DL_Datatypes presented in
Appendix A. Again, the translation of Casl-DL into Casl uses an import of the specifica-
tion DL_Literal for providing the needed signature. Only the integer numbers (sort inte-
ger and subsorts) are mapped to subsorts of Int (specified in Int of library Basic/Numbers
[10, pp. 379–385]) with the mapping and definitions shown as a view in Figure 9. This is
necessary because the generic specification GenCardinality uses ordering predicates on
natural numbers for the definition of the cardinality predicates which are not defined by
IntegerLiteral. Figure 10 shows the currently implemented datatypes of Casl-DL with
the same names as in [12, Section 6] (this is just the minimal recommended support). Char
is the only datatype not provided by the XML Schema datatypes and is not available for
Casl-DL specifications; it is only needed for Casl-DL to achieve support for string literals.
A char is formed as a single element string in XML Schema datatypes and Casl-DL.

positiveInteger

nonNegativeInteger

integer

negativeInteger

nonPositiveInteger

CharDATA

boolean string

Figure 10: Taxonomy of predefined datatypes in Casl-DL

3.2 Comorphisms Relating OWL DL and Casl-DL

In [KL-10] translations of Casl-DL into OWL DL and vice versa are introduced as insti-
tution comorphisms [25]. Institutions formalise the notion of logical system. An institution
has to provide definitions of the concepts signature, sentence, model and satisfaction. Since
only very little is assumed about the nature of these concepts, the notion of institution is
rather general and covers a great variety of logics. These concepts are then used to formally

14

describe mappings between logics called comorphisms. The comorphisms make use of anno-
tations on the Casl-DL and OWL DL side. Classes in OWL DL can be marked as “sorts”
such that they result in sorts after a translation into Casl-DL instead of unary predicates.

This is a slight change in the handling of OWL DL classes in contrast to [KL-10] where we
planned to translate all classes into sorts except those marked with an annotation. But the
former proposed treatment of classes might result in inconsistent theories on the Casl-DL
side, because sorts have to have non-empty carrier sets and OWL DL classes do not necessar-
ily obey this restriction. Furthermore, all symbols in OWL DL ontologies are URIs [3] which
normally share a long prefix like http://www.w3.org/TR/2003/PR-owl-guide-20031209/
food#ConsumableThing. The comorphism outlined here substitutes the common prefix
(usually up to “#”) with a globally unique name space qualifier, e.g. “food” in this case.
The mapping of name space qualifiers to URI prefixes is kept in special Casl annotations
for a translation back to an equivalent OWL DL theory. Also, the names of Casl-DL
specifications resulting from translations of OWL DL ontologies are derived from the URI.
Usually dropping of the prefix up to the last slash “/” is sufficient, but depending on the
imported ontologies it might be necessary to keep more of the URI for a proper disambigua-
tion. Nevertheless, the dropped prefix is stored in a Casl annotation, too. Circular imports
on the OWL DL side are treated as a union of all ontologies which are part of the circle,
e.g. the wine and food ontologies (examples in [65]) import each other and result in only
one joint Casl-DL specification where the name is derived from the URIs of both ontolo-
gies. A translation back to several OWL DL ontologies equivalent to each of the originals is
not planned, since each sentence in the Casl-DL theory would need to be tagged with its
originating ontology for separation, not only the symbols. Figure 11 provides an overview
of the comorphisms represented as solid lines and the approximation of Casl theories with
Casl-DL theories depicted as a dashed line (see Section 3.3).

CASL OWL-DLCASL-DL
≈

Figure 11: Comorphisms and approximation related to Casl-DL

The comorphism of Casl-DL into Casl is almost an embedding since Casl-DL is an
extension of a sublanguage of Casl. Only the datatypes and cardinality restrictions need
a special treatment as described above. Of course, certain sublanguages of Casl can be
translated back to Casl-DL without loss of information, but a translation of these Casl-
DL specifications into OWL DL would result in different ontologies from the originals in a
round trip from OWL DL over Casl-DL to Casl and back to OWL DL using again Casl-
DL as intermediate step with editing the Casl specification in between; e.g. after a renaming
of a cardinality predicate, the translation cannot keep track of the name change. Also, all
other renamings must be reflected into the name space annotations. If a Casl specification
sp1, which is generated from a Casl-DL specification, is extended by a sentence not obeying
the restrictions of Casl-DL, the translation of the extended specification sp1 back to Casl-
DL will fail. The following section presents a theory approximation of FOL theories with
DL theories explained along the languages Casl and Casl-DL.

3.3 Approximation of FOL Theories by
Description Logic Theories

The algorithm for approximation of first-order logic theories by description logic aims at
the compilation of foundational ontologies provided in FOL into ontologies efficiently pro-
cessable with DL reasoners. The resulting DL theory may be judged according to different
criteria, which need to be balanced against each other: on the one hand readability of the
DL theory by a human recipient, and on the other hand the amount of knowledge compiled
into the result with respect to the original theory. The latter criterion is discussed with

15

http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#ConsumableThing
http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#ConsumableThing

respect to related work, but is not the main goal of this section. The main focus of this
section is a human readable format for the development of domain ontologies on the basis of
compiled foundational ontologies. Furthermore, the discussion of approximations may also
lead to a validation method for domain ontologies against foundational ontologies where
a view from an application Casl-DL ontology (possibly translated from OWL DL along
the comorphism presented in Section 3.1) to a foundational Casl ontology is formulated in
Casl and checked with some automated theorem proving system. Even if not all axioms
of the domain ontology are entailed by the foundational ontology, certain aspects such as
properties of spatial or time relations might be validated against the foundational ontology.
In fact, the approximation algorithm presented here compiles into SHIF(D), a sublogic
of Casl-DL (and SHOIN (D)). Note, although SHIF is not tractable7, it is still com-
putationally efficient enough for practical purposes [34, 69]; i.e. there exist specialised DL
reasoners such as Racer [28] and FaCT++ [70, 32]. The approximation of FOL theories by
DL theories has been presented at the doctoral colloquium of CALCO 2005 (Conference on
Algebra and Coalgebra in Computer Science) [KL-4] and has been published after revision
in the proceedings of the FOIS 2006 Conference (Formal Ontologies in Information Systems)
[KL-5].

Related work. In [62] Selman and Kautz describe algorithms to derive tractable theories
from intractable ones. The main algorithm is a theory approximation of Horn clauses from
arbitrary propositional-logic theories. This method has also been called knowledge compi-
lation and is used to obtain a tractable form of the theory for automated reasoning. Their
algorithm yields two sets of Horn clauses, one with weaker and one with stronger Horn
clauses. These sets are derived from the original set of propositional clauses. Addition-
ally, sketches of various other approximations are presented in [62], such as FOL with Horn
clauses or FL with FL − (two DLs).

Thprop |= C ?

Return “yes”. Return “no”.

Return “don’t know” or

fall back to Thprop.
ThMUB |= C ThMLB 6|= C

“yes”“yes”

1

where Thprop is the propositional theory; C is the query in proposi-
tional logic; ThMUB and ThMLB are Horn approximations.

Figure 12: Schematic representation of query answering with Horn approximations8

The quality of an approximation is determined by how close the approximating theories
are to the original theory. Selman and Kautz [62] define a weaker approximation as an
upper-bound which has more models than the original theory, i.e. their definition is in terms
of model classes for an approximation of FOL with DL: Mod(ThFOL) ⊆ Mod(ThDL). At
best an approximation algorithm would find a minimal upper-bound9 (MUB) which is in
the weaker language and there exists no DL theory Th′ with Mod(ThFOL) ⊆ Mod(Th′) ⊂
Mod(ThDL). Note that more than one MUB might exist in case of DL approximations since
different sets of role axioms are valid as approximation. In a similar way, lower-bounds and
maximal lower-bounds (MLB) of a theory are defined. In [62] a Horn approximate compila-
tion of propositional logic is presented where propositional queries are answered with Horn
theories that are approximations from above and below of a propositional theory. Figure 12
shows the general approach of answering queries with compiled Horn theories. The Horn

7SHIF has EXPTIME complexity.
8Figure 12 resembles Figure 2 in [62, p. 197]. Note that in the original figure the abbreviations LUB and GLB

were used wrongly instead of MUB and MLB.
9In [62] the same definition is given, but called wrongly least upper bound (LUB).

16

approximations ThMUB and ThMLB fulfil the following model theoretic properties w.r.t. the
original propositional theory Thprop: Mod(ThMLB) ⊆ Mod(Thprop) ⊆ Mod(ThMUB).

A more general algorithm for FOL knowledge compilation into various sublanguages of
FOL has been introduced by Alvaro del Val [13, 14]; the main target languages are again
variants of Horn logic. However, one important finding of del Val for the approximation of
FOL theories has been the need of only a weaker theory (which is maximally strong) if only
the target language is used for queries to the compiled theory [13].

Overview of the algorithm. Figure 13 shows an overview of the theory approxima-
tion described in this section where the initial reification step has not been included in
[KL-4, KL-5], because it is a transformation preserving the semantics, although the compre-
hensibility and readability of the theory is decreased. All arrows transport a whole theory
(rectangular boxes) except where marked differently; the ellipses depict the functions needed
for the approximation.

2-FOL theory

Generation of
role axioms

Compilation of
role axioms

Compilation of
concept axioms

SentencesSentences
Signature

Proof of role
axioms

Selection of
role axioms

DL theory

Addition of
inverse roles

Signature

theory defining
newly added
inverse roles

View: DL to
2-FOL-Ext

Signature

Proof of DL
theory

FOL theory Reification of
n-ary predicates

2-FOL-Ext
theory

Figure 13: Flow of data during the approximation

Reification of predicates. The initial step of the theory approximation has not been
published yet and is called “Reification of n-ary predicates” in Figure 13, where n > 2. This
is needed, because only unary and binary predicates are available in Casl-DL. A reification

17

spec Binary_Temporal_Dissective =
Time_Mereology with sort T, pred P : T × T

then sorts s1, s2
pred Rel : s1 × s2 × T
∀ x1 : s1; x2 : s2; t1, t2 : T
• Rel(x1, x2, t1) ∧ P(t2, t1) ⇒ Rel(x1, x2, t2)

spec reified_Binary_Temporal_Dissective =
Time_Mereology with sort T, pred P : T × T

then sorts s1, s2
sort Rel
ops Rel_1 : Rel → s1;

Rel_2 : Rel → s2;
Rel_3 : Rel → T

∀ r1, r2 : Rel ; x1 : s1; x2 : s2; t1, t2 : T
• Rel_1 (r1) = x1 ∧ Rel_2 (r1) = x2 ∧ Rel_3 (r1) = t1 ∧ P(t2, t1)
⇒ ∃ r2 : Rel • Rel_1 (r2) = x1 ∧ Rel_2 (r2) = x2 ∧ Rel_3 (r2) = t2

view ReificationEntailsOriginal :
Binary_Temporal_Dissective to
{reified_Binary_Temporal_Dissective
then %def

pred Rel : s1 × s2 × T
∀ x1 : s1; x2 : s2; t : T
• Rel(x1, x2, t) ⇔
∃ r : Rel
• Rel_1 (r) = x1 ∧ Rel_2 (r) = x2 ∧ Rel_3 (r) = t %(Rel_def)%

}

Figure 14: Reification of a ternary predicate

in general uses something more concrete than the original, i.e. instead of a ternary predicate
a concept together with three roles is used, where each instance (individual) of the concept
represents one triple. Fig 14 shows a predicate taken from Dolce in Casl and its reification
as a sort with three functions. This reification follows the method described in [1, p. 164]
but it translates many-sorted FOL into 2-FOL instead of entity relationship diagrams into
DL.

2-FOL is a restricted form of FOL allowing only unary and binary predicates and unary
functions; it has been introduced to describe the approximation of FOL by DL in [KL-4,
KL-5]. The view ReificationEntailsOriginal in Figure 14 shows that the reification
of the predicate Rel with a sort and functions entails the sentence for the predicate Rel
defined in Binary_Temporal_Dissective. The opposite entailment is also valid and is
presented Appendix B.1. The naming scheme for the functions relating the reified n-tuple
with its elements used in this example by adding the position to the predicate symbol can be
refined to consider the sort names, too. However, n-ary predicates where all arguments have
the same sort will still need the number representing the argument position. A combination
of both, sort symbol and argument position, yields an injective mapping. Moreover, the
reification algorithm still needs to check for newly introduced overloading of symbols and
has to resolve these name clashes. The reification of functions with more than one argument
works analogously to the reification of predicates.

Furthermore, Liem et.al. [43] have recently introduced a slightly different reification
pattern, which yields reified classes which are easier to reuse. This is achieved by moving
the actual argument restricting axioms into the significant class of the n-ary relation; e.g.
the result type of a ternary sum relation determines its argument types and possible limiting
axioms for the arguments.

18

Approximation algorithm. The approximation of a 2-FOL theory is performed in four
steps (cf. Figure 13):

1. Unary predicates and the subsort taxonomy are just incorporated into the Casl-DL
theory; if necessary a new maximal sort is introduced which subsumes all other sorts
except those which are supposed to be mapped to datatypes;

2. compilation of concept axioms which include also sort membership assertions and
unary predicates;

3. Generation of role axioms for binary predicates found in the signature and for inverse
roles introduced by the previous step;

4. compilation of role axioms, which have only binary predicates.

After incorporating the whole 2-FOL signature into the DL theory, all possible DL axioms
are generated for each role and each axiom is sent as a conjecture together with the 2-FOL
theory to an Automated Theorem Proving (ATP) system. If the conjecture is proved, it is
kept as an axiom for selection by the user. Those sentences of the 2-FOL theory which are
implications or equivalences with binary predicates on both sides of the Boolean connective
are used to generate role inclusions. Again, only those role inclusions entailed by the input
2-FOL theory are part of the approximation. If two roles are equivalent, i.e. role inclusions
in both directions are valid, an equivalence axiom is incorporated into the approximation
instead of two role inclusions.

Out of the generated role axioms entailed by the 2-FOL theory different axiom sets are
formed, which conflict with respect to the limits that a role may be either transitive or
functional, but cannot have both properties. Note each union of two generated sets of role
axioms is not in SHIF . The roles in each set are related via subrole or inverse role axioms,
since the limit applies to all axioms related via these axioms. The axiom sets are presented
in a way that the user can easily select the appropriate set by deciding if the transitivity or
functionality of a role is more important for the further application of the compiled ontology.
The compilation of unary functions is not explicitly described here or in [KL-4, KL-5], but
it is easy to translate unary functions into equivalent binary predicates with an additional
axiom defining the functionality of the predicate. Note that cardinality restriction axioms
apart from global cardinality restrictions (used for functional roles) are not generated by the
compilation, and hence there is no reason for presenting any concept description axioms to
the user for choosing.

Moreover, formulas with unary predicates and sorts (concepts) are compiled by finding
certain patterns which are derived from the legal concept descriptions of SHIF(D). When
concept descriptions with roles are approximated, inverse roles are often needed to remain
within the limits of DL. The axioms in Figure 15 taken from the example in [KL-5] show the
approximation of mereological definitions found in Dolce, e.g. a rewriting of the definition
%(Dd3_Atom)% with the definition %(Dd3_Atom_rw)% uses PP_i, the inverse role of PP.
The complete example including structuring is presented in Appendix B.2. The patterns
of concept descriptions are at first searched for implications where the premise is a named
concept (unary predicate application or a sort membership assertion) and equivalences where
one side is again a named concept. Detailed descriptions of the approximation methods
depicted may be obtained from [KL-5].

At the end of the approximation, the SHIF(D) theory is formed by taking the union of
the results of all the knowledge compilation methods described above, and the entailment
shown in Figure 16 is proved automatically by some ATP system validating the result. The
view in Figure 16 describes the relation between a 2-FOL theory and its DL approximation
formally and yields proof obligations for the following theory entailment:

Th2-FOL_Specification_EXT |= ThApproximation_in_DL

The author has proved such an entailment in [KL-4, KL-5] for the binary relations of Mere-
ology specified in Dolce automatically with Spass. Figure 15 presents an extract of the

19

spec GenMereology[sort s] =
GenParthood[sort s] with pred P

then preds PP(x, y : s) ⇔ P(x, y) ∧ ¬ P(y, x); %(Dd1_Proper_Part)%
O(x, y : s) ⇔ ∃ z : s • P(z, x) ∧ P(z, y); %(Dd2_Overlap)%
At(x : s) ⇔ ¬ ∃ y : s • PP(y, x) %(Dd3_Atom)%

∀ x, y : s • ∃ z : s • At(z) ∧ P(z, x); %(Ad18)%

spec GenMereology_DL[sort s] =
GenParthood_DL[sort s] with pred P

and InvPP_P [sort s preds PP, P : s × s]
with preds P_i, PP_i

then preds O(x, y : s) ⇔ O(y, x); %(Dd2_Overlap_sym)%
At(x : s) ⇔ ¬ ∃ y : s • PP_i(x, y) %(Dd3_Atom)%

∀ x, y, z : s
• ∃ z’ : s • P_i(x, z’) ∧ At(z’) %(Ad18_rw)%
• PP(x, y) ⇒ P(x, y) %(Dd1_Proper_Part_impl)%
• PP(x, y) ∧ PP(y, z) ⇒ PP(x, z) %(Dd1_Proper_Part_trans)%

Figure 15: Approximation of mereological definitions from Dolce

spec 2-FOL_Specification_EXT =
2-FOL_Specification

then %def
<inverse_role_definitions>

view Validation_of_Approximation :
Approximation_in_DL to 2-FOL_Specification_EXT

Figure 16: Relation of a 2-FOL theory and its approximation in DL

approximated axioms and the whole example is shown in Appendix B.2. Furthermore, the
author expects that such an entailment is always provable with an ATP system like Spass
(see Section 4.2 for ATP systems usable with Casl).

Evaluation of the approximation. The quality of the DL approximation is determined
by how close the weaker DL theory is to the 2-FOL theory. The approximation method
described here yields a weaker theory. This is sufficient if only the target language of the
approximation is used for queries [13]. A minimal upper-bound is also described by the
term maximally strong weaker theory, which is easier to comprehend. The quality of a 2-
FOL approximation with DL described in this section yields a maximally strong DL theory
with respect to the role axioms of the original theory since all possible role axioms are
generated and the proven ones are incorporated in the approximation. With respect to the
concept descriptions, the quality of the algorithm is still to be determined. The main focus
of the author has been to find an approximation of FOL theories with DL which is human
readable and not a maximally strong theory with respect to the original.

Furthermore, a good readability of the approximation result is achieved by using patterns
which transform the original axioms instead of using a logical normal-form, which might
introduce additional symbols. However, an implementation of the algorithm still needs to
be carried out; so, this question will remain open until more examples beyond that presented
in Appendix B.2 are available.

20

3.4 Summary
The combination of FOL and DL ontologies has been described in detail along with Casl-
DL (an extended sublanguage of Casl), its translation from and to OWL DL, and the
approximation of FOL ontologies with DL ontologies. This leads to a formal framework for
studying the relation of foundational ontologies and applied ontologies, where the former are
formalised as precisely as needed for a comprehensive understanding in rich logical systems
such as FOL or modal logic. The latter are typically written in a logical formalism tailored
towards efficient reasoning in the context of large data sets and do not support a great
variety of logical constructs. The approximation algorithm offers a bridge between these
logical systems. It can be either used to compile a FOL theory into a DL ontology, which
is then extended by a weak formalisation of the application scenario, or the foundational
ontology is extended within the context of a strong formalisation in Casl, and the result is
compiled into DL for efficient usage in the application scenario.

21

4 Tool Support for Ontologies in Casl

Ontologies written in FOL (as e.g. a major part of Dolce) need tool support and connection
to other ontology languages. In the preceding section the connection between OWL DL,
Casl-DL and Casl has been discussed. All these methods will be integrated into the
Heterogeneous Tool Set (Hets) [KL-11]. This section deals with the benefits of Hets for
structured ontologies written in many-sorted FOL (Casl) and Casl extensions. A key
point for the development of ontologies is the support of Automated Theorem Proving
(ATP) systems for Casl which is described in Section 4.2 and [KL-9].

4.1 Features of Hets for Ontologies in Casl

In [KL-11] a brief general description of Hets has been published, which is tailored towards
software engineering; the User Guide [KL-13] provides an overview of Hets. Here these re-
sults are expanded and applied for the analysis of ontologies written in Casl (see Section 2
for a discussion of ontologies developed in Casl). Casl-DL inherits most of the features
described for Casl in this section because it is technically an extension of the Casl logic
restricted to SHOIN (D) (see Section 3.1 and [KL-10]). Hets provides analysis, transfor-
mation and connection to provers for Casl and its extensions. In general each logic that is
formalised as an institution [25] can be easily integrated into Hets. Comorphisms translate
between these logics by providing the necessary transformation of signatures and rewriting
of sentences. Figure 17 provides an overview of the currently supported logics and comor-
phisms, where the planned comorphisms are shown as dashed lines. The different shades of
the nodes reflect the current stability of the logic’s implementation; a darker grey denotes
a higher stability than a lighter grey. Only one arrow corresponding to the approxima-
tion algorithm presented in Section 3.3 is not a comorphism and is hence marked with ‘≈’.
HetCasl (Heterogeneous Casl) [53] serves as the integration language for heterogeneous
specifications by providing constructs for choosing a specific logic and a comorphism for the
heterogeneous translation of specifications. The logics SoftFOL and Isabelle provide sup-
port for theorem provers, where the former logic is described in greater detail in Section 4.2
and the latter will be briefly explained in this section.

CspCASL CoCASL

ConstraintCASL

Propositional

CASL

Isabelle

HasCASL

Modal

SoftFOL

OWL-DL

CASL-DL
≈

Figure 17: Currently supported logics of Hets

22

Apart from the logics Casl, Casl-DL and OWL DL, which have been presented in Sec-
tion 2 and Section 3.1, only ModalCasl (labelled with “Modal” in Figure 17) is of further
interest for the specification of ontologies. It is an extension of Casl with multi-modalities
and term modalities. It allows the specification of modal systems with Kripke’s possible
worlds semantics, where the specific modal system(s) are specified by the user with proposi-
tional formulas. A translation from ModalCasl into Casl with possible worlds encoding
has been implemented, such that ATP systems and Isabelle are available for theorem proving
via further comorphisms.

The logic Isabelle provides proof support with the semi-automatic theorem prover Is-
abelle/HOL [58]. It uses proof scripts with a notation resembling mathematical pen-and-
paper proofs; the logic is a typed higher-order logic with support for induction. However,
Casl’s partial functions and subsorting need to be coded via comorphisms [52], since they
are not available in Isabelle/HOL. The benefits of a combination of automatic and semi-
automatic theorem proving offered for Casl by Hets have been presented by Wölfl et.al.
along the verification of the Region Connection Calculus [75].

Casl is input as simple textual specification in ISO latin 1 with a syntax resembling log-
ical and mathematical notation, e.g. a ‘∨’ is input as ‘\/’. For the editor GNU Emacs [18]
a Casl-mode [KL-12] is available, offering syntax highlighting and automatic indentation;
it starts Hets for static analysis and inspection of the Casl library currently being edited.
For the presentation of specifications, e.g. in papers or on slides, Hets offers the automatic
generation of LATEX code, which is still readable enough to edit some formatting for the dis-
play on slides. Display annotations may be used to provide special LATEX notation for sorts,
predicates, function symbols and variables. As examples consider Fig 14 and Appendix B.1,
where display annotations are used for the display of sort ‘s1’ as ‘s1’.

IrreflexiveRelation AsymmetricRelation SimilarityRelationRat

Distance RoomsMap ServicesMap

Services_in_Rooms

Figure 18: Structure graph of the library RoomsAndServices

A call of Hets starts the static analysis of a Casl library by parsing and analysing
the structure and by calling logic-specific parsers and analysing functions for each basic
specification. The graphical user interface (GUI) of Hets starts with the display of a
structure graph10 showing the structure of a Casl library with definitional (import) and

10Originally such a graph has been called development graph inherited from the development graph calculus that
covers the whole process of software development with formal refinement steps presented as views. But in fact for
ontologies only the structure and not the development of specifications in terms of refinement is reflected.

23

spec ServicesMap =
SimilarityRelation
with Elem 7→ Service, __∼__ 7→ __near__

and SimilarityRelation
with Elem 7→ Service, __∼__ 7→ __connected__

then ∀ x, y : Service
• x connected y ⇒ x near y %(connected implies near)%

Figure 19: The specification ServicesMap

theorem links between the theories represented as nodes. Nodes of external specifications
have a rectangular shape. Definitional links are drawn with bold lines and filled arrow
heads; theorem links are drawn with thin lines and open arrow heads. Figure 18 shows
the structure graph of the example library RoomsAndServices published in [KL-7]. In
fact this graph is the black-and-white version generated from Hets while the GUI uses a
coloured display. Unamed nodes show intermediate structuring of a specification, e.g. the
specification SimilarityRelation is imported and renamed for two different predicates
and the union forms the starting point for ServicesMap. The corresponding structuring
constructs of Casl are shown in Figure 19.

The main interaction with a Casl library of specifications is driven by the display of the
structure graph. It offers reasoning and translation services at the structured level, where
the former apply the proof calculus for development graphs [54, 53] which yields proof
obligations at the level of theories, e.g. the node below RoomsMap in Figure 18 would
provide the goals of the implied extension. Context menus offer functionality at edges and
nodes. At edges the signature morphism and (for theorem links) the proof status can be
inspected. Also, all links provide conservativeness checking in their context menus. At each
node the signature, theory, sublogic and taxonomy can be inspected (Figure 1b on page 4
shows a taxonomy graph such as displayed by Hets).

[+] proved goal
[-] disproved goal
[×] proved goal revealing an inconsistent theory
[] open goal

Table 3: Proof status indicators

Additionally, a proof management GUI is available at each node, which shows the names
of the goals and sentences of a theory as in Figure 20. The proof status of the goals can
be discovered at a glance by the status indicator in square brackets in front of the goal
names, e.g. a ‘[+]’ indicates a proven goal. Table 3 gives an overview of all indicators,
where an inconsistent theory is detected by checking the used formulas indicated by an ATP
system for the proof of the conjecture. If the conjecture is not among the used formulas, the
theory is inconsistent11, because a resolution based theorem prover needs to resolve with the
CNF12 clauses generated from the conjecture during a proof in a consisten theory. The list
of known provers gives easy access to commonly used (composed) comorphisms translating
from the theory’s sublogic into the provers logic. However, the button “More fine grained
selection...” allows one to choose out of a list of comorphisms translating into a prover
supported logic. The list of known provers and the list of comorphisms is determined by
the sublogic calculated from the currently selected theory. The bottom half of the proof
management window allows the selection of axioms and proven theorems to be included in
the theory for a proof attempt. Section 4.2 discusses the need for shrinking the theory sent

11See Sect 4.2 for details about consistency checking with ATP systems.
12Clause Normal Form

24

Figure 20: Proof management GUI of Hets

to ATP systems. Note that the sublogic used for determining the known provers list (and
the possible comorphisms) is recalculated when axioms or goals are selected or deselected.

Figure 1b shows a subsort graph which has been generated by Hets automatically. Al-
though subsort relations have been a Casl basic specification construct from the beginning,
the need for a display as subsort graph only has arisen from usage of Casl for ontologies.
Furthermore, the display of unary and binary predicates integrated into the subsort graph
forms the concept graph and gives graphical access to a large part of the signature of ontolo-
gies written in Casl and Casl-DL since the implementation of the Casl-DL logic reuses
the functionality implemented for Casl.

Hets is implemented in Haskell [36] as an open source project. Each logic has to im-
plement the type class Logic that provides a common function API for access to logics
implementing the concept of institutions. This design allows for a clear separation of the
logics’ implementations from the logic independent parts (e.g. structure analysis), which
enables a parametrisation of Hets over different logic graphs tailored towards different ap-
plication scenarios such as ontology engineering or software engineering. Comorphisms are
special heterogeneous functions which translate theories between sublogics of the same or of
different logics, and form the edges of a logic graph which is displayed in Figure 17.

25

The following section deals with the logic SoftFOL, the comorphisms translating into
it, and the connection of different ATP systems to ease proving of theorems in large TBoxes.

4.2 Proof Support for Casl with
Automated Theorem Proving Systems

In [KL-9] the author has introduced a new logic SoftFOL (softly typed first-order logic)
aiming at the usage of automated theorem proving (ATP) systems for Casl. In the be-
ginning, only the semi-automatic theorem prover Isabelle [58] was connected to Hets for
discharging Casl’s proof obligations. Although Isabelle is very powerful, it comes with
the disadvantage that detailed technical knowledge is required of how to write proof tactic
scripts. This can be very tedious, especially in proofs that use only some automatic proof
tactics. Also, Isabelle/Isar scripts use a higher-order logic with two logical levels; most tac-
tics require that the quantification has a special form, e.g. no explicitly quantified variables.
For example, the verification of Cohn’s Region Connection Calculus (RCC) composition ta-
bles [75] in Casl involves 112 goals which are provable with ATP systems. If only Isabelle
had been available, 112 individual proof scripts would have been needed; each script would
have used different axiom subsets of the theory’s axiom set, which are specific to each goal.
Moreover, the connection of several advanced ATP systems with Hets allows on the one
hand for higher confidence in the proofs if different ATP systems determine the conjecture
as theorem, and on the other hand allow for the usage of the most suitable ATP system.

The ATP system Spass [72] is available under open source licensing (GPL) since 1991.
It is developed at the Max Planck Institut für Informatik in Saarbrücken, Germany by
Christoph Weidenbach, Thomas Hillenbrand, Dalibor Topić et.al. Spass has been consid-
ered as an ATP system suitable for Casl, because its input language DFG offers subsorting
and a (freely) generatedness concept like Casl (see Section 2.2). However, in DFG sorts
may be empty, whereas they are always non-empty in Casl; this is overcome by adding an
axiom. The generatedness properties are only used for the ordering of symbols by Spass, but
not for proofs by induction. Spass is a saturation based ATP system, which uses elaborated
FOL theorem proving methods, such as superposition calculus, specific inference and reduc-
tion rules for sorts, and splitting rules for explicit case analysis. Moreover, it implements
a sophisticated CNF translation. The DFG format provides syntax for the definition of
theories in fully sorted first-order logic with equality, subsorts, and generatedness properties
for sorts.

Furthermore, the MathServe system [76] developed by Jürgen Zimmer has been consid-
ered as proof support for Casl, because it provides a unified interface to a range of different
ATP systems; the most important systems are listed in Table 4, along with their capabilities.
These capabilities are derived from the Specialist Problem Classes (SPCs) defined upon the
basis of logical, language and syntactical properties by Sutcliffe and Suttner [67]. The classes
“effectively propositional” and “real first-order” apply to first-order problems that are distin-
guished by the finiteness of the Herbrand universe; an effectively propositional problem has
only constants (generated by finitely many terms) whereas a real first-order problem contains
true functions with an infinite Herbrand universe. Also, a brokering service is available as
Web service from the MathServe system, which chooses the most appropriate ATP system
upon a classification based on the SPCs, and on a training with the library Thousands of
Problems for Theorem Provers (TPTP) [76]. Note that the abbreviation TPTP is used for
both the library of problems and its logical format. The TPTP format has been introduced
by Sutcliffe and Suttner for the annual competition CASC [68] and provides a unified syntax
for untyped FOL with equality, but without any symbol declaration. The ATP systems are
offered as Web Services using standardised protocols and formats such as SOAP, HTTP and
XML. Currently, the ATP system Vampire may be accessed from Hets via MathServe; the
other systems are only reached after brokering.

The logic SoftFOL has been designed along the DFG format which is used as input
language by Spass. Later SoftFOL was also adapted to cover TPTP, the input language

26

ATP System Version Suitable Problem Classesa

DCTP 10.21p effectively propositional
EP 0.91 effectively propositional; real first-order, no

equality; real first-order, equality
Otter 3.3 real first-order, no equality
Spass 2.2 effectively propositional; real first-order, no

equality; real first-order, equality
Vampire 8.0 effectively propositional; pure equality, equal-

ity clauses contain non-unit equality clauses;
real first-order, no equality, non-Horn

Waldmeister 704 pure equality, equality clauses are unit equal-
ity clauses

a The list of problem classes for each ATP system is not exhaustive, but only the most ap-
propriate problem classes are named according to benchmark tests made with MathServe
by Jürgen Zimmer.

Table 4: ATP systems provided as Web services by MathServe

of MathServe, since DFG and TPTP are very similar with respect to the allowed logical
constructs. However, TPTP does not provide any declaration of symbols, whereas the DFG
format allows for the declaration of symbols, and Spass demands at least fixing the kind
(sort, predicate or function) and the arity of predicates and functions for an untyped usage.
The possibility to define a signature along with sorts, subsort relation and type profiles
has been a further reason for investigating whether Spass can be used as an ATP system
for Casl. The three kinds of symbols form pairwise disjoint sets, and overloading is only
allowed if the arity is the same. Another restriction inherited from DFG is a locally filtered
subsort relation. However, Spass uses sorts as special unary predicates during reasoning
and translates type profile declarations and subsorting declarations into axioms; Hets does
the same while generating TPTP. Note that SoftFOL only provides an abstract syntax
and the DFG format is used as default for displaying theories in the Hets GUI.

Furthermore, Spass turns formulas quantified over sorted variables into implications
where the antecedents are formed by applications of the unary sort predicates; again for
TPTP the same transformation is achieved by Hets. So, Spass does not provide any static
type checking like Hets; but no erroneous reasoning due to ill-typed formulas arises, since
only formulas statically checked by Hets are fed into the ATP systems. Compared to Casl,
SoftFOL offers the common FOL constructs, except for the Casl specific constructs such as
conditional terms, unique existential quantifications and subsort projections. Additionally,
SoftFOL has the same generatedness axioms as Casl for declaring generated and freely
generated sorts in DFG, which is a further motivation for investigating Spass as an ATP
system for Casl — the generation of TPTP ignores generatedness axioms.

To reach SoftFOL from full Casl several comorphisms are needed, since SoftFOL
can only be translated from a sublogic of Casl with at least a locally filtered or discrete
subsort relation and without partiality. Figure 21 presents the comorphisms involved and
the syntax translations of SoftFOL into its syntactical representations DFG and TPTP.
The comorphism marked by a star is discussed in detail later in this section and has been
published in [KL-9], but first the other comorphisms are presented briefly. Since SoftFOL
has no partiality, it needs to be coded. This is done completely among Casl’s sublogics
as shown in the upper part of Figure 21. SulPCFOL= and SulCFOL= are derived from
the Casl logic SubPCFOL= and its sublogic SubCFOL= respectively by allowing only a
locally filtered subsort pre-order. Recall that a pre-order is locally filtered if each connected
pair has an upper bound. PCFOL= is many-sorted partial first-order logic with sort gener-
ation constraints and equality; SubPCFOL= adds subsorting to the former sublogic; both
sublogics have been introduced by [10]. Sort generation constraints are used to allow the
usual induction scheme for datatypes such as natural numbers and lists.

27

SulPCFOL=

SubPCFOL=

SulCFOL=

PCFOL
=

CFOL=

(3′)

(5a′)(5a′)

Casl

SoftFOL

DFG TPTP

∗∗

Figure 21: Relation of logics, sublogics and translations connected with SoftFOL

If locally filtered subsorting and partiality are used in a specification, partiality is coded
by a comorphism described as translation (5a′) in [52]. However, the distinction between
a locally filtered subsort relation and an unrestricted subsort relation is not covered there,
but it is not an essential difference. Even if the subsort relation is not locally filtered,
a comorphism can be used for coding the subsort relation into explicit embedding and
projection functions, which has been introduced in [52] as translation (3′). Afterwards the
translation (5a′) is used to code partiality, since it does no harm if no subsort relation is
present. Actually, Figure 21 shows all composed comorphisms leading to SoftFOL, which
are tried from the shortest “∗” to the longest “(3′)◦ (5a′)◦∗”, when the list of known provers
(cf. Figure 20) is used for proving. The comorphism (5a′) translates the partial functions,
including partial subsort projections, by introducing bottom elements, definedness predicates
and total projection functions. The ∗ translation represents the comorphism translating
SulCFOL= into SoftFOL, which can also translate every sublogic of SulCFOL= such
as CFOL=. This comorphism and also the optimisations, introduced after meeting the
developers of Spass, is explained in greater detail below.

The comorphism translating SulCFOL= into SoftFOL takes care of renaming all Casl
symbols into unique symbols since overloading is only allowed for symbols of the same kind
(sort, pred, op) and arity in SoftFOL. All Casl symbols are qualified with their kind and
arity, e.g. sort symbol s is translated into sort_s. For every sort an axiom is added stating
non-emptiness. As an optimisation the only sort of a single sorted theory is omitted, since
it adds no additional information, but it would add a superfluous sort symbol, used as a
special predicate, to the reasoning process. Subsorting constructs of Casl like injections
are deleted, except those in sort generation constraints. All binary predicates, which are
equivalent to the built-in equality of Casl, are removed from the signature. In the sentences
the predications of the removed equality-predicates are substituted with applications of the
built-in equality. This is also an optimisation found in the discussion with the developers of
Spass. Furthermore, the coding of unique existential quantification has been revised after
the discussions with the developers of Spass: A unique existential quantification is turned
into a conjunction where first the existence of such an individual is stated, and next it is
stated that there exists only the individual of the first conjunct fulfilling the formula.

After some experiments with theories consisting of many sentences such as the verification
of the RCC composition tables, it turned out that a high number of sentences and certain
kinds of sentences lead to state explosion in the ATP systems, which significantly slows down

28

Development Graph Automatic Structural Proof

Goal Inspection

 Invoked at grey nodes

Proof Details

Opened for
selected goals

ATP Interface

Invoked for selected
goals and prover

By Closing the window
 proof results are integrated

Figure 22: Proof work-flow used for ATP proofs in Hets

the process of proving. Problematic sentences are e.g. commutativity and symmetry axioms.
For this reason it is possible to select the sentences that form the theory sent to the prover
using the two lists of sentence labels in the bottom half of the proof management window (cf.
Figure 20). Although the semantics of such a theory shrunken by selection of axioms may be
weaker, it is not possible to prove the entailment of a conjecture which is not a theorem of
the complete theory. If a conjecture is disproved by a shrunken theory, the proof is rejected,
since the goal might still be an entailment of the complete theory. Another optimisation
of the theory sent to the prover removes symbols not used in the selected theory from the
signature, which again reduces the number of sentences used during reasoning, since typing
is turned into axioms.

A typical work-flow with ATP systems from Hets is shown in Figure 22. The three ATP
systems (Spass, Vampire and MathServe Broker) instantiate the same generic ATP interface
which is shown in Figure 23. However, the Broker interface does not provide a field for extra
options, since these are specific to each reasoner. Also, the generic reasoner interface allows
for easier integration of further ATP systems into Hets, since only the implementation of
calling the additional reasoner needs to be provided according to a unified set of functions
which are used by the generic graphical interface — the interface implementation itself does
not need to be adapted.

Consistency checking with Spass is provided by generating theory files for each specifi-
cation. These files contain the sentence “false” as conjecture, and if Spass finds a proof, the
theory is inconsistent and the list of used formulae provides a hint to the cause. If Spass
disproves the conjecture “false”, the theory is consistent. If it runs into a timeout with a limit
of t seconds it is called to be t-consistent. Most inconsistent theories have been discovered
with a value for t of 500 or 1000 seconds before the time limit was reached by testing with
theories from the basic datatypes published in [10]. So, by choosing a reasonably high time
limit, a high confidence in the consistency of the theory is reached.

29

Figure 23: ATP interface instantiated for Spass

4.3 Summary
The tool Hets supports the development of structured and strongly typed ontologies with
Casl by providing static analysis at the levels of structured and basic specification. Fur-
thermore, it allows to inspect the import structure of the ontologies and also the inspection
of taxonomy graphs. But most important is the proof support for Casl offered by Hets
through interfacing to ATP systems and Isabelle. ATP systems allow us to discharge the
simpler theorems automatically, such that the ontology engineer can concentrate on proofs
of the complicated theorems with Isabelle. Additionally, Hets enables consistency checks
of the ontologies. So, combined with the Emacs mode for editing the ontology specifica-
tion, Hets is a reasonable tool for developing foundational ontologies such as Dolce in the
expressive FOL language Casl. The full integration of Casl-DL, OWL DL and approx-
imation of FOL theories (see Section 3) into Hets will offer access to domain ontologies
written in DL.

30

5 Examples of Ontologies in Casl

This section introduces some examples where Casl has been applied as an ontological spec-
ification language. Also, Hets has been applied for the analysis of the Casl specifications,
for the generation of output formats, and for discharging theorems to ATP systems. All
presented examples have been developed within the context of the collaborative research
center SFB/TR 8 “Spatial Cognition”. The example presented in Section 5.3 is also the
result of an international cooperation with the Laboratory for Applied Ontology (LOA) in
Trento, Italy. The example in Section 5.1 explains wayfinding as metaphor for navigating
the Web; Section 5.2 introduces the rather abstract and unrestricted concept Route Graph
and describes different instantiations of the concept. Furthermore, Section 5.4 shows the
approximation relation between two alternative Route Graph specifications.

5.1 Ontology for Wayfinding

Hochmair investigated the applicability of metaphors [29] such as navigation in the context of
the World Wide Web (WWW) by writing specification-like Haskell programs, which simulate
navigation in the real world and in the WWW. In [KL-2] Hochmair and the author abstracted
these Haskell programs into Casl specifications and derived a formal specification of the
concept13 “navigate” from various definitions. Figure 24 gives an overview of the conducted
work to achieve a formalisation of the “Navigation” metaphor for the WWW.

Figure 24: Research method for explaining the navigation metaphor formally14

The application of spatial concepts as metaphors for human-computer interaction (HCI)
has been studied extensively e.g. in [66]. Features of the physical world are mapped to a
computational domain, which enables the user of the computer to apply her experience of the
real world to the computational domain. Maglio and Matlock [46] conducted a study whether
Web users comprehend the Web as physical space. Their result is that experienced Web users
refer to the Web as it were a two dimensional physical space or a physical container. They
applied extensively spatial phrases such as “I couldn’t get back to where I was” or “Yahoo
had what I wanted” to the non-physical Web space. Using metaphors for HCI helps to
master the abstract nature of information systems [41]. Montello [50] claims that navigation
is a versatile concept, which can be applied to various domains, including many which are
not intrinsically spatial. The approach of [KL-2] is to define an axiomatic formalisation of
a concept in some source domain, e.g. navigation in a spatial environment, and to establish
evidence for the metaphor by proving these axioms within the target domain, WWW in this
case.

For the investigation of the applicability of the navigation metaphor, two scenarios have
been chosen based on previous work of Hochmair. In [30] a Web agent has been simulated,
searching for some Web shop providing running shoes with certain properties. Marchionini

13The term “concept” is used here in a broader sense than in DL; it denotes a whole specification in the context
of Section 5.1.

14Figure 24 has been published as Figure 1 in [KL-2, p. 237].

31

[48] describes navigating as one of four browsing strategies. The navigation strategy is
applied by following some of the possible links on a Web page in order to reach the goal.
The real world scenario is based on the vector based least-angle strategy for wayfinding
discussed also in [31]. The agent finds its goal by deciding at each intersection of a street
network which street has less deviation from the target vector than the others. This can be
achieved either by direct sensing or dead reckoning [44], where the latter is needed in city
environments where the target is not always visible. Furthermore, the agent lacks any other
knowledge about its environment.

The formalisation of metaphors by algebraic specifications follows the approaches taken
in e.g. [42, 24]. Structure preserving morphisms are used to demonstrate the metaphorical
mapping of the concept in the source domain onto the target domain in [42] by using Haskell
type classes. But no axioms of the source domain are specified, since Haskell type classes
only allow for signature definitions. Thus the morphisms are only signature mappings. The
usage of Casl in [KL-2] develops this approach towards formal proofs of the morphisms by
defining Casl views. Figure 25 shows the relation and origin of the Casl specifications used
to formalise the concept “navigate”. At first, definitions of the concept navigate are reviewed
and turned into a Casl specification of the key properties of navigation. In a second step,
two Haskell programs are used to simulate the key properties in a real world scenario and a
Web scenario. In a third step, the Haskell programs are abstracted into Casl specifications
of the key functions used for the simulation. The definition of the Casl views relating
the key properties in Casl with the specifications derived from the simulations finalises
the approach. Due to limitations in Hets regarding the hiding of symbols, the views only
provide signature morphisms and no proofs have been carried out.

Figure 25: Relation of Casl specifications and views, and Haskell programs15

The semantics of navigation and wayfinding used to define the key axioms of the concept
“navigate” are taken from different definitions found in the Geographical Information Science
(GIS) and ontology communities. The lexical definitions found in the GIS literature provide
two distinct views on the relation of navigation and wayfinding, where both treat them as
processes. On the one hand, Golledge [26] and other authors assign different properties to
wayfinding and navigation; their conclusion is that both are independent processes. On
the other hand, navigation is treated as a process composed by locomotion and wayfinding
[11, 15]. Furthermore, WordNet with its relation to SUMO and Dolce Lite+ (as provided
by the OntoWordNet project [20]) are considered for formal definitions of wayfinding and
navigation, although these definitions are merely taxonomic.

Figure 26 gives an overview of the axioms derived from OntoWordNet descriptions leading
to the definition of the concept “navigate”. The ground axioms are derived from the term

15Figure 25 has been published as Figure 4 in [KL-2, p. 245].

32

Figure 26: Development of concept “Navigate”16

agent as conceptualised by Russel and Norvig [61]. Furthermore, beliefs and reality are
distinguished, where beliefs may not be reflecting the reality of the environment. The agent
acts in a Sense-Plan-Act (SPA) cycle obtaining the decomposition of an agent’s control
functions as defined by Nilson [57].

In [KL-2] HumanActivity is defined in Casl in terms of an SPA cycle where the beliefs
of the agent are stored in a stategraph. Based on perception, the stategraph is adapted and a
decision is planned, which leads to an effect on the environment. Additionally, at all discrete
time steps of the World (consisting of environment and agent) an environmentalAction may
change the environment, too. Figure 27 shows the Casl specification and the key axiom
defining the function worldStep. The remaining axioms are defined by instantiation of a
graph specification for the sort StateGraph and by providing abstract definitions of predicates
in terms of world steps and changes on the StateGraph for moving, exploring and navigating.
Movement includes exploration, but may be controlled by the environment. Exploration is
a movement triggered by the agent and includes navigation. Navigation only takes place if
the agent decides for an option which takes the agent closer to the goal. The specifications
in the lower half of Figure 27 illustrate the axioms involved (further details may be found
in [KL-2]).

The specifications derived from the Haskell programs use almost the same approach
regarding the agent moving around an environment, but the definitions of the functions are
constructive, acting on concrete datatypes. For example, each world in the simulation is
stored as a trace list. The structuring facilities of Casl are used extensively to achieve
the reuse of shared semantics between the least-angle agent and the WWW agent. For
example, the definition of iterating world steps is provided as a generic specification which
is instantiated for both agents by appropriate parameter specifications (see Figure 28). The
generic specifications in Casl are used to model the type classes which are used in the
Haskell simulations for shared signatures. Furthermore, the specification AbsEnvAgent
provides the signature of functions and predicates that need to be provided for implementing
an agent acting in an environment, called WorldImpl. The specification derived from

16Figure 26 has been published as Figure 5 in [KL-2, p. 248].

33

spec HumanActivity =
sorts Environment, Perception, Decision, Agent, StateGraph
type World ::= World(Environment ; Agent)
ops updateState : Decision × Agent → Agent ;

perception : Environment × StateGraph → Perception;
plan : Perception × StateGraph → Decision;
physicalAction : Decision × Environment → Environment ;
environmentalAction : Environment → Environment ;
graph : Agent → StateGraph;
worldStep : World → World

∀ a1, a2 : Agent ; w1, w2 : World ; e1, e2 : Environment
• worldStep(World(e1, a1)) = World(e2, a2)
⇔ a2 = updateState(plan(perception(e1, graph(a1)), graph(a1)), a1)
∧ (e2 = physicalAction(plan(perception(e1, graph(a1)), graph(a1)), e1)
∨ e2 = environmentalAction(

physicalAction(plan(perception(e1, graph(a1)), graph(a1)),
e1))

∨ e2 = physicalAction(plan(perception(e1, graph(a1)), graph(a1)),
environmentalAction(e1)))

%(Axiom #1)%

spec Move = HumanActivity hide environmentalAction
then RichGraph2 [sort MentalPos fit sort Node 7→ MentalPos]

[sort Transition fit sort Edge 7→ Transition]
with Graph 7→ StateGraph

then op mpos : Agent → MentalPos
. . .
• hasMoved(World(e1, a1), World(e2, a2))
⇔ worldStep(World(e1, a1)) = World(e2, a2)
∧ isMoveTransition(getEdge(graph(a2), mpos(a1), mpos(a2)))

%(Axiom #2)%

spec Explore = Move
then . . .

• hasExplored(World(e1, a1), World(e2, a2))
⇔ worldStep(World(e1, a1)) = World(e2, a2)
∧ hasMoved(World(e1, a1), World(e2, a2))
∧ isSelfMoveTransition(getEdge(graph(a2), mpos(a1), mpos(a2)))

%(Axiom #3)%

spec Navigate = Explore
then . . .

• navigate(World(e1, a1), World(e2, a2))
⇔ worldStep(World(e1, a1)) = World(e2, a2)
∧ (hasExplored(World(e1, a1), World(e2, a2)) if getEDegree(e1) > 0)
∧ isdecisionPoint(mpos(a1), graph(a1))
∧ (approach(World(e1, a1), World(e2, a2)) if getEDegree(e1) > 0)

%(Axiom #4)%

Figure 27: Navigate specification based on HumanActivity in Casl

34

the Haskell simulation is used as parameter for WayfindSig, which provides the needed
observer predicates for mapping the metaphor specification Navigate to the simulations.
The specification WayfindSig is a further example of a shared specification which is used
for both simulations. Of course, the definitions are specific to each simulation.

spec AbsEnvAgent =
sorts AbsEnv, AbsAgent, AbsMPos

then ops plan, updateHistStateGraph : AbsAgent → AbsAgent ;
. . .

spec WorldImpl[AbsEnvAgent] given Nat =
free type World ::= World(AbsEnv ; AbsAgent)
op worldStep : World → World
. . .

spec WorldLA =
WorldImpl [LeastAngleAgent fit. . .]

spec WorldLAObserver =
WayfindSig [WorldLA fit . . .]

then . . .

Figure 28: Shared implementation of world iteration
and instantiation for least-angle agent

The verification of the metaphorical mapping is done in two steps:

1. the signature mapping between the definition of the metaphor and the simulations is
shown formally to be a view in Casl;

2. the behaviour of the two simulations is compared by checking similarities in the traces.

Since the second verification step has already been published by Hochmair, the first step is
explained in greater detail here. Hets has been used to statically type-check the specification
library and the signature morphisms provided by the views which formalise the mapping
of the metaphor specification to the source and target domains (see Figure 29). Due to
extensive usage of hiding in the structuring of the specifications, the development-graph
calculus implemented by Hets cannot determine the proof obligations generated by the
views. However, since the modelling of the simulations and the abstract metaphor are
very similar, the proofs for the source and target domain of the metaphor should be easily
obtained once Hets can provide the obligations correctly.

view Wayfind_in_WorldLA : Navigate to WorldLAObserver =
sorts World 7→ World, Agent 7→ AgentLA, . . .
preds hasExplored 7→ hasTraveled, navigate 7→ wayfind

view Wayfind_in_WorldWWW : Navigate to WorldWWWObserver =
sorts World 7→ World, Agent 7→ AgentWeb, . . .
preds hasExplored 7→ hasTraveled, navigate 7→ wayfind

Figure 29: Views mapping the metaphor specification Navigate to
the simulated source and target domains

Summarising the results achieved in [KL-2], the authors provided a formal specification
of a behaviour of cognitive agents instantiated for two different domains. The applicability

35

of Casl for the definition of ontological concepts is demonstrated by giving an abstract
definition of the spatial concept “navigate” based on ontological theories, and by mapping
this definition to a simulation of navigation in the real world and to a simulation of navigating
the Web. A further step would be to use heterogeneous specification for such a verification.
On the one hand this could lead to a formal view between the Haskell simulations and their
Casl counterparts, and on the other hand ModalCasl could be used for the specification
of the agents behaviour without direct references to the world steps.

5.2 Route Graph Ontologies
Route Graphs have been introduced by Werner et.al. [73] for the description of knowledge
about structured spatial environments such as cities, buildings or harbours. The general
idea is to cover the knowledge as graph of directed route segments which connect decision
points, called places, along a route. Figure 30 shows some spatial scenarios where Route
Graphs are used for navigation. The original description of Route Graphs in [73] was rather
informal, in prose only, allowing different interpretations. The main focus was to introduce a
common terminology for the description of navigational knowledge for different agents such
as humans, animals or robots which act in spatial environments.

Figure 30: Route Graph example scenarios17

In [KL-3] Route Graphs are studied in different ontological formats such as Casl and
MMiSSLATEX [38, 39], and in the functional programming language Haskell [36]. The author
focuses on the Casl specifications and covers briefly the derived Haskell implementations,
which are not intended as running programs but merely as design patterns for the deriva-
tion of programs from ontological Casl specifications. The ontology specification of Route
Graphs extensively uses generic specifications and has been restricted to binary predicates
allowing easier connection to Casl-DL, although it has not been checked whether it obeys
the restrictions of Casl-DL (cf. Section 3.1). Furthermore, the design specification of Route
Graphs reuses datatypes such as lists and graphs defined in the basic Casl libraries (cf. [10,
Part V]).

The concept Route Graph specialises the notions of node and directed edge taken from
graph theory into the notions of place and route segment respectively. A place in a Route
Graph holds enough information for the decision about where the agent currently is, and
which route segments originate from here. This is usually information about the surrounding
route-marks or landmarks forming a reference system local to each place. The possible
information attached to route segments is further divided into entry, exit and course. The
deviation of a route segment’s direction from the direction given by the reference system of
a place is stored in the entry and exit information, whereas the course information might
characterise the trajectory of a route segment in terms of e.g. width, curves or route-marks.

Furthermore, two specific sequences of route segments are defined: (1) paths collect route
segments which are connected to each other and describe a path through a Route Graph
where some route segments and places may be traversed more than once such as in car races;
(2) routes are special paths where each place is visited at most once while travelling along a

17Figure 30 has been published as Figure 2 in [KL-3, p. 392].

36

route. Different Route Graphs are distinguished by their kind ; this allows for e.g. pedestrian,
robot or tramway Route Graphs, which may be related by special route segments called
transfer segments. Heterogeneous routes are formed by using transfer segments. Another
relation of two Route Graphs is described by abstraction, where Route Graphs of different
granularities are related by an abstraction function.

The most difficult task in the context of Route Graphs is the integration of routes into
one Route Graph which is called route integration or place integration. For each place,
it must be decided whether it is a new one or whether it corresponds to some existing
place. This is achieved by integration of the reference systems of two places on (different)
routes. If the integration is successful, only one unified reference system is attached to
the place, and for each incoming and outgoing route segment, exit and entry information is
recalculated according to the new united reference system. This notion of route integration is
a very abstract description of a part of the SLAM (Simultaneous Localisation And Mapping)
problem [19, 51] in the field of autonomous robot exploration.

Ontological Route Graph specifications. The specification of ontologies for Route
Graphs in [KL-3] starts with light-weight ontologies in MMiSSLATEX and the derived Casl
specifications which provide merely the taxonomy and very few axioms in Casl. Figure 31
presents the generic specification of a relational graph, which also provides the sequence types
path and route. The sort Kind serves as marker distinguishing different Route Graphs when
specification GenGraph is instantiated for distinct agents or environments.

spec GenGraph [sort Kind] =
sorts Graph[Kind], Node[Kind], Edge[Kind]
preds hasNode : Graph[Kind] × Node[Kind];

hasEdge : Graph[Kind] × Edge[Kind]
ops hasSource, hasTarget : Edge[Kind] → Node[Kind]
∀ e: Edge[Kind]; s, t : Node[Kind]; g : Graph[Kind]
• hasEdge(g, e) ∧ hasSource(e) = s ∧ hasTarget(e) = t ⇒

hasNode(g, s) ∧ hasNode(g, t)
then

GenSequence [sort Edge[Kind]] with hasHead, hasTail, EmptySeq, freq
then . . .

op sources : Sequence[Edge[Kind]] → Sequence[Node[Kind]]
. . .
pred connected(l : Sequence[Edge[Kind]]) ⇔

(∀ e1, e2 : Edge[Kind]
• hasHead(l) = e1 ∧ hasHead(hasTail(l)) = e2 ⇔

hasTarget(e1) = hasSource(e2)) ∧ connected(hasTail(l))
sorts Path[Kind] = {l : Sequence[Edge[Kind]] • connected(l)};

Route[Kind] = {p:Path[Kind]
• (∀ n: Node[Kind] • freq(sources(p), n) ≤ 1) ∧

(∀ e: Edge[Kind] • freq(p, e) ≤ 1)}

Figure 31: GenGraph provides the starting point for Route Graph specifications

The design specification for the implementation of GenGraph is presented in Figure 32.
The specification Graph2 is also parameterised with a sort Kind, but it is based on already
published datatypes (cf. [10, Part V]) with constructive axioms which allow for the derivation
of functional programs in Haskell. Both Figure 31 and Figure 32 are taken from [KL-3].
After checking again the involved Casl libraries, the author revised the definition of the
predicate connected as presented in Figure 31, because it does not reflect the whole coverage
of the predicate connected as defined in the design specification; i.e. the cases of empty list
and single element list have not been included. Moreover, the original definition has been

37

from Basic/StructuredDatatypes get List
from Basic/Numbers get Nat
from Basic/Graphs get NonUniqueEdgesGraph

spec Graph2 [sort Kind] given Nat =
sorts Node, Edge
ops source, target : Edge → Node

then
NonUniqueEdgesGraph [sort Node] [sort Edge] and
List2 [sort Edge] with [], __::__, atMostOnce

then
pred connected : List [Edge]
∀ rs1, rs2 : Edge; rsl : List [Edge]
• connected([]) %(connected_empty)%
• connected([rs1]) %(connected_singleton)%
• connected(rs1 :: rs2 :: rsl) ⇔

target(rs1) = source(rs2) ∧ connected(rs2 :: rsl) %(connected_rec)%
then . . .

op sources : List [Edge] → List [Node]
. . .
sorts Path = {l : List [Edge] • connected(l)}; %(def_path)%

Route = {l : Path • atMostOnce(sources(l)) ∧ atMostOnce(l)}
%(def_route)%

Figure 32: Design specification of graphs tagged with a Kind

too strong, i.e. every two segments e1, e2 with hasTarget(e1) = hasSource(e2) would have
implied that they are the first and second element of every connected list (see Figure 33 for
the revised definition of pred connected).

Furthermore, Appendix C.1 presents the complete graph specifications including the
revised specifications GenSequence and List2. In addition to the revised specifications of
[KL-3], the relation of the specifications GenGraph and Graph2 is formalised as a view (see
Figure 34, and Appendix C.1 for the complete signature mapping). Most conjectures arising
from the view are provable automatically with Spass. Only the definition of connected (as
show in Figure 33) and the definition of atMostOnce (labelled with %(atMostOnce_def)% in
Appendix C.1), which arise from the view as goals, need to be proved with Isabelle.

pred connected(l : Sequence[Edge[Kind]]) ⇔
l = EmptySeq
∨ (∃! e1 : Edge[Kind] • hasElem(l, e1))
∨ ((∀ e1, e2 : Edge[Kind]

• head(l) = e1 ∧ head(tail(l)) = e2 ⇒ target(e1) = source(e2))
∧ connected(tail(l)))

Figure 33: Revised definition of connected sequences of edges

38

view Graph2_implements_GraphOnt :
GenGraph[sort k fit Kind 7→ k] to
{Graph2[sort k fit Kind 7→ k]
then %def

preds hasEdge(g : Graph; e : Edge) ⇔ e ε g ; %(hasEdge_def)%
hasNode(g : Graph; n : Node) ⇔ n ε g ; %(hasNode_def)%
hasElem(l : List [Edge]; e : Edge) ⇔ e ε l ; %(hasElem_Edge_def)%
hasElem(l : List [Node]; n : Node) ⇔ n ε l %(hasElem_Node_def)%

} = . . .

Figure 34: View Graph2_implements_GraphOnt

Route Graph for an Indoor Scenario. The instantiation of the Route Graph specifi-
cation in an indoor environment for the Bremen autonomous wheelchair Rolland [47] has
been informally introduced in [KL-3]. The general idea is to abstract a Voronoi-based graph
representation [71] into a Route Graph. The Route Graph is used for the navigation and
linguistic communication with the Rolland wheelchair. However, the generic approach and
the taxonomy of indoor kinds have complicated the situation rather than clarified. The
implementation of the generic specifications as generic programs has led to complex datas-
tructures and complex derived XML serialisations that were not usable as easy exchange
format, because almost each individual segment ended up with its own kind, such as door-
way, corridor, or lift kind. Recent developments will lead to a Route Graph specification
that is homogeneous; qualitative and quantitative data is attached via option types to places
and route segments. Furthermore, a specification of an abstract reference system for places
[40] has been introduced after publication of [KL-3].

G24.3

G24.2

G23.0

G24.1S22

G24.3

G24.2
W100

S22 G24.1

G23.0

Abstracted Graph

Figure 35: Abstraction from the tramway devices Route Graph

Abstraction of Fine Grained Route Graphs. The formal specification of place ab-
straction has been published in [KL-6] whereas in [KL-3] only informal figures illustrate
place and route abstractions. Figure 35 displays an example of place abstraction, where
some devices located together are composed to an abstract node (Figure 35 has been pub-
lished in [KL-6]). The abstraction serves the goal of information reduction, i.e. the detailed
planning of the tramway network needs information about every device, whereas the safety

39

spec PlaceAbstraction [GenGraph[sort Kind1]] [GenGraph[sort Kind2]]
given Nat =
ops abstractPlaces : Graph[Kind1] → Graph[Kind2];

mapNode : Node[Kind1] → Node[Kind2];
mapEdge : Edge[Kind1] →? Edge[Kind2]

∀ e_K1 : Edge[Kind1]; e_K2 : Edge[Kind2];
n_K1 : Node[Kind1]; n_K2 : Node[Kind2];
g_K1 : Graph[Kind1]; g_K2 : Graph[Kind2]

• def mapEdge(e_K1) ⇔
¬ mapNode(source(e_K1)) = mapNode(target(e_K1))

• g_K2 = abstractPlaces(g_K1)
⇒ (hasEdge(g_K1, e_K1) ∧ def mapEdge(e_K1)

⇒ source(mapEdge(e_K1)) = mapNode(source(e_K1))
∧ target(mapEdge(e_K1)) = mapNode(target(e_K1))
∧ hasEdge(g_K2, mapEdge(e_K1)))

∧ ∃ n1, n2 : Node[Kind1]; e1, e2 : Edge[Kind1]
• mapNode(n1) = mapNode(n2) ∧ hasNode(g_K1, n1)
∧ hasNode(g_K1, n2) ∧ hasEdge(g_K1, e1)
∧ hasEdge(g_K1, e2) ∧ target(e1) = n1 ∧ source(e2) = n2
⇒ ∃ r : Route[Kind1]
• pathIn(r, g_K1) ∧ startOf (r) = n1 ∧ endOf (r) = n2

• g_K2 = abstractPlaces(g_K1) ⇔
(hasNode(g_K2, n_K2) ⇔
∃ n1 : Node[Kind1] • hasNode(g_K1, n1) ∧ mapNode(n1) = n_K2)
∧ (hasEdge(g_K2, e_K2) ⇔
∃ e1 : Edge[Kind1] • hasEdge(g_K1, e1) ∧ mapEdge(e1) = e_K2)

Figure 36: Specification of place abstraction

predicates on the routes only need a simplified Route Graph for the detection of critical
situations.

In general the abstraction leads to fewer places, which leads to better computational
behaviour of graph algorithms such as shortest path. On the one hand, a route where each
intermediate place has only one incoming and outgoing segment, may be abstracted into a
single route segment; on the other hand, a connected subgraph can be abstracted to a single
place if its nodes share a common feature such as being in the same room or in close distance
to each other. For example, the Route Graph of a marketplace might be abstracted into
one place on a more abstract layer. Note that the abstraction function still associates the
fine grained graph with the abstracted one. The information at the fine grained layer is not
discarded, but hidden on the more abstract layer. If a robot needs the detailed information
stored at a fine grained layer after calculation of a route at the abstract layer, a subgraph (a
connected set of places) is provided for further route planning at a lower level where some
outgoing edge of the subgraph is already marked for usage.

Tramway Route Graphs. In [KL-6] an instantiation of the Route Graph specifications
for tramways with refinement of the abstraction of detailed layers has been published. Fur-
thermore, an application of a Route Graph representation for the investigation of safety re-
quirements is demonstrated. Figure 36 shows the formal specification of place abstraction,
where only abstract requirements regarding the interplay of the functions abstractPlaces,
mapEdges and mapNodes are defined, but the concrete implementation depends on the ac-
tual graphs given as parameters. For completeness, Appendix C.2 shows the specifications
of the two tramway Route Graphs and their relation in terms of an instantiation of Place-
Abstraction. The specifications in Figure 36 and Appendix C.2 have been published in
[KL-6].

40

The application of an ontological representation of tramway Route Graphs serves as a
starting point for the definition of safety predicates at the abstract level which is derived
via abstraction from the underlying device layer.

5.3 Dolce in Casl

In 2003 a collaboration with the LOA in Trento has been started for sharing knowledge about
the Descriptive Ontology for Linguistic and Cognitive Engineering (Dolce) and for using
Casl as its ontology specification language. At first, a simplified version of Mereology (as
it is part of Dolce) has been defined by instantiation of generic specifications of parthood
[KL-8]. The specifications GenMereology and GenParthood as presented in Figure 15
on page 20 and Appendix B.2 have been published in [KL-8].

Furthermore, the development of Dolce is still an ongoing project carried out collab-
oratively between the LOA and the SFB/TR 8 projects I4-[SPIN] and I1-[OntoSpace] in
Bremen. In [KL-1] the quality predicates as defined in [49] are revised and applied for a
case study showing the combination of two quality spaces representing space in the frame-
work of Dolce: Mereology and Route Graphs. This case study includes a short spatial
scenario, where the wayfinding task has been proved with Spass after fine-tuning of some
intermediate theorems. By using the notion of strongly typed ontology and Casl’s struc-
turing facilities this case study is a proof of concept for considering Casl as an ontology
specification language.

Additionally, the integration of different information sources is pointed out. The notions
of strongly typed and structured ontologies are presented at work by applying Casl and
Hets for the formalisation and analysis of the highly modularised specifications. This
is augmented by presenting a spatial scenario along with the necessary concrete physical
qualities, also formalised in Casl. The actual wayfinding task has been formulated by
the author in Casl as theorems suitable for applying Spass. The author applied also the
concepts of knowledge approximation to the specification of the Route Graph. However,
only a weaker FOL theory is used instead of a DL theory. The required view has been
proved with Spass and Isabelle, and the weaker version of the Route Graph sped up the
reasoning about the actual wayfinding problem. Figure 37 presents the weak Route Graph
which enables the modelling of spatial knowledge, which is sufficient for the scenario studied
in [KL-1]. A sort of graphs or edges is omitted completely and even the nodes do not provide
any reference system, since only the linkage between nodes is necessary for carrying out the
wayfinding in the example.

spec WeakRouteGraph =
sort node
preds link, path : node × node
∀ x, y, z : node
• path(x, x) %(path refl)%
• link(x, y) ⇒ path(x, y) %(links are paths)%
• link(x, y) ∧ path(y, z) ⇒ path(x, z) %(link prefix of path yields path)%

Figure 37: Weak Route Graph specification18

Figure 38 shows the definition of physical positions (pred pos) in quality spaces (sort s)
which are inhered (pred inh) in some arbitrary elements (sort Elem). The actual instantia-
tion for physical endurants (sort PED) and different quality spaces is presented in Figure 4
on page 7. Partial knowledge about the environment is modelled by demanding only one
physical position in spatial quality spaces.

18The specification presented in Figure 37 have been published in [KL-1, Section 4.2].

41

spec QualityType[sorts q, Elem] =
pred inh : q × Elem %(A1)%
∀ x, x′ : q ; y, y′ : Elem
• inh(x, y) ∧ inh(x, y′) ⇒ y = y′ %(A2)%
• inh(x, y) ∧ inh(x′, y) ⇒ x = x′ %(A3)%
• ∃ y : Elem • inh(x, y) %(A4)%

spec StrongQualityType[sorts q, Elem] =
QualityType[sorts q, Elem]

then ∀ y : Elem • ∃ x : q • inh(x, y) %(A4 a)%

spec QualitySpace[sorts s, q] =
pred pos : s × q %(A6)%
∀ x, x′ : s; y : q • pos(x, y) ∧ pos(x′, y) ⇒ x = x′ %(A7-A8)%

Figure 38: Qualities and physical positions in Dolce 19

5.4 Route Graph Approximation

Moreover, [KL-1] includes an example for the approximation of theories, which is detailed
in this section (cf. Section 3.3 for the notion of theory approximation). The case study
started with the necessary and sufficient specification WeakRouteGraph (Figure 37).
Later a more datatype-like specification was investigated instead, based on a simple list
specification for the representation of paths (see Figure 39 for the list based Route Graph and
the approximation view). However, the list-based Route Graph specification prevents that
any ATP system connected to Hets finds proofs of the actual wayfinding problem due to the
complexity of the list datatype. The less complex specification WeakRouteGraph allows
that these proofs are achieved automatically with ATP systems (cf. Section 4.2). The relation
of the weak Route Graph specification is an approximation of the list based Route Graph
specification and has been made explicit by defining a Casl view, which has been formally
verified. Although this approximation is shown completely in Casl, the advantages of more
efficient reasoning with approximated theories has been demonstrated. Most theorems can
be proved automatically; only one theorem needs to be proved interactively using Isabelle.
Since this is an approximation within Casl, this occurrence does not invalidate the claim
that each DL approximation can be proved automatically. Furthermore, the proof with
Isabelle only needs to be done once before the online reasoning for wayfinding is carried out.
The imported specification of linked lists is presented in Appendix C.3.

spec RouteGraph =
LinkedList [sort node

pred link : node × node]
then %def

pred path : node × node
∀ x, y : node
• path(x, x) %(refl path)%
• path(x, y) ⇔ ∃ L : List [node] • LinkedList(x :: L ++ [y]) %(path def)%

view PathApproximation : WeakRouteGraph to RouteGraph

Figure 39: List based Route Graph and approximation view20

19The specifications presented in Figure 38 have been published in [KL-1, Section 4.1].
20The specification and view presented in Figure 39 have been published in [KL-1, Section 4.2].

42

5.5 Summary
The examples of ontology specifications in Casl presented in this section support the notions
of strongly typed and structured ontologies (cf. Section 2.2 and Section 2.3). Although
the application has been mostly shown within the context of spatial information, Casl
is applicable as an ontology specification language to any kind of knowledge. A further
advantage of Casl is its tool Hets, which has been applied for the analysis of the presented
specifications, including the usage of theorem provers interfaced by Hets. The language
Casl also supports the specifications of approximation relations in terms of views following
the definition of knowledge compilation as introduced in Section 3.3.

In particular, the navigation metaphor has been studied as algebraic specification of re-
lational axioms derived from ontological definitions and of simulations in a real world and
a WWW scenario [KL-2]. Views relate the signatures and the similarity of the formalisa-
tions is demonstrated informally. Furthermore, an ontological foundation of Route Graphs
and a constructive design specification of Route Graphs are presented [KL-3]. Between
the two base specifications of graphs on the ontological and design sides a view is shown.
Furthermore, the abstraction function of Route Graphs is illustrated by instantiation of
the ontological Route Graph to a tramway example [KL-6]. In addition, the relation of
Dolce and the Route Graph as one possible representation of space is explained through a
wayfinding scenario combining different information sources [KL-1].

43

6 Conclusion

This thesis introduces the notions of structured and strongly typed ontologies in terms of the
algebraic specification language Casl. Since foundational ontologies written in a modular
way and in FOL lack a well established, tool supported language, Casl is a well suited
candidate by providing a logic independent, well studied structuring language with tool
support. Furthermore, Casl offers many-sorted FOL, which enables statically type checked
theories, where theorem proving systems only need to reason about the entailment of the
explicit theorem, whereas the implicit type information has already been checked.

When an expressive FOL language such as Casl is considered for knowledge representa-
tion, the most prominent disadvantage is its lack of tractable reasoning. This thesis provides
two possible ways to overcome this disadvantage: on the one hand, ATP systems may be
used to carry out the theorem proving, which enables computationally efficient reasoning for
many purposes, but no tractable reasoning; while on the other hand, knowledge compilation
into DL offers the application of approximated foundational ontologies within the context
of computational efficient reasoners, which are intended to deal with large knowledge bases.

The presented examples support the claim that Casl can serve as a multi-purpose ontol-
ogy specification language allowing the specification of foundational and domain ontologies.
Also, the refinement of foundational ontologies into domain ontologies is supported by Casl,
since ontology refinement is similar to the refinement of software specifications.

In the future, the structured formalisation of the SUMO ontology might be a good
candidate for validating Casl as an ontology specification language. Furthermore, the
relation between SUMO21 and Dolce can be studied formally, and a composed, well-founded
“sweetened SUMO” might emerge, which combines the rigid and precise definitions of Dolce
with the broad and deep coverage of SUMO.

6.1 Bibliographical Remarks

Below, contributions of this thesis’s author to collaboratively written papers are detailed;
“the author” always refers to the author of this thesis.

An overview of the advantages of Casl and Hets for the development of formal on-
tologies has been published in the internationally reviewed proceedings of the conference on
“Formal Ontology in Information Systems” [KL-8]. The author explored the usage of Casl’s
structuring and strong typing facilities in the context of the foundational ontology Dolce
and proved some of the theorems with Isabelle. However, this rewritten version of Dolce
was far from complete; it only covered Mereology. In [KL-1] a revised version of the quality
related predicates in Dolce has been published in the internationally reviewed journal Spa-
tial Cognition and Computation. These quality predicates have been used in a case study
by the author showing the combination of different information sources formalised as quality
spaces for some wayfinding task. One colour and two spatial quality spaces (Mereology and
Route Graphs) have been used. Also, the author checked the consistency of the specification
and provided proofs of fundamental theorems with Isabelle. However, the actual reasoning
needed for the wayfinding task has been delegated to ATP systems. Furthermore, [KL-7] has
been internationally reviewed and disseminates Casl’s structuring concepts into the Seman-
tic Web community; here the author explored systematically the benefits of modularisation
for ontology engineering.

Within the context of Hets and Casl the author revised the proof management at
the structured level, laid out the theoretical concepts of using ATP systems for proving
Casl theorems, established a Casl extension towards DL, and explored the approximation
of FOL theories with DL theories. This resulted in the following internationally reviewed
publications:

• [KL-11] gives a short overview of Hets presented as a tool paper at TACAS’07;

21Suggested Upper Merged Ontology

44

• [KL-9] introduces the theoretical foundations of reasonable proof management for
Casl in the context of ATP systems and detailed the connection of ATP systems
to Hets;

• in [KL-10] the author has constructed institutions for OWL DL and Casl-DL, and
their translation into Casl as comorphism;

• [KL-4, KL-5] provides a theory approximation algorithm for compiling FOL theories
into DL theories for the development of domain ontologies based on approximated
foundational ontologies in FOL.

Implementations of the comorphism and connection of ATP systems to Hets as described
in [KL-9] enabled the verification of the Region Connection Calculus based on Cohn’s con-
nection theory in Casl with the ATP system Spass [75]. Additionally, the author made
available an Emacs mode [KL-12] for editing HetCasl specifications and the Hets User
Guide [KL-13] in collaboration with Till Mossakowski and Christian Maeder.

Moreover, [KL-2] shows the application of Casl to the formalisation of cognitive aspects
by analysing the navigation metaphor. In [KL-2] the author has shown the advantages
of formalising the cognitive sense-plan-act model with Casl, instead of writing Haskell
programs, which simulate only one given example. Furthermore, the specification has been
derived from Hochmair’s simulations [29] in Haskell and contrasted with it, showing the
benefits of algebraic specification with Casl.

In addition, the author has formulated different specifications of the Route Graph [73] tai-
lored towards Rolland, the autonomous wheelchair used as demonstrator in the SFB/TR 8,
and towards tramway networks. The collaborative efforts in the context of Rolland included
ontological definitions of graph datatypes in Casl, and derived Haskell programs providing
computational access to the ontology based Route Graphs. The result has been an interna-
tionally reviewed publication in the proceedings of “Spatial Cognition 2004” [KL-3]. Here,
the author demonstrated again the importance of structured and generic Casl specifications
for the development of ontologies and how to derive Haskell implementations from the onto-
logical Casl specifications. Again, the application of the Route Graph concept to tramway
networks uses the ontological and generic specifications of graphs and Route Graphs intro-
duced in [KL-3], and it combines two layers of different granularities via abstraction. It
distinguishes a device and a network layer, where the latter is derived from the former by
abstraction. The instantiation of the Route Graph for tramway networks has been elabo-
rated on by the author in great detail with a qualitative approach to the representation of
knowledge; it has been published in the internationally reviewed proceedings of the 2004
symposium for “Formal Methods for Automation and Safety in Railway and Automotive
Systems” [KL-6].

The Section “Publications by the Author” on the following page lists all the publications
accumulated for this thesis. However, [KL-4] has not been submitted with this summarising
thesis, since it has been superseded by [KL-5]. Also, the technical documents [KL-12, KL-13]
have not been included in the submission of this thesis.

Acknowledgements
The author thanks the following people (listed in no particular order) for fruitful discussions
and helpful comments: Stefano Borgo, Claudio Masolo, Markus Roggenbach, Bernd Krieg-
Brückner, Till Mossakowski, John Bateman, Robert Ross, Christian Maeder, and Christian
Mandel. Matthias Intemann deserves special thanks for many encouraging chats at the
time of writing this cumulative thesis. Furthermore, the author thanks the students Heng
Jiang, Rene Wagner, and Rainer Grabbe for their help with various implementations in the
context of Hets. This thesis has been supported by the Collaborative Research Center
“Spatial Cognition” SFB/TR 8 funded by the Deutsche Forschungsgemeinschaft (DFG) and
by the DAAD VIGONI cooperation program (Projekt D/04/42045: “ALT-INFO”). Very
special thanks go to Wencke Lüttich for her outstanding support.

45

Publications by the Author

Refereed Publications

[KL-1] John Bateman, Stefano Borgo, Klaus Lüttich, Claudio Masolo, and Till
Mossakowski. Ontological Modularity and Spatial Diversity. Spatial Cognition
and Computation, 7(1). In press.

[KL-2] Hartwig H. Hochmair and Klaus Lüttich. An Analysis of the Navigation Metaphor
– And Why It Works for the World Wide Web. Spatial Cognition and Computation,
6(3):235–278, 2006.

[KL-3] Bernd Krieg-Brückner, Udo Frese, Klaus Lüttich, Christian Mandel, Till
Mossakowski, and Robert Ross. Specification of an Ontology for Route Graphs.
In C. Freksa, M. Knauff, B. Krieg-Brückner, B. Nebel, and T. Barkowsky, editors,
Spatial Cognition IV, volume 3343 of Lecture Notes in Artificial Intelligence, pages
390–412. Springer; Heidelberg, 2005.

[KL-4] Klaus Lüttich. Approximation of Ontologies in CASL. In P. Mosses, J. Power, and
M. Seisenberger, editors, CALCO-jnr 2005 CALCO Young Researchers Workshop
Selected Papers, number CSR 18-2005 in Report Series, pages 41–53. University of
Wales Swansea, 2005.

[KL-5] Klaus Lüttich. Approximation of Ontologies in CASL. In Brandon Bennett and
Christiane Fellbaum, editors, Formal Ontology in Information Systems – Proceed-
ings of the Fourth International Conference (FOIS-2006), volume 150 of Frontiers
in Artificial Intelligence and Applications, pages 335–346. IOS Press; Amsterdam,
2006.

[KL-6] Klaus Lüttich, Bernd Krieg-Brückner, and Till Mossakowski. Tramway Networks
as Route Graphs. In E. Schnieder and G. Tarnai, editors, FORMS/FORMAT 2004
– Formal Methods for Automation and Safety in Railway and Automotive Systems,
pages 109–119. Universität Braunschweig / Beyrich DigitalService, 2004.

[KL-7] Klaus Lüttich, Claudio Masolo, and Stefano Borgo. Development of Modular On-
tologies in CASL. In P. Haase, V. Honavar, O. Kutz, Y. Sure, and A. Tamilin, edi-
tors, Proceedings of the 1st International Workshop on Modular Ontologies, WoMO
2006, volume 232 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[KL-8] Klaus Lüttich and Till Mossakowski. Specification of Ontologies in CASL. In
Achille C. Varzi and Laure Vieu, editors, Formal Ontology in Information Systems
– Proceedings of the Third International Conference (FOIS-2004), volume 114 of
Frontiers in Artificial Intelligence and Applications, pages 140–150. IOS Press;
Amsterdam, 2004.

[KL-9] Klaus Lüttich and Till Mossakowski. Reasoning Support for CASL with Auto-
mated Theorem Proving Systems. In J. Fiadeiro, editor, Recent Trends in Alge-
braic Development Techniques, volume 4409 of Lecture Notes in Computer Science,
pages 74–91. Springer; Heidelberg, 2007.

[KL-10] Klaus Lüttich, Till Mossakowski, and Bernd Krieg-Brückner. Ontologies for the
Semantic Web in CASL. In J. L. Fiadeiro, P. Mosses, and F. Orejas, editors,
Recent Trends in Algebraic Development Techniques, volume 3423 of Lecture Notes
in Computer Science, pages 106–125. Springer; Heidelberg, 2005.

[KL-11] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424 of
Lecture Notes in Computer Science, pages 519–522. Springer; Heidelberg, 2007.

46

Other Publications

[KL-12] Klaus Lüttich. Emacs mode for editing HetCasl specifications.
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
CoFI/hets/emacs_mode/, March 2007.

[KL-13] Till Mossakowski, Christian Maeder, and Klaus Lüttich. Hets User Guide – Ver-
sion 0.7 –. http://www.informatik.uni-bremen.de/agbkb/forschung/formal_
methods/CoFI/hets/UserGuide.pdf, March 25, 2007.

47

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/emacs_mode/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/emacs_mode/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/UserGuide.pdf
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/UserGuide.pdf

References
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.

The Description Logic Handbook. Cambridge University Press, 2003.

[2] B. Bennett. Logical Representations for Automated Reasoning about Spatial Relation-
ships. PhD thesis, School of Computer Studies, The University of Leeds, 1997.

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic syntax. IETF Draft Standard (RFC 2396) http://www.ietf.org/rfc/
rfc2396.txt, August 1998.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
May 2001.

[5] M. Bidoit and P. D. Mosses. Casl User Manual, volume 2900 of LNCS (IFIP Series).
Springer Verlag, 2004. With chapters by Till Mossakowski, Donald Sannella, and
Andrzej Tarlecki.

[6] P. V. Biron and A. Malhotra, editors. XML schema part 2: Datatypes – W3C recom-
mendation. http://www.w3.org/TR/xmlschema-2/, 02 May 2001.

[7] D. Brickley and R. Guha, editors. RDF vocabulary description language 1.0: RDF
Schema. W3C Working Draft http://www.w3.org/TR/rdf-schema/, 10 October
2003.

[8] R. Casati and A. C. Varzi. Parts and places: the structures of spatial representation.
MIT Press (Bradford Books), Cambridge, MA and London, 1999.

[9] P. Clark and B. Porter. Building concept representations from reusable components. In
Fourteenth National Conference on Artificial Intelligence (AAAI’97), pages 369–376.
AAAI Press / MIT Press, 1997.

[10] CoFI (The Common Framework Initiative). Casl Reference Manual, volume 2960 of
LNCS (IFIP Series). Springer Verlag, 2004.

[11] R. P. Darken, T. Allard, and L. B. Achille. Spatial orientation and wayfinding in large-
scale virtual spaces: Guest editors’ introduction. Presence: Teleoperators and Virtual
Environments, 8(6):3–6, 1999.

[12] M. Dean and G. Schreiber, editors. OWL Web Ontology Language – reference. W3C
Recommendation http://www.w3.org/TR/owl-ref/, 10 February 2004.

[13] A. del Val. An analysis of approximate knowledge compilation. In IJCAI’95, Proceed-
ings of the Fourteenth International Joint Conference on Artificial Intelligence, pages
830–836, 1995.

[14] A. del Val. First order LUB approximations: characterization and algorithms. Artificial
Intelligence, 162(1-2):7–48, 2005.

[15] T. T. Elvins. Wayfinding 2: The lost worlds. SIGGRAPH Computer Graphics, 31(4):9–
12, 1997.

[16] B. Falkenhainer and K. Forbus. Compositional modelling: Finding the right model for
the job. Artificial Intelligence, 51:95–143, 1991.

[17] D. Fensel, J. Hendler, H. Liebermann, and W. Wahlster, editors. Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential. The MIT Press, Cambridge,
MA, 2003.

[18] F. S. Foundation. GNU emacs. http://www.gnu.org/software/emacs/.

48

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/
http://www.gnu.org/software/emacs/

[19] U. Frese. A discussion of simultaneous localization and mapping. Autonomous Robots,
20(1):25–42, 2006.

[20] A. Gangemi, R. Navigli, and P. Velardi. The OntoWordNet project: Extension and
axiomatization of conceptual relations in WordNet. In G. Goos, J. Hartmanis, and
J. van Leeuwen, editors, On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE, volume 2888 of LNCS, pages 820–838. Springer Verlag, 2003.

[21] M. R. Genesereth. Knowledge Interchange Format. In J. Allen, R. Fikes, and E. Sande-
wall, editors, Proceedings of the Second International Conference on the Principles of
Knowledge Representation and Reasoning, pages 238–249. Morgan Kaufman Publish-
ers, 1991.

[22] M. R. Genesereth and R. E. Fikes. Knowlegde Interchange Format; version 3.0; Refer-
ence Manual. Stanford Logic Group, Report Logic-92-1 http://www-ksl.stanford.
edu/knowledge-sharing/papers/kif.ps, June 1992.

[23] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson,
N. F. Noy, and S. W. Tu. The evolution of Protégé: An environment for knowledge-
based systems development. Int. J. Hum.-Comput. Stud., 58(1):89–123, 2003.

[24] J. Goguen. An introduction to algebraic semiotics, with applications to user interface
design. In C. Nehaniv, editor, Computation for Metaphor, Analogy and Agents, volume
1562 of LNCS, pages 242–291. Springer Verlag, 1999.

[25] J. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Computing, 13(3–
5):274–307, 2002.

[26] R. G. Golledge. Human wayfinding and cognitive maps. In R. G. Golledge, editor,
Wayfinding behavior: Cognitive mapping and other spatial processes, pages 5–45. Johns
Hopkins Press, 1999.

[27] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web ontologies. In
P. Doherty, J. Mylopoulos, and C. A. Welty, editors, Proceedings of the 10th Interna-
tional Conference on Principles of Knowledge Representation, pages 198–209. AAAI
Press, 2006.

[28] V. Haarslev and R. Möller. RACER system description. In R. Goré, A. Leitsch, and
T. Nipkow, editors, IJCAR, volume 2083 of LNCS, pages 701–706. Springer Verlag,
2001.

[29] H. H. Hochmair. The wayfinding metaphor – comparing the semantics of wayfinding
in the physical world and the WWW. Unpublished doctoral dissertation, Institute for
Geoinformation, Technical University of Vienna, Vienna, 2002.

[30] H. H. Hochmair and A. U. Frank. A semantic map as basis for the decision process in
the WWW navigation. In D. R. Montello, editor, Conference on Spatial Information
Theory (COSIT), volume 2205 of LNCS, pages 173–188. Springer Verlag, 2001.

[31] H. H. Hochmair and A. U. Frank. Influence of estimation errors on wayfinding-decisions
in unknown street networks—analyzing the least-angle strategy. Spatial Cognition and
Computation, 2(4):283–313, 2002.

[32] I. Horrocks. FaCT++. Available at http://owl.man.ac.uk/factplusplus/.

[33] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic
satisfiability. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, The Semantic Web
- ISWC 2003, number 2870 in LNCS, pages 17–29. Springer Verlag, 2003.

49

http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps
http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps
http://owl.man.ac.uk/factplusplus/

[34] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

[35] M. Jarrar. Towards Methodological Principles for Ontology Engineering. Phd thesis,
Vrije Universiteit, 2005.

[36] S. P. Jones, editor. Haskell 98 Language and Libraries — The Revised Report. Cam-
bridge University Press, 2003.

[37] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé OWL
plugin: An open development environment for semantic web applications. In S. A.
McIlraith, D. Plexousakis, and F. van Harmelen, editors, International Semantic Web
Conference, volume 3298 of LNCS, pages 229–243. Springer Verlag, 2004.

[38] B. Krieg-Brückner, D. Hutter, A. Lindow, C. Lüth, A. Mahnke, E. Melis, P. Meier,
A. Poetzsch-Heffter, M. Roggenbach, G. Russell, J.-G. Smaus, and M. Wirsing. Mul-
timedia instruction in safe and secure systems. In M. Wirsing, D. Pattinson, and
R. Hennicker, editors, Recent Trends in Algebraic Development Techniques, volume
2755 of LNCS, pages 82–117. Springer Verlag, 2003.

[39] B. Krieg-Brückner, A. Lindow, C. Lüth, A. Mahnke, and G. Russell. Semantic inter-
relation of documents via an ontology. In G. Engels and S. Seehusen, editors, DeLFI
2004, Tagungsband der 2. e-Learning Fachtagung Informatik, 6.-8. September 2004,
Paderborn, Germany, volume P-52 of Lecture Notes in Informatics, pages 271–282.
Gesellschaft für Informatik, 2004.

[40] B. Krieg-Brückner and H. Shi. Orientation calculi and RouteGraphs: Towards se-
mantic representations for route descriptions. In M. Raubal, H. Miller, A. Frank,
and M. Goodchild, editors, Proc. International Conference GIScience 2006, Münster,
Germany, volume 4197 of LNCS, pages 234–250. Springer Verlag, 2006.

[41] W. Kuhn. 7 ± 2 questions and answers about metaphors for GIS user interfaces. In
T. L. Nyerges, editor, Cognitive Aspects of Human-Computer interaction for geographic
information systems, pages 113–122. Kluwer Academic Press, 1995.

[42] W. Kuhn and A. U. Frank. A formalization of metaphors and image-schemas in user
interfaces. In D. M. Mark and A. U. Frank, editors, Cognitive and linguistic aspects of
geographic space, pages 419–434. Kluwer Academic Press, 1991.

[43] J. Liem and B. Bredeweg. OWL and qualitative reasoning models. In KI 2006 – 29th
German Conference on Artificial Intelligence, pages 29–43, 2006.

[44] J. M. Loomis and R. L. Klatzky. Human navigation by path integration. In R. G.
Golledge, editor, Wayfinding Behavior: Cognitive Mapping and Other Spatial processes,
pages 125–151. Johns Hopkins Press, 1999.

[45] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description
logics. In Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence IJCAI-07. AAAI Press, 2007.

[46] P. P. Maglio and T. Matlock. Constructing social spaces in virtual environments:
Metaphors we surf the web by. In K. Höök, A. Munro, and D. Benyon, editors,
Workshop on personalized and social navigation in information space, number T98-02,
pages 138–149. SICS Technical Report, 1998.

[47] C. Mandel, K. Huebner, and T. Vierhuff. Towards an autonomous wheelchair: Cog-
nitive aspects in service robotics. In Proceedings of Towards Autonomous Robotic
Systems (TAROS 2005), pages 165–172, 2005.

50

[48] G. M. Marchionini. Information Seeking in Electronic Environments. Cambridge Uni-
versity Press, 1997.

[49] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. WonderWeb Deliv-
erable D18: Ontology Library. Technical report, ISTC-CNR, 2003.

[50] D. R. Montello. Navigation. In P. Shah and A. Miyake, editors, The Cambridge
handbook of visuospatial thinking, pages 257–294. Cambridge University Press, 2005.

[51] R. Moratz and J. O. Wallgrün. Spatial reasoning about relative orientation and dis-
tance for robot exploration. In W. Kuhn, M. Worboys, and S. Timpf, editors, Spatial
Information Theory: Foundations of Geographic Information Science. Conference on
Spatial Information Theory (COSIT), Lecture Notes in Computer Science, pages 61–
74. Springer-Verlag; D-69121 Heidelberg, Germany; http://www.springer.de, 2003.

[52] T. Mossakowski. Relating Casl with other specification languages: The institution
level. Theoretical Comput. Sci., 286:367–475, 2002.

[53] T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. Habili-
tation thesis, University of Bremen, 2005.

[54] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs – proof management
for structured specifications. Journal of Logic and Algebraic Programming, 67(1-2):114–
145, 2006.

[55] P. D. Mosses. CoFI: the common framework initiative for algebraic specification and de-
velopment. In M. Bidoit and M. Dauchet, editors, TAPSOFT’97: Theory and Practice
of Software Development, 7th International Joint Conference CAAP/FASE, Proceed-
ings, number 1214 in LNCS, pages 115–137. Springer Verlag, 1997.

[56] I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty and B. Smith,
editors, Proceedings of the international conference on Formal Ontology in Information
Systems (FOIS 2001), pages 2–9, New York, NY, USA, 2001. ACM Press.

[57] N. J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann Publishers, 1980.

[58] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Springer Verlag, 2002.

[59] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, editors. OWL Web Ontology Lan-
guage – semantics and abstract syntax. W3C Recommendation http://www.w3.org/
TR/owl-semantics/, 10 February 2004.

[60] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and connection.
In B. Nebel, W. Swartout, and C. Rich, editors, Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the 3rd International Conference (KR-92), pages
165–176. Morgan Kaufmann, 1992.

[61] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall
International, 2003.

[62] B. Selman and H. A. Kautz. Knowledge compilation and theory approximation. J.
ACM, 43(2):193–224, 1996.

[63] B. Smith. Logic and formal ontology. In J. N. Mohanty and W. McKenna, editors,
Husserl’s Phenomenology: A Textbook, pages 29–67. University Press of America, 1989.

[64] B. Smith. Against Idiosyncrasy in Ontology Development. In B. Bennett and C. Fell-
baum, editors, Formal Ontology in Information Systems – Proceedings of the Fourth
International Conference (FOIS-2006), volume 150 of Frontiers in Artificial Intelli-
gence and Applications, pages 15–26. IOS Press; Amsterdam, 2006.

51

http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/

[65] M. Smith, C. Welty, and D. McGuinness, editors. OWL Web Ontology Language
– Guide. W3C Recommendation http://www.w3.org/TR/owl-guide/, 10 February
2004.

[66] M. E. Sorrows and S. C. Hirtle. The nature of landmarks for real and electronic spaces.
In C. Freksa and D. Mark, editors, Spatial Information Theory: Cognitive and Com-
putational Foundations of Geographic Information Science, International Conference
COSIT ’99, volume 1661 of LNCS, pages 37–50. Springer Verlag, 1999.

[67] G. Sutcliffe and C. B. Suttner. Evaluating general purpose automated theorem proving
systems. Artificial Intelligence, 131(1-2):39–54, 2001.

[68] G. Sutcliffe and C. B. Suttner. The state of CASC. AI Communications, 19(1):35–48,
2006.

[69] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Rep-
resentation. PhD thesis, RWTH Aachen, 2001.

[70] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System description.
In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130
of LNAI, pages 292–297. Springer Verlag, 2006.

[71] J. O. Wallgrün. Autonomous construction of hierarchical Voronoi-based route
graph representations. In C. Freksa, M. Knauff, B. Krieg-Brückner, B. Nebel, and
T. Barkowsky, editors, Spatial Cognition IV. Reasoning, Action, Interaction: Inter-
national Conference Spatial Cognition 2004, volume 3343 of LNAI, pages 413–433.
Springer Verlag, 2005.

[72] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic. SPASS
version 2.0. In A. Voronkov, editor, Automated Deduction – CADE-18, volume 2392
of LNCS, pages 275–279. Springer Verlag, July27-30 2002.

[73] S. Werner, B. Krieg-Brückner, and T. Herrmann. Modelling navigational knowledge
by route graphs. In C. Freksa, C. Habel, and K. Wender, editors, Spatial Cognition II,
volume 1849 of LNAI, pages 295–317. Springer Verlag, 2000.

[74] S. Wölfl and T. Mossakowski. Casl specifications of qualitative calculi. In A. G. Cohn
and D. M. Mark, editors, Conference on Spatial Information Theory, volume 3693 of
LNCS, pages 200–217. Springer Verlag, 2005.

[75] S. Wölfl, T. Mossakowski, and L. Schröder. Qualitative constraint calculi: Heteroge-
neous verification of composition tables. In 20th International FLAIRS Conference,
Florida, May 2007. To appear.

[76] J. Zimmer and S. Autexier. The MathServe System for Semantic Web Reasoning
Services. In U. Furbach and N. Shankar, editors, Proceedings of the third International
Joint Conference on Automated Reasoning, volume 4130 of LNCS. Springer Verlag,
2006.

52

http://www.w3.org/TR/owl-guide/

Appendix
A Predefined Casl-DL Datatypes
The following Casl library is used for bootstrapping the predefined Casl-DL datatypes in
Hets. The proof obligations of the view Int_implements_IntegerLiteral have been
proved with the ATP system Vampire via MathServe.

library CASL_DL_Datatypes version 0.1
%date 09.02.2006
%authors Klaus Lüttich <luettich@tzi.de>
%number __@@__
%string emptyString , __: @ :__

spec BooleanLiteral =
sort boolean < DATA
ops True, False : boolean

spec IntegerLiteral =
sorts nonNegativeInteger < integer ;

integer < DATA
ops 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 : nonNegativeInteger ;

__@@__ : nonNegativeInteger × nonNegativeInteger → nonNegativeInteger ;
−__ : integer → integer

sorts positiveInteger = {y : nonNegativeInteger • ¬ y = 0}; %(posInt_def)%
nonPositiveInteger < integer ;
negativeInteger < nonPositiveInteger

op 0 : nonPositiveInteger
• 00 = 0 %(zero_eq)%
∀ x : nonNegativeInteger
• 0 @@ x = x %(no_preceeding_zeros)%

spec StringLiteral =
sorts Char ;

string < DATA
free type string ::= emptyString | __: @ :__(Char ; string)
ops ’ ’ : Char ; %(DL_printable_32)%

’!’ : Char ; %(DL_printable_33)%
’\” ’ : Char ; %(DL_printable_34)%
’#’ : Char ; %(DL_printable_35)%
. . .
’þ’ : Char ; %(DL_printable_254)%
’ÿ’ : Char %(DL_printable_255)%

spec DL_Literal = StringLiteral and IntegerLiteral and BooleanLiteral
then free type DATA ::= sorts string, integer, boolean

from Basic/Numbers get Int

view Int_implements_IntegerLiteral :
IntegerLiteral to
{Int
then %def

sorts nonPositiveInteger = {i : Int • i ≤ 0};
negativeInteger = {i : nonPositiveInteger • i < 0}

} = integer 7→ Int, positiveInteger 7→ Pos, nonNegativeInteger 7→ Nat

53

B Knowledge Compilation Examples

B.1 Complete Reification Example

This library shows the complete reification example of Section 3.3. Both views have been
automatically proven with Spass.

library ReificationExample
%display(s1 %LATEX s1)%
%display(s2 %LATEX s2)%
%display(x1 %LATEX x1)%
%display(x2 %LATEX x2)%
%display(t1 %LATEX t1)%
%display(t2 %LATEX t2)%
%display(r1 %LATEX r1)%
%display(r2 %LATEX r2)%

spec Time_Mereology =
sort T
pred P : T × T

spec Binary_Temporal_Dissective =
Time_Mereology with sort T, pred P : T × T

then sorts s1, s2
pred Rel : s1 × s2 × T
∀ x1 : s1; x2 : s2; t1, t2 : T
• Rel(x1, x2, t1) ∧ P(t2, t1) ⇒ Rel(x1, x2, t2)

spec reified_Binary_Temporal_Dissective =
Time_Mereology with sort T, pred P : T × T

then sorts s1, s2
sort Rel
ops Rel_1 : Rel → s1;

Rel_2 : Rel → s2;
Rel_3 : Rel → T

∀ r1, r2 : Rel ; x1 : s1; x2 : s2; t1, t2 : T
• Rel_1 (r1) = x1 ∧ Rel_2 (r1) = x2 ∧ Rel_3 (r1) = t1 ∧ P(t2, t1)
⇒ ∃ r2 : Rel • Rel_1 (r2) = x1 ∧ Rel_2 (r2) = x2 ∧ Rel_3 (r2) = t2

view ReificationEntailsOriginal :
Binary_Temporal_Dissective to
{reified_Binary_Temporal_Dissective
then %def

pred Rel : s1 × s2 × T
∀ x1 : s1; x2 : s2; t : T
• Rel(x1, x2, t) ⇔
∃ r : Rel • Rel_1 (r) = x1 ∧ Rel_2 (r) = x2 ∧ Rel_3 (r) = t %(Rel_def)%

}

view OriginalEntailsReification :
reified_Binary_Temporal_Dissective to
{Binary_Temporal_Dissective
then sort Rel

ops Rel_1 : Rel → s1;
Rel_2 : Rel → s2;
Rel_3 : Rel → T

∀ x1 : s1; x2 : s2; t : T
• Rel(x1, x2, t) ⇔

54

∃ r : Rel • Rel_1 (r) = x1 ∧ Rel_2 (r) = x2 ∧ Rel_3 (r) = t %(Rel_def)%
}

B.2 Complete Approximation Example
This library summarises the example used in [KL-4, KL-5] and shows the surrounding sig-
nature and structuring for the example in Figure 15.

library Dolce_Mereology_Approx version 0.4
%{This library is based on ”A fragment of DOLCE for CASL”

by Stefano Borgo, Claudio Masolo
LOA−CNR
March 5, 2004%

spec GenParthood[sort s] =
pred P : s × s
∀ x, y, z : s
• P(x, x) %(Ad11)%
• P(x, y) ∧ P(y, x) ⇒ x = y %(Ad12)%
• P(x, y) ∧ P(y, z) ⇒ P(x, z) %(Ad13)%

spec GenMereology[sort s] =
GenParthood[sort s]

then preds PP(x, y : s) ⇔ P(x, y) ∧ ¬ P(y, x); %(Dd1_Proper_Part)%
O(x, y : s) ⇔ ∃ z : s • P(z, x) ∧ P(z, y); %(Dd2_Overlap)%
At(x : s) ⇔ ¬ ∃ y : s • PP(y, x) %(Dd3_Atom)%
∀ x, y : s • ∃ z : s • At(z) ∧ P(z, x) %(Ad18)%

%% added inverse predicates
spec InvPP_P [sort s

preds PP, P : s × s] =
preds PP_i(x, y : s) ⇔ PP(y, x);

P_i(x, y : s) ⇔ P(y, x)

%% DL version
spec GenParthood_DL[sort s] =

pred P : s × s
∀ x, y, z : s • P(x, y) ∧ P(y, z) ⇒ P(x, z); %(Ad13)%

spec GenMereology_DL[sort s] =
GenParthood_DL[sort s]

and InvPP_P [sort s
preds PP, P : s × s]

then preds PP : s × s;
O(x, y : s) ⇔ O(y, x); %(Dd2_Overlap_sym)%
At(x : s) ⇔ ¬ ∃ y : s • PP_i(x, y); %(Dd3_Atom)%

∀ x, y, z : s
• ∃ z’ : s • P_i(x, z’) ∧ At(z’) %(Ad18_rw)%
• PP(x, y) ⇒ P(x, y) %(Dd1_Proper_Part_impl)%
• PP(x, y) ∧ PP(y, z) ⇒ PP(x, z) %(Dd1_Proper_Part_trans)%

view Mereology_DL_to_FOL :
GenMereology_DL[sort s] to
{GenMereology[sort s]
then %def

InvPP_P [sort s preds PP, P : s × s]
}

55

C Specifications Related to Route Graphs

C.1 Revised Graph Specifications

The following libraries illustrate the Route Graph ontology and design specifications as used
in [KL-3]. However, they are revised compared to the already published version. Addition-
ally, a view is defined showing the relation between the ontology and its design specification.

library RouteGraphOnt version 0.1

from Basic/Numbers get Nat

spec GenSequence[sort Elem] given Nat =
sort Sequence[Elem]
op EmptySeq : Sequence[Elem]
pred hasElem : Sequence[Elem] × Elem
ops head : Sequence[Elem] →? Elem;

tail : Sequence[Elem] →? Sequence[Elem];
freq : Sequence[Elem] × Elem → Nat ;
last : Sequence[Elem] →? Elem;
__++__ : Sequence[Elem] × Sequence[Elem] → Sequence[Elem]

∀ e : Elem • ¬ hasElem(EmptySeq, e)
pred atMostOnce(s : Sequence[Elem]) ⇔ ∀ e : Elem • freq(s, e) ≤ 1

%(atMostOnce_def)%

spec GenGraph[sort Kind] =
sorts Graph[Kind], Node[Kind], Edge[Kind]
preds hasNode : Graph[Kind] × Node[Kind];

hasEdge : Graph[Kind] × Edge[Kind]
ops source, target : Edge[Kind] → Node[Kind]
∀ e : Edge[Kind]; s, t : Node[Kind]; g : Graph[Kind]
• hasEdge(g, e) ∧ source(e) = s ∧ target(e) = t ⇒ hasNode(g, s) ∧ hasNode(g, t)

then GenSequence [sort Edge[Kind] fit Elem 7→ Edge[Kind]]
with head, tail, EmptySeq, freq, __++__

then GenSequence [sort Node[Kind] fit Elem 7→ Node[Kind]]
with head, tail, freq, last

then ops sources, targets : Sequence[Edge[Kind]] → Sequence[Node[Kind]]
∀ l : Sequence[Edge[Kind]]
• sources(EmptySeq) = EmptySeq
• ¬ l = EmptySeq ⇒ head(sources(l)) = source(head(l))
• ¬ l = EmptySeq ⇒ tail(sources(l)) = sources(tail(l))
• targets(EmptySeq) = EmptySeq
• ¬ l = EmptySeq ⇒ head(targets(l)) = target(head(l))
• ¬ l = EmptySeq ⇒ tail(targets(l)) = targets(tail(l));
pred connected(l : Sequence[Edge[Kind]]) ⇔

l = EmptySeq
∨ (∃! e1 : Edge[Kind] • hasElem(l, e1))
∨ ((∀ e1, e2 : Edge[Kind]

• head(l) = e1 ∧ head(tail(l)) = e2 ⇒ target(e1) = source(e2))
∧ connected(tail(l)))

sorts Path[Kind] = {l : Sequence[Edge[Kind]] • connected(l)};
Route[Kind] = {p : Path[Kind] • atMostOnce(sources(p)) ∧ atMostOnce(p)}

ops startOf (l : Sequence[Edge[Kind]]) :? Node[Kind] = source(head(l));
endOf (l : Sequence[Edge[Kind]]) :? Node[Kind] = target(last(l))

pred pathIn : Path[Kind] × Graph[Kind]

56

library RouteGraphDesign version 0.6

from RouteGraphOnt get RouteGraphIndoors, GenGraph
from Basic/StructuredDatatypes get List
from Basic/Numbers get Nat
from Basic/Graphs get NonUniqueEdgesGraph

spec List2[sort Elem] given Nat =
List[sort Elem fit Elem 7→ Elem]

then pred atMostOnce : List [Elem]
∀ l : List [Elem]; x : Elem
• atMostOnce([])
• atMostOnce(x :: l) ⇔ freq(l, x) = 0 ∧ atMostOnce(l)

spec Graph2[sort Kind] given Nat =
sorts Node, Edge
ops source, target : Edge → Node

then NonUniqueEdgesGraph[sort Node][sort Edge]
and List2[sort Edge fit Elem 7→ Edge]

with [], __::__, atMostOnce
then pred connected : List [Edge]

∀ rs1, rs2 : Edge; rsl : List [Edge]
• connected([]) %(connected_empty)%
• connected([rs1]) %(connected_singleton)%
• connected(rs1 :: rs2 :: rsl) ⇔

target(rs1) = source(rs2) ∧ connected(rs2 :: rsl) %(connected_rec)%
then List2[sort Node fit Elem 7→ Node]
then ops sources, targets : List [Edge] → List [Node]

∀ l : List [Edge]; rs : Edge
• sources([]) = []
• sources(rs :: l) = source(rs) :: sources(l);
∀ l : List [Edge]; rs : Edge
• targets([]) = []
• targets(rs :: l) = target(rs) :: targets(l);
sorts Path = {l : List [Edge] • connected(l)}; %(def_path)%

Route = {l : Path • atMostOnce(sources(l)) ∧ atMostOnce(l)} %(def_route)%
then %def

pred __pathIn__ : Path × Graph
ops startOf, endOf : List [Edge] →? Node
∀ p : Path; g : Graph; l : List [Edge]
• p pathIn g ⇔ ∀ e : Edge • e ε p ⇒ e ε g

%(path_in_def)%
• startOf (l) = source(first(l)) %(startOf_def)%
• endOf (l) = target(last(l)) %(endOf_def)%

view Graph2_implements_GraphOnt :
GenGraph[sort k fit Kind 7→ k] to
{Graph2[sort k fit Kind 7→ k]
then %def

preds hasEdge(g : Graph; e : Edge) ⇔ e ε g ; %(hasEdge_def)%
hasNode(g : Graph; n : Node) ⇔ n ε g ; %(hasNode_def)%
hasElem(l : List [Edge]; e : Edge) ⇔ e ε l ; %(hasElem_Edge_def)%
hasElem(l : List [Node]; n : Node) ⇔ n ε l %(hasElem_Node_def)%

} =
Edge[k] 7→ Edge, Graph[k] 7→ Graph, k 7→ k, Nat 7→ Nat,
Node[k] 7→ Node, Path[k] 7→ Path, Pos 7→ Pos,

57

Route[k] 7→ Route, Sequence[Edge[k]] 7→ List [Edge],
Sequence[Node[k]] 7→ List [Node],
EmptySeq : Sequence[Edge[k]] 7→ [] : List [Edge],
EmptySeq : Sequence[Node[k]] 7→ [] : List [Node],
head : Sequence[Edge[k]] →? Edge[k] 7→ first : List [Edge] →? Edge,
last : Sequence[Edge[k]] →? Edge[k] 7→ last : List [Edge] →? Edge,
tail : Sequence[Edge[k]] →? Sequence[Edge[k]] 7→ rest : List [Edge] →? List [Edge],
head : Sequence[Node[k]] →? Node[k] 7→ first : List [Node] →? Node,
last : Sequence[Node[k]] →? Node[k] 7→ last : List [Node] →? Node,
tail : Sequence[Node[k]] →? Sequence[Node[k]] 7→ rest : List [Node] →? List [Node],
connected 7→ connected

C.2 Tramway Route Graph Specifications

The specification GenGraph, instantiated here, is presented in Appendix C.1 on page 56.

spec TramDevices_RouteGraph =
GenGraph[sort TDevices]

then sorts ActivePoint, JointPoint, Sensor, Signal, AuxSegment, Segment,
SignalSegment, PointSegment

generated type Point ::= sorts ActivePoint, JointPoint
generated type Node[TDevices] ::= sorts Sensor, Signal, Point
free type Edge[TDevices] ::= sorts Segment, AuxSegment
free type AuxSegment ::= sorts SignalSegment, PointSegment
sorts SignalSegment = {e : Edge[TDevices]

• source(e) ∈ Sensor ∧ target(e) ∈ Signal };
PointSegment = {e : Edge[TDevices]

• (source(e) ∈ JointPoint ∧ target(e) ∈ Sensor)
∨ (source(e) ∈ Signal ∧ target(e) ∈ ActivePoint) };

Segment = {e : Edge[TDevices]
• (source(e) ∈ Sensor ∧ (target(e) ∈ Sensor ∨ target(e) ∈ JointPoint))
∨ (source(e) ∈ ActivePoint ∧ target(e) ∈ Sensor) }

pred __crosses__ : Edge[TDevices] × Edge[TDevices]
∀ e1, e2 : Edge[TDevices] • e1 crosses e2 ⇒ e2 crosses e1
free type ActivePointState ::= straight | left | right
sorts Entry [TDevices], Course[TDevices]
ops entry : Edge[TDevices] → Entry [TDevices];

pointDirection : Entry [TDevices] →? ActivePointState;
course : Edge[TDevices] →? Course[TDevices];
maxSpeed, duration : Course[TDevices] → Nat

∀ e : Edge[TDevices]
• e ∈ Segment ∧ source(e) ∈ ActivePoint ⇔ def pointDirection(entry(e))
• def course(e) ⇔ e ∈ Segment

spec TramNetwork_RouteGraph =
GenGraph[sort TNetwork] with Edge[TNetwork] 7→ TrackSegment

then sorts SignalSensor, SimpleSensor
free type Node[TNetwork] ::= sorts SignalSensor, SimpleSensor
sorts TramRoute = {r : Route[TNetwork]

• startOf (r) ∈ SimpleSensor
∧ target(head(r)) ∈ SignalSensor
∧ ∀ e : TrackSegment
• hasElem(tail(r), e)
⇒ source(e) ∈ SimpleSensor ∧ target(e) ∈ SimpleSensor };

SignalTrackSegment, JoinTrackSegment < TrackSegment

58

preds __exclusionConflictWith__(r1, r2 : TramRoute) ⇔
(target(head(r1)) = target(head(r2)) ∨ last(r1) = last(r2)) ∧ ¬ r1 = r2

__crosses__ : TrackSegment × TrackSegment ;
__crossConflictWith__ : TramRoute × TramRoute

free type SignalState ::= straight | left | right | stop
free type JoinPriority ::= main_track | incoming_track
sorts Entry [TNetwork], Exit [TNetwork]
ops entry : SignalTrackSegment → Entry [TNetwork];

exit : JoinTrackSegment → Exit [TNetwork];
signalSetting : Entry [TNetwork] → SignalState;
priority : Exit [TNetwork] → JoinPriority

∀ e, e’ : TrackSegment • e crosses e’ ⇒ e’ crosses e
∀ r1, r2 : TramRoute
• r1 crossConflictWith r2 ⇔

∃ n_e1, n_e2 : TrackSegment
• hasElem(r1, n_e1) ∧ hasElem(r2, n_e2) ∧ n_e1 crosses n_e2

spec Devices_to_TrackSegments =
PlaceAbstraction [TramDevices_RouteGraph fit

Kind1 7→ TDevices, Route[Kind1] 7→ Route[TDevices],
Path[Kind1] 7→ Path[TDevices]]
[TramNetwork_RouteGraph fit
Kind2 7→ TNetwork, Edge[Kind2] 7→ TrackSegment,
Route[Kind2] 7→ Route[TNetwork],
Path[Kind2] 7→ Path[TNetwork]]

then ∀ g1 : Graph[TDevices]; g2 : Graph[TNetwork];
sigSeg : SignalSegment ; poiSeg : PointSegment ;
sig_n : Signal ; seg : Segment

• mapNode(source(sigSeg)) = mapNode(target(sigSeg)) %(places_con_SignalSeg)%
• mapNode(source(poiSeg)) = mapNode(target(poiSeg)) %(places_con_PointSeg)%
• mapNode(sig_n) ∈ SignalSensor %(Signal_SignalSensor)%
• ¬ def mapEdge(sigSeg)
• ¬ def mapEdge(poiSeg)
• def mapEdge(seg) ∧ mapEdge(seg) ∈ TrackSegment
• source(seg) ∈ ActivePoint ⇒ mapEdge(seg) ∈ SignalTrackSegment
• target(seg) ∈ JointPoint ⇒ mapEdge(seg) ∈ JoinTrackSegment
pred __crosses__(d_e1, d_e2 : TrackSegment) ⇔

∃ e1, e2 : Edge[TDevices]
• d_e1 = mapEdge(e1) ∧ d_e2 = mapEdge(e2) ∧ e1 crosses e2

59

C.3 Specification of Linked List
spec List[sort Elem] =

free type List [Elem] ::= [] | __::__(Elem; List [Elem])
op __++__ : List [Elem] × List [Elem] → List [Elem]
∀ K, L, L1, L2 : List [Elem]; x, y, z : Elem
• [] ++ K = K %(concat_nil_List)%
• x :: L ++ K = x :: (L ++ K) %(concat_NeList_List)%
• x :: (L1 ++ y :: L2 ++ [z]) = (x :: L1 ++ y :: L2) ++ [z]

%(shift brackets)% %implied
• [x] ++ [y] = [x, y] %(concat singletons)% %implied

spec LinkedList [sort Elem
pred link : Elem × Elem] =

List[sort Elem]
then pred LinkedList : List [Elem]

∀ K : List [Elem]; x, y : Elem
• LinkedList([]) %(empty list is linked)%
• LinkedList([x]) %(single element list is linked)%
• LinkedList(x :: y :: K) ⇔ link(x, y) ∧ LinkedList(y :: K)

%(head elements are linked and the rest is linked
=> the whole is linked)%

then %implies
∀ x, y, z : Elem; K : List [Elem]
• link(x, y) ⇔ LinkedList([x, y]) %(a link implies a linked list)%
• ∀ L1, L2 : List [Elem]
• ∀ x : Elem
• LinkedList(x :: (L1 ++ [y])) ∧ LinkedList(y :: (L2 ++ [z]))
⇒ LinkedList(x :: (L1 ++ y :: L2 ++ [z]))

%(if a linked list ends in an element which is the head of another linked list
the concatanation of these is also linked)%

60

Accumulated Papers

	List of Figures
	List of Tables
	Introduction
	Methodology: How to Develop Ontologies in Casl
	Origin of Casl
	Strongly Typed Ontologies
	Structuring of Ontologies
	Summary

	Relation of Ontologies in FOL and DL
	Casl-DL --- A Description Logic Casl Extension
	Comorphisms Relating OWL DL and Casl-DL
	Approximation of FOL Theories by Description Logic Theories
	Summary

	Tool Support for Ontologies in Casl
	Features of Hets for Ontologies in Casl
	Proof Support for Casl with Automated Theorem Proving Systems
	Summary

	Examples of Ontologies in Casl
	Ontology for Wayfinding
	Route Graph Ontologies
	Dolce in Casl
	Route Graph Approximation
	Summary

	Conclusion
	Bibliographical Remarks

	Publications by the Author
	Refereed Publications
	Other Publications

	References
	Appendix
	Predefined Casl-DL Datatypes
	Knowledge Compilation Examples
	Complete Reification Example
	Complete Approximation Example

	Specifications Related to Route Graphs
	Revised Graph Specifications
	Tramway Route Graph Specifications
	Specification of Linked List

	Accumulated Papers

