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Abstract: The purpose of this paper is threefold:
(1) to show a methodology for introducing formality step-by-step, starting from a “light-weight” ontology,
(2) to apply it to the generic Route Graph model, instantiated here to Tramway Networks, and
(3) to demonstrate that separation of concerns into layers of abstraction and application of generic formal
notions such as graph abstraction lead to a useful decomposition of safety properties.
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1. INTRODUCTION

Route Graphshave been introduced as a general
concept (Werneret al., 2000), to be used for nav-
igation by several agents in a variety of scenar-
ios such as humans using railway, underground,
road or street networks, as travellers, car drivers
or pedestrians. Each application scenario or kind
of Route Graph will introduce special attributes on
the general structure in a hierarchy of refinements.

Tramway Devices and Networks.In this pa-
per the Route Graph concepts are used to model a
tramway network as described in (Haxthausen and
Peleska, 2002) and its static safety requirements.
Their example of a Tramway Network Description
in Fig. 1 corresponds to the extract from aTramDe-
vices Route Graphin Fig. 2. In addition to this
detailed Devices level we will model an abstrac-
tion, the TramNetwork Route Graphwhich only
contains tram sensors, signals and other user infor-
mation, and the relevant tracks to tackle exclusion
conflicts. Thus different levels of detail are sep-
arated out; safety requirements are expressed at a
high level of abstraction.

Abstraction and Refinement.The two levels
are related by an abstraction relation – in fact the
abstract TramNetwork Route Graph can be derived
automatically from the TramDevices Route Graph,
which might in turn be derived from a concrete
layout in a CAD representation. Alternatively,
planning of a Tramway Network may start at the
abstract level, where safety requirements may be
checked for an abstract layout, and further devel-
opment may then proceed by automated refine-
ments, introducing detail as required.

Ontologies.The terminology and knowledge
represented at the distinct levels of TramDevices
and TramNetwork is different. As we are dealing
with abstract concepts and interrelations between
them, and want to standardise or mediate between

different uses of terminology, we are using anon-
tologyasthecentral definitional approach and data
structure for Route Graphs. An ontology may pro-
vide a first “light-weight” view of the concepts in-
volved; in the future, the ontology for the even-
tual tram driver containing information about max-
imally allowed speed etc. might even be separated
out into yet another ontology level for a specialised
purpose; similarly tram users would be interested
in derived information about schedules, etc. (not
considered here).

We intend to show that an ontological ap-
proach is suitable for both: to define the generic
concept of Route Graphs, and to instantiate it for a
particular scenario in detail, leading to a concrete
data structure. Moreover, the example of Route
Graphs demonstrates that adequateformalisation
of ontologiescan be introduced step by step in this
process, cf. also (Krieg-Brückneret al., 2004c).

Structure of the Paper.In Sect. 2. we intro-
duce the basic notions of Route Graphs, followed
by a “light-weight” formalisation using ontologies
in Sect. 3.. In Sect. 4., these concepts are for-
mally specified in CASL and, in Sect. 5., instan-
tiated to tramways at two levels of abstraction: the
TramDevices level, introducing concepts such as
points, sensors and signals as nodes, and theTram-
Network level, which abstracts away from seg-
ments between points to track segments between
simple sensors and junctions including signals. Fi-
nally, we show in Sect. 5.4 that abstraction leads
to a useful separation of concerns to tackle various
safety properties.

2. ROUTE GRAPHS

2.1 Sample Scenarios

Fig. 3 shows some sample navigation scenarios.
We may distinguish between navigation in systems
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Fig. 1. Tramway Network Description

of passages (e.g. road networks or corridors) or
in areas of open space (e.g. on a lake; on a
market place, surrounded by buildings; in a hall);
In the former, our course is more or less centred
within enclosing borders (e.g. curbstones, walls)
and guided by routemarks along the way; in the
latter the course is given by a vector to the target
and we are guided by global landmarks (e.g. a
lighthouse, the sun or a church’s spire), cf. (Krieg-
Brückneret al., 1998).

While the concept ofRoute Graphs was orig-
inally introduced to mediate terminology between
artificial intelligence and psychology in spatial
cognition (Werneret al., 2000), scenarios are not
restricted to human users. Route Graphs are also
intended for interaction between service robots,
such as the Bremen autonomous wheelchair Rol-
land, and their users, as well as between robots,
for example as a compact data structure for on-
line communication in an exploration scenario
(Krieg-Brückneret al., 2004c; Krieg-Brückneret
al., 2004b; Rosset al., 2004). Others are applying
the Route Graph concepts to public transportation
networks (Timpf, submitted).

In this paper, we will show the application to
Tramway Networks. The tramway scenario poses

similar problems in human-machine interaction as
the service robot scenario, such as the shared con-
trol problem described e.g. in (Krieg-Brückneret
al., 2004b; Rosset al., 2004) between driver and
automated system. Here we will concentrate on
the network itself and its safety, based on the ap-
proach by (Haxthausen and Peleska, 2002).

We will now briefly introduce the general
concepts of Route Graphs; more detail will follow
in Sect. 3..

2.2 Segments

An edge of a Route Graph is directed from a source
node to a target node. We call an edge a (route)
segmentwhen it has three additional attributes: an
entry, acourseand anexit. Exactly what informa-
tion is associated with these attributes is specifi-
cally defined for each Route Graph instantiation of
a particularkind. For example, an entry to a high-
way may denote a particular ramp, an exit another,
while the course is just characterised by a certain
length. Additional information may be added, e.g.
that the course has three lanes. As another exam-
ple, the entry and course for a boat route segment
may be given as a vector in geo-coordinates, while
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Fig. 3. Examples of Routes

the exit into a harbour may specify a particular ori-
entation along a quay.

For tramways, the course is e.g. associated
with the allowed speed; the entry at a “decision
point” is guarded by a signal and requires correct
setting of the point; an exit requires particular at-
tention on behalf of the tram driver when differ-
ent incoming track segments (and trams!) join and
right-of-way may have to be considered (this is the
case in Bremen at least).

2.3 Places

A node of a Route Graph, called aplace, corre-
sponds to a decision point between branches. It has
anorigin with a particular position and orientation.
Thus each node has its own “reference system”; it
may, but need not, be rooted in a (more) global
reference system, such as a 3D geo-system. The
origin becomes particularly important in a union
of routes or Route Graphs, whenplace integration
is required; cf. different origins (denoted by lit-
tle crosses, with a direction) for different routes in
Fig. 3, c – these would have to be integrated into
one.

The example of tramways shows that a global
reference system is not really required; more im-
portant for the driver are the course, i.e. the ego-
centric scenario along the track, as well as the sig-
nals, the setting of the points, etc.

3. ONTOLOGY OF ROUTE GRAPHS

Ontologies.In an ontology for Tramway Networks
and Route Graphs, the conceptual terminology is
modelled by classes, their interrelation by (decla-
rations of) relations, and the knowledge contained
in actual networks by objects of these classes, re-
lated by applications of the relations. We refer to
such ontologies as “light-weight” ontologies since
they offer a first overview of the concepts, “unbur-
dened” by formalisation; they will be presented as
diagrams in this paper.

Fig. 4 shows the taxonomy and some rela-
tions of an ontology extract for graphs, cf. (Krieg-
Brückneret al., 2004c). Boxes denote classes, and
arrows with hollow tips denote thesubclassOf(“is
a”) relationships between classes. The other ar-
rows denote either binary relations or unary func-
tions. Objects of such classes could be added in a
separate diagram.

Fig. 4 introduces the notion of a (generic)
Graph related to itsEdges andNodes byhasEdge
andhasNode. EachEdgeis related by a function
to its source and target Node. SequenceEdge
has the partial functionshead and tail. Path is
a specialisation ofSequenceEdge, andRouteof
Path(cf. Fig. 5 for the axioms in CASL).

Note that, at the level of an ontology speci-
fication, the formalisation is often different from



a conventional approach in mathematics or com-
puter science, i.e. in specification or programming
languages: The latter specification formalisms
would introduce a graph as a pair of a set of nodes
and a set of edges; in the ontology approach only
the observation that a graph is related to its compo-
nents is given: a graph is a set of edges and nodes.
This approach seems more natural when only ter-
minology is introduced; the underlying data struc-
ture is not relevant yet and will be introduced in
a later development step, cf. (Krieg-Brückneret
al., 2004c).
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4. FORMALISATION IN CASL

4.1 CASL

The Common Algebraic Specification Language,
CASL, is an international development of the
“Common Framework Initiative” of IFIP WG1.3
“Foundations of System Specification” (Astesiano
et al., 2002; Mosses, 2004). It has been officially
approved by IFIP WG1.3 and thus serves as a
de-facto standard for algebraic specification.

CASL covers full First-Order Logic (FOL)
plus predicates, partial and total functions, and
subsorting. Basic Specificationsconsist of dec-
larations of sorts, operations (ops), and predi-
cates (preds), along with definitions of types, ab-
breviating standard data structures, and FOL ax-
ioms. Structured Specificationsallow the reuse
of named specifications and the instantiation of
parameterised specifications, combined with var-
ious ways for combining and extending specifi-
cations (“then”), hiding, revealing and renaming

of symbols (“with ”). Specifications are collected
in namedlibraries for reuse in other specification
contexts, e.g. the extensive library of predefined
Basic Specifications.

specGENGRAPH [sort Kind] =
sorts Graph[Kind], Node[Kind], Edge[Kind]
predshasNode: Graph[Kind] × Node[Kind];

hasEdge: Graph[Kind] × Edge[Kind]
ops source, target : Edge[Kind] → Node[Kind]
∀ e: Edge[Kind]; s, t: Node[Kind]; g: Graph[Kind]
• hasEdge(g, e) ∧ source(e) = s∧ target(e) = t ⇒

hasNode(g, s) ∧ hasNode(g, t)
then GENSEQUENCE[sort Edge[Kind]

fit Elem 7→ Edge[Kind]]
with head, tail, EmptySeq, freq

then GENSEQUENCE[sort Node[Kind]
fit Elem 7→ Node[Kind]]

then ops sources, targets: Sequence[Edge[Kind]] →
Sequence[Node[Kind]]

. . .
pred connected(l: Sequence[Edge[Kind]]) ⇔

(∀ e1, e2: Edge[Kind]
• head(l) = e1∧ head(tail(l)) = e2⇔

target(e1) = source(e2)) ∧
connected(tail(l))

sorts Path[Kind] =
{l: Sequence[Edge[Kind]] • connected(l)};

Route[Kind] =
{p: Path[Kind]
• (∀ n: Node[Kind]
• freq(sources(p), n)≤ 1) ∧

(∀ e: Edge[Kind] • freq(p, e)≤ 1)}
ops startOf(l: Sequence[Edge[Kind]]):

Node[Kind] =
source(head(l));

endOf(l: Sequence[Edge[Kind]]):
Node[Kind] =

target(last(l))
. . .

Fig. 5. Generic Graph Ontology

For the formalisation of ontologies, (sub)sorts are
used to form the taxonomic hierarchy instead of
untyped unary predicates for the subclassOf rela-
tionship; binary relations are extended to n-ary re-
lations, if required, and represented as predicates
or functions as appropriate; FOL axioms formalise
the relations (L̈uttich and Mossakowski, 2004).

4.2 Route Graphs in CASL

We start the formalisation in CASL at the level of
the ontology in Fig. 4 with a loose (requirement)
specification of generic graphs, see Fig. 5. The
specification includes axioms that determine the
properties of subsorts of sequences of edges by
predicates and relations. Paths in Route Graphs
are defined in a weaker way than paths in ordinary
graph theory: an edge may be included more than
once in a path. Routes have this restriction, and
branching is not allowed. The instantiations below
are all based on this generic specification.
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The next step would be the development of a more
data type oriented specification. There the Route
Graph and its auxiliary data structures like lists
of segments and places are based on the basic li-
braries of CASL approved by COFI. This implies
a proof obligation that the axioms of the loose on-
tology (requirement) specification still hold in the
data type oriented specification. In a third step a
Haskell programm may be derived from the induc-
tive definitions found in the second specification,
see (Krieg-Br̈uckneret al., 2004c).

5. INSTANTIATIONS FOR TRAMWAYS

The different aspects of Tramway Networks are
separated into two layers of Route Graphs, related
by an abstraction function. The detailed layer is
called TRAMDEVICES ROUTEGRAPH and is dis-
cussed in Sect. 5.1. The abstract layer TRAMNET-
WORK ROUTEGRAPH only contains sensors (pos-
sibly with signals) and segments between them; it
is described in Sect. 5.2. The abstraction function
between these graphs is presented in Sect. 5.4. Fi-
nally, route conflicts, signal settings and point po-
sitions are defined as predicates over routes in the
TRAMNETWORK ROUTEGRAPH in Sect. 5.5.

5.1 TramDevices Route Graph

As an introduction to the terms used in this section,
Fig. 6 displays the taxonomy and some relations.
Fig. 7 shows the formalisation of the TramDevices
Route Graph in CASL based on the instantiation of
the GENGRAPH specification (cf. Fig. 5). Part of
the specified Route Graph is visualized in Fig. 2.

Signals, points and sensors form the nodes of
the TramDevices Route Graph. They are declared

as subsorts (subconcepts) ofNode[TDevices].
Points are further specialized intoJointPoint and
ActivePoint; only the latter have to be controlled
for the selection of a route.

specTRAMDEVICES ROUTEGRAPH =
GENGRAPH [sort TDevices]

then
sorts ActivePoint, JointPoint, Sensor, Signal,

AuxSegment
generated typesPoint ::=

sorts ActivePoint, JointPoint;
Node[TDevices] ::=

sorts Sensor, Signal, Point
free typesEdge[TDevices] ::=

sorts Segment, AuxSegment;
AuxSegment::=

sorts SignalSegment, PointSegment
sortsSignalSegment=

{e: Edge[TDevices]
• source(e) ∈ Sensor∧ target(e) ∈ Signal};

PointSegment=
{e: Edge[TDevices]
• (source(e) ∈ JointPoint∧

target(e) ∈ Sensor) ∨
(source(e) ∈ Signal∧

target(e) ∈ ActivePoint)};
Segment=
{e: Edge[TDevices]
• (source(e) ∈ Sensor∧

(target(e) ∈ Sensor∨
target(e) ∈ JointPoint)) ∨

(source(e) ∈ ActivePoint∧
target(e) ∈ Sensor)}

free typeActivePointState::= straight| left | right
sorts Entry[TDevices], Course[TDevices]
ops entry: Edge[TDevices] → Entry[TDevices];

pointDirection: Entry[TDevices] →?
ActivePointState;

course: Edge[TDevices] →? Course[TDevices];
maxSpeed, duration: Course[TDevices] → Nat

∀ e: Edge[TDevices]
• (e∈ Segment∧ source(e) ∈ ActivePoint)⇔

def pointDirection(entry(e as Edge[TDevices]))
• def course(e)⇔ e∈ Segment
pred crosses : Edge[TDevices] × Edge[TDevices]
∀ e1, e2: Edge[TDevices]
• e1 crosses e2⇒ e2 crosses e1
• ¬ e1 crosses e1

end

Fig. 7. TramDevices Route Graph in CASL

Edge[TDevices] is specialised into subsorts:Sig-
nalSegmentandPointSegmentare auxiliary edges
to connect the devices needed along a track;Seg-
mentmay carry additional information, e.g. an al-
lowed maximal speed and a duration associated
with the course along the segment (not shown
here). All subsorts ofEdge[TDevices] are defined
in terms of their allowed sources and targets. Only
Segments originating from anActivePointhave an
Entry that carries the information in which direc-
tion the point has to be switched before the seg-
ment may be entered. An exit before aJointPoint
requires particular attention on behalf of the tram
driver (at least in Bremen) for the potential right-
of-way of incoming trams on other incoming track
segments; this is not considered here.
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5.2 TramNetwork Route Graph

An abstract Route Graph layer on top of
the TramDevices Route Graph models only
TrackSegments and sensors (corresponding to
Node[TNetwork]), divided in two groups (cf.
Fig. 8 and Fig. 9):

• SimpleSensors to recognise passing trams;

• SignalSensors with additional information
about signals.

TrackSegmenthas two specialisations:

• a SignalTrackSegment(denoted by a
dashed/dotted purple arrow) originating
from SignalSensorplaces with anEntry
that denotes theSignalStatesetting needed
to enter thisSignalTrackSegment;

• a JoinTrackSegment(denoted by a dashed
green arrow) with anExit that draws atten-
tion to the potential right-of-way of incom-
ing trams on other incomingJoinTrackSeg-
ments, see the TramDevices Route Graph
description above.

Information attached to a course is as above.
A TramRouteis a specialisedRoutethat starts

at a SimpleSensorfollowed by a SignalSensor
(cf. (Haxthausen and Peleska, 2002) for this def-
inition).

specTRAMNETWORK ROUTEGRAPH =
GENGRAPH [sort TNetwork]
with Edge[TNetwork] 7→ TrackSegment

then
sorts SignalSensor, SimpleSensor
free typeNode[TNetwork] ::=

sorts SignalSensor, SimpleSensor
sorts TramRoute=

{r: Route[TNetwork]
• startOf(r) ∈ SimpleSensor∧

target(head(r)) ∈ SignalSensor∧
(∀ e: TrackSegment
• hasElem(tail(r), e)⇒

source(e) ∈ SimpleSensor∧
target(e) ∈ SimpleSensor)};

SignalTrackSegment, JoinTrackSegment<
TrackSegment

free typeSignalState::= straight| left | right | stop
sort Entry[TNetwork], Exit[TNetwork]
ops entry: SignalTrackSegment→

Entry[TNetwork];
exit : JoinTrackSegment→ Exit[TNetwork];
signalSetting: Entry[TNetwork] →

SignalState
preds crosses : TrackSegment× TrackSegment;

crossingConflictWith ,
exclusionConflictWith:
TramRoute× TramRoute

∀ e, e′: TrackSegment; r1, r2: TramRoute
• e crossese′ ⇒ e′ crosses e
• ¬ e crosses e
• r1 crossingConflictWith r2⇔
∃ n e1, n e2: TrackSegment
• hasElem(r1, n e1) ∧ hasElem(r2, n e2) ∧

n e1 crosses ne2
• r1 exclusionConflictWith r2⇔

(target(head(r1)) = target(head(r2)) ∨
last(r1) = last(r2)) ∧
¬ r1 = r2;

end
Fig. 9. TramNetwork Route Graph in CASL

5.3 Abstraction

For the abstraction of more detailed Route Graphs
to simplified ones, two generic abstraction func-
tions are specified in CASL, cf. Fig. 13. Sequences
of edges without branches may be simplified to
a single edge bysimplyifyEdges. A weak surjec-
tive graph homomorphism (abstractPlaces) is pro-
vided to abstract nodes with a common feature
to a single node; such a common feature could
be “nodes in the same area”. It is weak in the
sense that all nodes of the source graph are mapped
into the abstracted node, but only those edges are
mapped that have source and target nodes that are
mapped to different abstracted nodes. Note that
attributes attached to edges of the graph to be ab-
stracted are only considered in the mapping if they
are attached to edges that are mapped.

As a refinement, one might want to insist
that for every incoming edge into the graph to
be abstracted there is a path to every outgoing
edge; these edges will correspond to incoming and
outgoing edges of the abstract node.
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5.4 Abstraction of TramDevices Route Graph

The TramNetwork Route Graph ofTrackSegments
can be derived from the TramDevices Route Graph
using the abstraction functions provided above.
This is shown for an example in Fig. 11 in an
informal way with dashed/dotted lines. Fig. 12
shows the ontology with abstraction relations con-
cerning nodes. In an instantiation ofMAPNODE
(cf. the CASL specification in Fig. 14),mapNode
andmapEdgeare refined in a domain-specific way.
This generates a proof obligation that the axioms
of MAPNODE still hold.

5.5 Safety Predicates on Routes

This section describes the safety predicates in the
Route Graph specifications of the previous sec-
tions, cf. Fig. 7 and Fig. 9.

In Fig. 7, an infix predicatecrossesis very
loosely specified on a pair ofEdge[TDevices]s.
A proper definition would have to be based on

some at least qualitative if not quantitative spa-
tial relations between their source and target nodes
– for example, using the dipole calculus (Dylla
and Moratz, 2004). The information about actual
crossings in a TramDevices Route Graph might be
derived from a detailed CAD description of the ac-
tual spatial layout. It is carried over to a corre-
sponding overloaded predicatecrosseson Track-
Segments in the abstracted TramNetwork Route
Graph by the abstraction functions, cf. Fig. 14.

Alternatively, thecrossespredicate may be
defined directly in the abstract TramNetwork
Route Graph when working in the opposite di-
rection by refinement; in this case, the abstract
spatial layout must be sufficiently well-defined to
establish thecrossesrelation.

On this basis, the predicatecrossingCon-
flictWith may be defined as the first static safety
predicate, see Fig. 9. It is defined on twoTram-
Routes and holds if twoTrackSegments exist, one
in each route, which are in thecrossesrelation.
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specPLACEABSTRACTION [GENGRAPH [sort Kind1]]
[GENGRAPH [sort Kind2]]

given NAT =
ops abstractPlaces: Graph[Kind1] → Graph[Kind2];

mapNode: Node[Kind1] → Node[Kind2];
mapEdge: Edge[Kind1] →? Edge[Kind2]

∀ e K1: Edge[Kind1]; e K2: Edge[Kind2];
n K1: Node[Kind1]; n K2: Node[Kind2];
g K1: Graph[Kind1]; g K2: Graph[Kind2]

• def mapEdge(e K1)⇔
¬mapNode(source(e K1)) = mapNode(target(e K1))

• g K2 = abstractPlaces(g K1)⇒
(hasEdge(g K1, e K1) ∧ def mapEdge(e K1)⇒
source(mapEdge(e K1)) = mapNode(source(e K1)) ∧
target(mapEdge(e K1)) = mapNode(target(e K1)) ∧
hasEdge(g K2, mapEdge(e K1))) ∧

(∃ n1, n2: Node[Kind1]; e1, e2: Edge[Kind1]
• mapNode(n1) = mapNode(n2) ∧

hasNode(g K1, n1) ∧ hasNode(g K1, n2) ∧
hasEdge(g K1, e1) ∧ hasEdge(g K1, e2) ∧
target(e1) = n1∧ source(e2) = n2⇒
(∃ r: Route[Kind1]
• pathIn(r, g K1) ∧ startOf(r) = n1∧

endOf(r) = n2))
• g K2 = abstractPlaces(g K1)⇔

(hasNode(g K2, n K2)⇔
∃ n1: Node[Kind1]
• hasNode(g K1, n1) ∧ mapNode(n1) = n K2) ∧

(hasEdge(g K2, e K2)⇔
∃ e1: Edge[Kind1]
• hasEdge(g K1, e1) ∧mapEdge(e1) = e K2)

end

Fig. 13. Generic Place Abstraction



specDEVICES TO TRACKSEGMENTS=
PLACEABSTRACTION

[TRAMDEVICES ROUTEGRAPH
fit Kind1 7→ TDevices,

Route[Kind1] 7→ Route[TDevices],
Path[Kind1] 7→ Path[TDevices]]

[TRAMNETWORK ROUTEGRAPH
fit Kind2 7→ TNetwork,

Edge[Kind2] 7→ TrackSegment,
Route[Kind2] 7→ Route[TNetwork],
Path[Kind2] 7→ Path[TNetwork]]

then ∀ g1: Graph[TDevices]; g2: Graph[TNetwork];
sigSeg: SignalSegment; poiSeg: PointSegment;
sig n: Signal; seg: Segment

• mapNode(source(sigSeg)) =
mapNode(target(sigSeg))

• mapNode(source(poiSeg)) =
mapNode(target(poiSeg))

• mapNode(sig n) ∈ SignalSensor
• ¬ def mapEdge(sigSeg)
• ¬ def mapEdge(poiSeg)
• def mapEdge(seg) ∧

mapEdge(seg) ∈ TrackSegment
• abstractPlaces(g1) = g2⇔

(∀ n1: Node[TDevices]
• hasNode(g1, n1)⇔

hasNode(g2, mapNode(n1))) ∧
(∀ e1: Edge[TDevices]
• def mapEdge(e1)⇒

(hasEdge(g1, e1)⇔
hasEdge(g2, mapEdge(e1)) ∧
hasNode(g2, source(mapEdge(e1))) ∧
hasNode(g2, target(mapEdge(e1)))))

• source(seg) ∈ ActivePoint⇒
mapEdge(seg) ∈ SignalTrackSegment

• target(seg) ∈ JointPoint⇒
mapEdge(seg) ∈ JoinTrackSegment

pred crosses (d e1, d e2: TrackSegment)⇔
∃ e1, e2: Edge[TDevices]
• d e1= mapEdge(e1) ∧

d e2= mapEdge(e2) ∧ e1 crosses e2;
end

Fig. 14. Abstraction from TramDevices in CASL

Let us consider the TramNetwork Route Graph ex-
ample in Fig. 10. We assume that a tram intends to
use the route “24/21” from G24.1 to G21.1 (right
→ lower left corner). Then this route “24/21” is in
crossingConflictWithroute “22/23” from G22.1 to
G23.1 (bottom→ top); this conflict can be avoided
by setting signal S21 to “right” (or “stop”) – set-
ting the corresponding point to “right” increases
safety. The correspondingcrossingConflictWith
route “20/25” from G20.1 to G25.0 (upper left cor-
ner→ right) could similarly be avoided by setting
signal (and point) S20 to “straight”.

However, then a new conflict arises: route
“24/21” is in exclusionConflictWithroute “20/21”
from G20.1 to G21.1 (top→ bottom) since they
join at G21.0 and share the last segment. To avoid
this, signal S20 must be set to “stop” (alternatively,
tram drivers must watch out for other trams and
obey the local traffic rules, as in Bremen).

The last kind of conflict, e.g. that route
“20/25” is in exclusionConflictWithroute “20/21”,
occurs when two routes share a starting segment;
the two routes can obviously only be used exclu-
sively in either of the forking directions, with ap-
propriate setting of signal and point S20.

6. CONCLUSION

“Light-Weight” Ontologies. We have described
the instantiation of Route Graphs to Tramway Net-
works and their safety requirements. A “light-
weight” ontology was presented to introduce the
concepts of generic Route Graphs and Tramway
Networks for a first understanding of the termi-
nology used in this paper and of the conceptual
interrelation. Such as presentation, particularly
in graphical form, is easier to grasp than a com-
plete formalisation. The similarity in appearance
to a particular kind of UML class diagram is in-
tended (for a translation see below); however,
we are interested in linking to ontology standards
such as OWL (Bechhoferet al., 2004; L̈uttich and
Mossakowski, 2004; L̈uttich et al., 2004). Such
“light-weight” ontologies may then also be used
to help in documentation and to interrelate doc-
uments, cf. (Krieg-Br̈uckneret al., 2003; Krieg-
Brückneret al., 2004a).

Formalisation of Ontologies inCASL. A more
precise definition of the ontologies has then been
given in CASL. The specifications are all well-
formed and statically checked by tools for type
correctness; the LATEX-representation for pretty
formatting is automatically generated by a tool
from the (already readable) ASCII syntax.

For a separation of concerns, the various as-
pects of a Tramway Network have been modeled
in two layers of Route Graphs, related by an ab-
straction function. The TramDevices layer, pos-
sibly automatically generated from a CAD based
network layout description, aims at engineers con-
cerned with the particular placement of the vari-
ous devices. The abstracted version, the TramNet-
work layer, where only signals, sensors and track
segments are present, aims at engineers who have
to define tram routes, check for their consistency,
define scheduling etc. (this might be a future ex-
tension). This abstraction preserves the relevant
static features that are needed to check the safety
requirements for tramway routes.

On the basis of the specifications in this pa-
per, a route maintanance system could be designed
in CASL; with the tools available for CASL, the
axioms of the loose specifications given could
be proved to hold in the design specification.
The design specification carries over the static
safety requirements; Signal Setting Tables and
Point Position Tables may be derived from the
tram routes. From the design specification, an ex-
ecutable Haskell programm could then be derived
automatically, cf. (Krieg-Br̈uckneret al., 2004c).

Extension by Modal Logic.Another future
step would be to extend the formalisation pre-
sented in this paper with modal logic; the dy-
namic aspects of points and signals could then
be modeled as well. This is also possible within
the CASL framework, as there is an extension of
CASL, called ModalCASL, which extends CASL’s
first-order logic with modal logic. States corre-
spond to possible worlds in the Kripke semantics



of modal logic. State transitions caused by an ac-
tion passtrain G20 0 would be specified by us-
ing pre- and post-conditions, e.g.G20 0 = n ⇒
[passtrain G20 0]G20 0 = n + 1, whereG20 0
is a flexible constant having different values in dif-
ferent worlds.

In this modal logic framework, hazards could
also be specified, based on the predicatecrossing-
ConflictWithdefined onTramRoutes, as follows:

r1 hazard r2 ⇔
r1 crossingConflictWith r2 ∧
counterState(target(head(r1))) > 0 ∧
counterState(target(head(r2))) > 0 ∧
pointSate(entry(head(r1))) =

signalState(target(head(r1))) ∧
pointState(entry(head(r2))) =

signalState(target(head(r2)))

wherehazard is a flexible predicate,counter-
State is a flexible operation representing the state
of the sensor given as argument (greater zero
means at least one train has passed since last re-
set) andsignalState andpointState represent
the direction given by the signal and the locked
point direction. The first three conjuncts express
that two trams have reached the sensors of the en-
tries of conflicting track segments; the last two
conjuncts express that the track switches are set in
such positions that the trams will actually use the
conflicting segments.

Another hazard might arise from a combina-
tion of exclusion and crossing conflicts.

When a hazard (due to faulty equipment or
human error of signal neglect) is detected by sen-
sors for two passing trams, remotely triggered full
stop is the only cure.

Heterogeneous Tool Set.CASL and Modal-
CASL have been integrated with other logics in
HeterogeneousCASL, HetCASL, for which the
Heterogeneous Tool Set, HETS, (Mossakowski,
2004) provides, among other things, logic transla-
tions and connections to automatic and interactive
verification systems.

UML. It is also planned to extend HETS with
a translation link between CASL and UML, such
that e.g. the route graph ontology is mapped to a
UML class diagram, which can then be used in
connection with software engineering tools. Note,
however, that we do not consider it advisable to
start with such a UML class diagram: firstly,
the Object Constraint Language (OCL), the logic
of UML, limits quantifications to finite domains,
which means e.g. that one cannot quantify over
routes (generally, there are infinitely many routes
for a route graph) and therefore cannot express all
of our axiomatization. Secondly, the two-valued
logic of CASL is simpler than three-valued OCL,
and hence can resort to the whole body of meth-
ods and tools that have been developed for classi-
cal first-order logic.

RAISE. Future work should integrate the
present route graph specifications with exist-
ing work on specification of railway nets in the
RAISE language. The RAISE language is similar

to ModalCASL in that it can deal with states; we
prefer to use ModalCASL because it is based on
modal first-order logic that has been studied for a
long time. We consider a translation from existing
RAISE specifications to CASL to be a fruitful task
for the future.

(Bjørner, 2000) (to cite one of a number of
papers) is tailored to railway systems, a sister
domain, and uses various sorts/sets rather than
graphs, concentrating more on aspects of schedul-
ing, train plans and time tables, rather than route
graph abstractions at different levels.

A connection to the approach of (Lindegaard
et al., 2000; Haxthausenet al., 2004) (based on
RAISE, an including an implementation) also
looks promising; one difference is that they do not
use graphs, but specify observer functions stating
geographic relations between the track elements
and the allowed network topologies. Their state
transition system corresponds to Kripke models of
modal specifications in our approach.
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