
Development of Modular Ontologies in Casl

Klaus Lüttich1, Claudio Masolo2, and Stefano Borgo2

1 SFB/TR8, FB3 – Dept. of Computer Science, Universität Bremen, Germany
luettich@informatik.uni-bremen.de

2 Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy
{masolo,borgo}@loa-cnr.it

Abstract. This paper discusses the advantages of the Common Alge-
braic Specification Language (Casl) for the development of modular
ontologies. Casl not only offers logics with a limited expressivity like de-
scription logic, but also e.g. first-order logic and modal logic. The central
part of Casl is its powerful structuring mechanism, which is orthogonal
to the logical formalisms. Hence the modularization applies uniformly
to various logics and its extension Heterogeneous Casl (HetCasl) has
even constructs for the combination of different logics. Additionally, the
Heterogeneous Tool Set (Hets) is presented which enables reasoning
and manipulation of Casl specifications. By presenting a detailed ex-
ample ontology used for spatial knowledge representation the benefits of
specification in Casl are discussed. Furthermore, a comparison with the
OWL DL import mechanism is provided.

1 Introduction

In the pioneering years of applied ontology, different practitioners and research
groups started developing ontological systems. The community interested in the
perspective offered by this new line of research was admittedly small and the
researchers were working independently and with minimal interaction. Twenty
years later, we are in a period in which the now much larger and heterogeneous
community shows a deep interest in relating the different efforts. Researchers are
now aware of the complexity of ontology building, maintenance, and evolution
and they know that the achievement of semantic interoperability, fusion and
integration of different information systems is very hard, especially in collabora-
tive, distributed, and extremely dynamic environments such as, for example, the
Web. Some important research projects are focused now on the development of
methods and methodologies for addressing these problems in a more systematic
way, in an attempt to create a new discipline: ontological engineering.

Following a trend already observed in other areas (like software engineer-
ing, object-oriented programming, and enterprise production), modularization is
considered a central aspect in ontological engineering. The decomposition and
structuring of complex ontologies into simpler components, called modules, is
seen as a necessary step in order to (i) simplify the understandability, scalabil-
ity, maintenance and evolution of ontologies; (ii) allow for the reuse of modules;



and (iii) improve the performance of reasoning and inference engines as in the
case of question-answering in very large knowledge bases.

Despite the importance of modularization, the formal techniques for individ-
uating, composing, and reusing modules are still quite elementary. The definition
of module is itself problematic. Intuitively, a module is a relatively independent
and self-contained theory that encapsulates a relevant, coherent, and integral
system of interrelated concepts, i.e., for a theory to be a module, conceptual
relevance, integrity and independence are required. On the one hand, modules
can be considered as quite specific and stable theories linked to specific sub-
jects/domains or purposes [11]. On the other hand, modules can be considered
as quite general theories that can be integrated, specialized, and used in dif-
ferent domains and contexts. In this case they seem close to components as
intended in knowledge engineering [5, 1], and they have some similarities with
knowledge patterns [2], design patterns [6], and task-specific methods as used in
reusable problem-solving methods [19] in the context of procedural knowledge.
This sort of dichotomy is reminiscent of the distinction between formal and ma-
terial ontology introduced by Husserl: formal ontology deals with general ‘laws’
characterizing relations/concepts that can be applied to different domains, while
material ontology considers specific kinds of entities. In this sense, foundational
ontologies [15] deal with the formal aspects by providing very general concepts
(like event, object, quality, etc.) and relations (parthood, connection, identity,
constitution, integrity, etc.), while domain ontologies focus on the material as-
pects.

If we insist on the distinction between subject (or topic) vs. general (or foun-
dational) approaches to ontology, the modules in the first approach can be seen
as sorts of building blocks that are limited in coverage, but that completely
describe a specific domain. They can be composed with other modules (in the
same approach) in order to increase coverage. However, since different domains
can involve common general notions, a sort of alignment/integration may be
needed. Conversely, the modules in the other approach, because of their general-
ity, need to be specialized to different domains. General modules are very useful
when building ontologies from scratch because they provide conceptual tools for
domain analysis.

In this paper, we do not try to give a definition either of module or of ontology.
To guarantee the generality of our approach, in particular to include all the kinds
of modules and ontologies discussed above, we assume that both ontologies and
modules are just (perhaps very complex) logical theories. Note that we do not
constrain our work by specific languages as happens in many approaches driven
by implementation concerns (like decidability or efficiency of the system). Indeed,
often domain theories are captured in a weak language (mostly in the family
of description logics) and foundational theories are given in rich languages (like
first-order logic, perhaps with modal operators) [10, 21]. The core of this paper is
the description of a tool, called Hets, based on the language Casl [3] that allows
the specification of theories in first-order logic, modal logic, or even higher-order
logics. Notice that the module development/construction and the choice of the



modules to integrate (which are necessarily based on ontological principles and
considerations) are carefully separated from the mapping and composition of the
chosen modules.3 We concentrate on this latter issue comparing the structuring
mechanisms provided by Casl (that borrows some techniques from research in
logical studies [7], software engineering [8], and applicative concerns [9]) with
those of OWL DL. A complementary aspect that we leave out in this paper is
the description and organization of existing modules to facilitate their retrieval.
Here we assume that the user has already individuated all the modules that are
to be used.

2 Logical Foundations

This section reviews the language Casl, a heterogeneous extension of Casl and
Casl extensions for modal logic and description logic. Comments, labels and
annotations starting with a percent symbol (%) are presented in the examples,
where labels and annotations are used by Hets for the analysis. A speciality is
the mixfix syntax for identifiers, which includes, for example, infix symbols like

on .

2.1 Casl

The Common Algebraic Specification Language (Casl) [3] was developed by the
Common Framework Initiative (CoFI) for algebraic specification and develop-
ment formed by a large number of experts from various groups. The main goal
was a standardised language for the requirements and algebraic design of soft-
ware. The design of Casl has been approved by the IFIP WG 1.3 “Foundations
of System Specifications”. Though Casl has been designed for the specification
of software requirements, it is now also used for the design of ontologies in FOL
and description logic [13, 14, 12].

This paper focuses on the structuring constructs of Casl; these are quite
independent of the underlying logic. Still, we start with a brief overview of the
underlying logic followed by the introduction of the structuring concepts. The
underlying logic is often referred to as Casl in-the-small or basic specification
and it provides the specification of axioms in first-order logic (FOL) with equality
or in other logics (See Sect. 2.3 for Casl extensions). Such a basic specification
is also called theory and a theory is divided into a signature and sentences. All
symbols for predicates, total and partial functions (called operation in Casl;
hence the keyword op) and sorts have to be declared within the signature. A
declaration of predicates and functions includes a type in terms of sorts, also
called profile. Sorts are interpreted as non-empty sets. In summary, Casl offers
typed predicates and functions based on declared sorts where the correct appli-
cation of symbols in the axioms is statically determined. An example of a basic
specification of “Services located at Rooms” is presented in Fig. 1. Casl has no

3 For information on module extraction from ontologies see [22].



syntactic or semantic distinction between TBoxes and ABoxes. Still, the axioms
can be easily divided into two groups of formulas: those that have free variables
and those that have no free variables, respectively.

sorts Service, Room
pred locatedAt : Service × Room
∀ s : Service • ∃ r : Room • s locatedAt r %(Services are in rooms)%

Fig. 1. Basic Specification of “Services Located at Rooms”

Orthogonal to the Casl basic specification described above are Casl’s in-
the-large structuring constructs. Throughout the rest of this section we will use
the term symbol for identifiers of sorts and for identifiers of predicates and func-
tions with their respective profile and the term local environment for declared
symbols starting with an empty local environment. The global environment cov-
ers the names of entire specifications and views, and the manipulation of both
environments is described within the rest of this section.

Casl structuring constructs allow the specification of the modularity of li-
braries of specifications (theories) independently of the underlying logic. A file
with Casl specifications is called a library. A library consists of named speci-
fications and downloads from other Casl libraries where the specifications are
imported into the global environment of named specifications. Downloaded spec-
ifications can be renamed. All specifications introduced in this paper share the
same library header presented in Fig. 2 which denotes some optional global com-
ments by the authors and the date of the library and downloads from published
Casl libraries [3].

library RoomsAndServices

%author Klaus Lüttich, Claudio Masolo, and Stefano Borgo
%date July, August 2006

from Basic/RelationsAndOrders get
IrreflexiveRelation, AsymmetricRelation, SimilarityRelation

from Basic/Numbers get Rat

Fig. 2. The Header of our Library RoomsAndServices

New specifications within a library are named with an identifier not present
in the global environment. Figure 3 presents the construction of a named speci-
fication in terms of structuring concepts. The reuse of a specification is called a
reference and it also gets the current local environment, e.g. Rat gets the empty
local environment.



spec DistanceAlt =
Rat

then sort Elem
op distance : Elem × Elem → Rat, comm
∀ x, y, z : Elem
• distance(x, y) = 0 ⇔ x = y %(distance 0)%
• distance(x, y) + distance(y, z ) ≥ distance(x, z ) %(triangle inequality)%

end

Fig. 3. Named Structured Specification of a Distance Function

A specification can be formed via union and extension of specifications. These
specifications could be any other specification formed by the constructs intro-
duced in this section. Within a union each specification gets the same environ-
ment. If both specifications introduce a symbol with the same identifier (and
same profile for predicates and operations) these symbols are identified. This is
known as the ‘same name, same thing’ principle. An extension always gets the
local environment of the previous specification part and extends it with addi-
tional symbols and/or sentences. The identification of symbols is the same as
for unions. Extensions introduced with the annotation %implies may only con-
sist of theorems without a signature part where all formulas are entailed by the
preceding sentences (See Sect. 4 for discussion of theorem provers).

If some symbols of two specifications should be kept separate, renaming is
used. A renaming applies to the local environment and the sentences of that local
environment are translated according to the given symbol mapping. This symbol
mapping can be given in terms of identifiers or with qualified symbols (qualified
with kind sort, op, pred and/or profile), e.g. if the same identifier is used as sort
and predicate simultaneously. Renaming allows the reuse of a specification for
different sorts or predicates (Fig. 6).

Moreover, it is possible to hide some auxiliary symbols, e.g. if these symbols
are not needed where a specification is reused. If a sort is hidden all predicates
and functions using this sort in their profile are hidden as well. Symbols can be
distinguished by their kind (sort, op, pred) and/or their profile. After the hiding
the model class is reduced to models without the hidden symbols. Thus a hiding
might not be flattened to a single basic specification. Instead of giving a list of
symbols to hide, it is also possible to reveal those symbols that should be kept
in the theory. For convenience it is further possible to simultaneously reveal and
rename the symbols by giving a symbol mapping with the reveal construct.

There are three additional constructs not mentioned above for the structur-
ing of specifications which are not used in the examples presented. Thus, they are
only mentioned here for completeness: (i) marking a specification as free yields
either the class of initial models (if the local environment is empty) or a free
extension; (ii) marking a specification as local within another specification im-
plicitly hides the symbols declared in the local part; (iii) marking a specification
as closed gives the possibility of starting again with an empty local environment.



Additionally, named specifications can be generic over argument specifica-
tions and can have imports of other (named) specifications to be common to
the parameters and the body of the specification. An example is a specification
of distances where the element sort is independent of the general axioms for
a distance function and the specification Rat is an import for predicates and
functions on rational numbers (see Fig. 4). This generic specification yields the
same theory as DistanceAlt in Fig. 3. The advantage is the explicit parameter.
The reference to a generic specification is called instantiation where an actual
specification must be provided for each formal parameter specification (Fig. 5).

spec Distance[sort Elem] given Rat =
op distance : Elem × Elem → Rat, comm
∀ x, y, z : Elem
• distance(x, y) = 0 ⇔ x = y %(distance 0)%
• distance(x, y) + distance(y, z ) ≥ distance(x, z ) %(triangle inequality)%

end

Fig. 4. Generic Specification of a Distance Function

Furthermore, it is possible to formulate views between specifications, where
all sentences of specification SP1 are entailed by the theory of SP2. The model
theoretic semantics of a view is Mod(SP2) |= Mod(σ(SP1)) where σ is a symbol
mapping for the translation of symbols in SP1 to symbols in SP2. This yields
proof obligations such that each sentence of theory SP1 must be entailed by
theory SP2. Some of the obligations can be solved on a structural level, e.g.
if both specifications SP1 and SP2 reference the same specification SP3 all
sentences of SP3 are present in SP1 and SP2. All other proof obligations have
to be discharged on the basic specification level with a suitable theorem prover
(see Sect. 4).

2.2 Casl structuring compared to OWL DL imports

The only structuring mechanism OWL DL offers is the import of other OWL DL
ontologies allowing even cyclic imports [4, 18]. Furthermore, OWL DL allows ref-
erence to symbols in other ontologies without any import with an unspecified
semantics. OWL DL lacks renaming and hiding constructs, e.g. a symbol intro-
duced in ontology A will be present in all ontologies importing A and can never
be identified with a symbol of a different ontology.

In contrast, a named Casl specification can only be used after it is defined
and it is not possible to define cyclic dependencies. Only symbols declared by ref-
erenced (imported) specifications or declared previously within the specification
are allowed within the sentences. Renaming and hiding of symbols is provided
with a precisely defined semantics [3].



2.3 Casl extensions

The orthogonal design of the Casl basic specification and structured specifica-
tion allows the plug in of various other logics as basic specifications. Because of
this independence of structuring and underlying logic each of the Casl exten-
sions presented in this section uses the same structuring facilities as presented in
Sect. 2.1. Some of the other logics are just extensions or restrictions of Casl, and
others might be totally different, e.g. OWL DL (SHOIN (D)). We now briefly
introduce two extensions of Casl relevant for ontology design and engineering:

ModalCasl is a Casl extension with multi-modalities and term modalities.
It allows the specification of modal systems with Kripke’s possible worlds
semantics. Further, it is possible to express certain forms of dynamic logic.

Casl-DL is a restriction of a Casl extension, realizing a strongly typed vari-
ant of OWL DL in Casl syntax [14]. Cardinality restrictions for the de-
scription of sorts and unary predicates are added as new formula constructs.
Despite a FOL like syntax, only quantification with a limited flow of vari-
ables is allowed, such that an equivalence between Casl-DL, OWL DL and
SHOIN (D) is established. In particular, only unary and binary predicates,
concepts (as subsorts of the topsort Thing) and predefined datatypes form-
ing a separate hierarchy from Thing are allowed. Casl-DL distinguishes
two types of concepts: (i) non-empty concepts (modeled as sorts), and (ii)
possibly empty concepts (modeled as unary predicates). Functional roles are
modeled as partial functions, giving a shortcut compared to writing down
an axiom, and constant functions serve as individuals.

2.4 HetCasl

HetCasl extends Casl’s structuring mechanisms allowing the combination of
different logics, e.g. the specification of some aspects in FOL and other aspects in
higher-order logic (HOL) and the union of these theories into a joint HOL theory.
HetCasl offers facilities to choose a logic for following specifications, to embed
or encode a specification along a comorphism into a different (sub-)logic and to
project a specification to a less expressive logic. Comorphisms and projections
are not given in terms of Casl specifications, instead they are introduced as
functions within the Heterogeneous Tool Set Hets (see Sect. 4). An embedding
of Casl-DL (including cardinalities) into Casl is presented in [14].

3 Example: Rooms and Services

In this section we will illustrate the Casl mechanisms for composing theories
described in the previous section by means of one non trivial example that is
relevant in the context of the Collaborative Research Center “Spatial Cogni-
tion” (SFB/TR 8). In particular, it elaborates the relation of physical space
represented by robots and services used by humans in a formal language.



%% physical description of buildings
spec RoomsMap =

Distance[sort Room fit Elem 7→ Room]
and {IrreflexiveRelation and AsymmetricRelation}

with Elem 7→ PhysicalEntity, ∼ 7→ on
then sorts Room, Floor < PhysicalEntity

∀ x, y : PhysicalEntity
• x ∈ Room ⇒ ¬ x ∈ Floor %(Room and Floor are disjoint)%
• x on y ⇒ x ∈ Room ∧ y ∈ Floor %(Room on Floor)%
∀ x : PhysicalEntity
• x ∈ Floor ⇒ (∃ y : Room • y on x ) %(Floors decomposition in Rooms)%

then %implies
∀ x : PhysicalEntity
• x ∈ Room ⇒ ¬ (∃ y : PhysicalEntity • y on x ) %(Nothing is on Rooms)%
• x ∈ Floor ⇒ ¬ (∃ y : PhysicalEntity • x on y) %(Floors are on nothing)%

end

Fig. 5. The Specification RoomsMap

The complete theory aims at the representation of the structure of build-
ings. On one side, the specification RoomsMap (Fig. 5) partially describes the
physical structure of the floors of a building quantitatively by means of a dis-
tance relation (distance) between rooms4 (a kind of ‘spatial containers’). On the
other side, the specification ServicesMap (Fig. 6) qualitatively describes the
functional structure of the buildings, i.e. the spatial links between the services
(like library, kitchen, chemical laboratory, etc.) present in the buildings. The
ontological rationale behind the distinction between rooms and services relies
on the acceptance of the fact that the same service, e.g. a chemical laboratory,
might be moved from one room to another one maintaining its identity, i.e., the
identity criteria for services does not take into account the spatial containers
where services are located.

In RoomsMap the distance relation between rooms is defined by the generic
specification Distance (see Fig. 4) which is instantiated assigning the sort Room
to the parameter specification. The relation on between rooms and floors, a sort
of incidence relations, is introduced by the renaming of the united specifications
IrreflexiveRelation and AsymmetricRelation coming from an external
library.

In ServicesMap two relations are considered: near is a purely spatial rela-
tion standing for the fact that the boundaries of the spatial locations of the two
services overlap, while connected is a more functional relation representing the
fact that it is possible to directly move from one service to another one without
crossing other services. In particular, connected implies near but not vice versa,

4 Note that rooms are in general different from spatial locations, in the sense, that
rooms can change in space. For example, the same room can be shortened a little
bit.



i.e., in order to share a door (or, more generally, an opening) two connected
services need to be spatially adjacent, but two spatially adjacent services can be
separated by a wall without a door. Similarly to the case of on in RoomsMap,
both connected and near are introduced by renaming of an external specification,
in this case, the specification SimilarityRelation.

%% functional description of buildings
spec ServicesMap =

%% share some wall
SimilarityRelation
with Elem 7→ Service, ∼ 7→ near

and %% share some wall with doorway / passage
SimilarityRelation
with Elem 7→ Service, ∼ 7→ connected

then ∀ x, y : Service
• x connected y ⇒ x near y %(connected implies near)%

end

Fig. 6. The Specification ServicesMap

The two specifications RoomsMap and ServicesMap can be linked in or-
der to have a richer description of buildings that merges the physical and the
functional information. It is quite intuitive to consider services as located in
rooms5, but, right now, this has not been represented. The specification Ser-
vices in Rooms (Fig. 7) makes a step toward this merging. It extends the union
of RoomsMap and ServicesMap with the characterization of the primitive re-
lation locatedAt between services and rooms and the definition of a distance func-
tion between services (SDistance). The axioms characterizing locatedAt guaran-
tee that: (i) only one service is located at one room; (ii) a room can contain
only one service; and (iii) near (and, as consequence, connected) applies only to
services located at the same floor. Note that these axioms not only characterize
locatedAt but they also better specify both near and connected. For example,
it is clarified that two services situated at different floors are not in the near
relation even though the ceiling of one service might be spatially co-located with
the floor of a another service. The new function SDistance, defined on the basis
of locatedAt and distance, adds quantitative information on services through the
quantitative information on the rooms they are located at.

Additionally, the view ServicesMap TO RoomsMap (Fig. 8) establishes
a mapping between the function distance (specified in RoomsMap) and the
relation near (specified in ServicesMap), i.e., it gives a ‘reading’ of near in
terms of distance. The view maps services to rooms and the near relation to
the auxiliary relation close. Rooms in the close relation are on the same floor

5 As services can move, their location may change in time. But here we do not consider
time.



spec Services in Rooms =
RoomsMap and ServicesMap

then pred locatedAt : Service × Room
∀ s, s1, s2 : Service; r, r1, r2 : Room
• ∃ r : Room • s locatedAt r %(Services are in rooms)%
• ∃ s : Service • s locatedAt r %(No rooms without services)%
• s1 locatedAt r ∧ s2 locatedAt r ⇒ s1 = s2 %(Only one service in a room)%
• s locatedAt r1 ∧ s locatedAt r2 ⇒ r1 = r2 %(No multi-located services)%
∀ s1, s2 : Service; r1, r2 : Room; f1, f2 : Floor
• s1 locatedAt r1 ∧ s2 locatedAt r2 ∧ s1 near s2 ∧ r1 on f1 ∧ r2 on f2
⇒ f1 = f2

op SDistance : Service × Service → Rat
∀ s1, s2 : Service; r1, r2 : Room; n : Rat
• SDistance(s1, s2 ) = n
⇔ (∃ r1, r2 : Room • s1 locatedAt r1 ∧ s2 locatedAt r2 ∧ distance(r1, r2 ) = n)

then %implies
∀ s1, s2 : Service; r1, r2 : Room; f1, f2 : Floor
• s1 locatedAt r1 ∧ s2 locatedAt r2 ∧ s1 connected s2 ∧ r1 on f1 ∧ r2 on f2
⇒ f1 = f2

end

Fig. 7. The Specification Services in Rooms

and at distance zero. The definition of close together with the characterization
of the distance function entails that close is reflexive and symmetric, which are
exactly the axioms given for near by the reference to the specification Similari-
tyRelation. The proof obligations generated by the view are discharged using
Hets and its connected automatic theorem provers as described in Sect. 4. Note
that, in the view, services are just mapped to rooms, while in the specification
Services in Rooms they were linked to rooms by the relation locatedAt. Intu-
itively, this direct mapping is acceptable because only one service can be located
at a room, and because services cannot be multi-located. But while the spec-
ification Services in Rooms, allows for an explicit characterization of these
assumptions, in the view, they remain implicit.

4 Hets

In this section we explain the Heterogeneous Tool Set (Hets) [16]. Hets helps
in understanding the structure of the whole theory, i.e. it visualizes the links and
the dependencies between the specifications as development graphs. It performs
a static type checking of the symbols used in formulas and of symbol mappings.
Furthermore, it infers the proof obligations of a library and offers interfaces to
theorem provers. A Casl library of specifications can be transformed by Hets
into various different formats, like automatically formatted LATEX (used for the
examples in this paper) and ISO-latin-1. Casl has a clear and human-oriented
ISO-latin-1 input syntax.



%% relating two modules with predicates, no identification of sorts
view ServicesMap TO RoomsMap :

{ServicesMap reveal Service, near } to
{RoomsMap
then pred close : Room × Room

∀ x, y : Room
• close(x, y)
⇔ distance(x, y) = 0 ∧ (∃ f : Floor • x on f ∧ y on f ) %(close def)%

}
= Service 7→ Room, near 7→ close

end

Fig. 8. The View ServicesMap TO RoomsMap

Development graphs are the main interface for users to libraries of Casl
specifications. Figure 9 shows the development graph of the library RoomsAnd-
Services used as an example in this paper. The bold arrows with a filled arrow
head denote the dependencies and development of specifications. The number
of incoming arrows distinguishes unions from extensions, i.e. a single incoming
arrow denotes an extension and two or more incoming arrows denote a union.
Only the named theories within the development get a named node. The un-
named nodes are intermediate steps towards the development of the whole. The
theory associated with unnamed node directly above the node “ServicesMap”
is constructed from the union of two renamings of “SimilarityRelation”. Slim
arrows with an open arrow head denote proof obligations either associated with
views or “then %implies”. The view presented in Fig. 8 is shown in the de-
velopment graph as the slim arrow between two unnamed nodes in the bottom
right of the figure. Such development graphs can also be written in various graph
representations by Hets.

Within the graphical user interface (GUI) of Hets which displays a devel-
opment graph the proof obligations are moved from the edges to the nodes
(theories) for proving. The proof obligations can be passed for discharging either
to the semi automatic theorem prover Isabelle [17] or to an automatic theorem
prover, like Spass [24] or Vampire (provided through MathServ [25]). All the-
orems (including those yielded by the view) which have been presented in this
paper have been proved with Vampire and some were additionally proved with
Spass. The support of specialized DL reasoners like FaCT++ [23] and Pellet
[20] is under development.

Translations and projections between different logics are implemented as
computational functions within Hets and are accessible via the development
graph GUI of Hets. Hets provides reading of OWL DL documents and trans-
formation into Casl-DL and an embedding of Casl-DL into Casl. The ap-
proximation of Casl with Casl-DL [12], and the translation of Casl-DL in
OWL DL and the writing of OWL DL documents is under development.



IrreflexiveRelation AsymmetricRelation SimilarityRelationRat

Distance RoomsMap ServicesMap

Services_in_Rooms

Fig. 9. Development Graph of the Library RoomsAndServices

5 User experience

The language Casl has been successfully used for the Descriptive Ontology for
Linguistic and Cognitive Engineering (Dolce) [15]. While previously the devel-
opers of Dolce at the Laboratory for Applied Ontology (LOA) only used LATEX
for designing their foundational ontology Dolce, there started a collaboration
with the developers of Casl and Hets in Bremen in 2004 for a redesign of
Dolce as a Casl structured library. Furthermore it turned out that even some
specifications of the basic Casl libraries could be reused, e.g. PartialOrder
(from the library BasicRelationsAndOrders). The library Dolce is consti-
tuted of 39 specifications, where 12 smaller specifications are reused 3 or more
times for the axiomatization of different concepts. The last development step
is the union of 8 separate theories together with the Taxonomy specification
resulting in the theory of Dolce.

Acknowledgements

This work has been supported by the DAAD-Vigoni program and the collabora-
tive research center “Spatial Cognition” SFB/TR 8. We thank John Bateman,
Nicola Guarino, Till Mossakowski, Laure Vieu, Joana Hois, and Scott Farrar for
fruitful discussions.



References

1. P. Clark and B. Porter. Building concept representations from reusable compo-
nents. In National Conference on Artificial Intelligence (AAAI’97), Providence,
Rhode Island, 1997.

2. P. Clark, J. Thompson, and B. Porter. Knowledge patterns. In A. G. Cohn,
F. Giunchiglia, and B. Selman, editors, International Conference on Principles of
Knowledge Representation and Reasoning (KR’00), pages 591–600, Breckenridge,
Colorado, USA, 2000. Morgan Kaufmann Publishers.

3. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS 2960
(IFIP Series). Springer Verlag; Berlin, 2004.

4. M. Dean and G. Schreiber, editors. OWL Web Ontology Language – Reference.
W3C Recommendation http://www.w3.org/TR/owl-ref/, 10 February 2004.

5. B. Falkenhainer and K. Forbus. Compositional modelling: Finding the right model
for the job. Artificial Intelligence, 51:95–143, 1991.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

7. J. Garson. Modularity and relevant logic. Notre Dame Journal of Formal Logic,
30(2):207–223, 1989.

8. J. A. Goguen. Reusing and interconnecting software components. IEEE Computer,
19(2):16–28, 1986.

9. B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and Web ontologies.
In International Conference on the Principles of Knowledge Represenation and
Reasoning, pages 198–209, Lake District, UK, 2006. AAAI Press.

10. N. Guarino. Formal Ontology in Information Systems. In N. Guarino, editor,
Formal Ontology in Information Systems (FOIS’98), pages 3–15, Trento, Italy,
1998. IOS Press.

11. M. Jarrar. Towards Methodological Principles for Ontology Engineering. Phd
thesis, Vrije Universiteit, 2005.

12. K. Lüttich. Approximation of Ontologies in Casl. In Formal Ontology in Infor-
mation Systems (FOIS-2006), Frontiers in Artificial Intelligence and Applications.
IOS Press; Amsterdam; http://www.iospress.nl, 2006. to appear.

13. K. Lüttich and T. Mossakowski. Specification of Ontologies in Casl. In A. C. Varzi
and L. Vieu, editors, Formal Ontology in Information Systems – Proceedings of the
Third International Conference (FOIS-2004), volume 114 of Frontiers in Artificial
Intelligence and Applications, pages 140–150. IOS Press; Amsterdam, 2004.

14. K. Lüttich, T. Mossakowski, and B. Krieg-Brückner. Ontologies for the Semantic
Web in Casl. In J. Fiadeiro, editor, WADT 2004, LNCS 3423, pages 106–125.
Springer Verlag; Berlin, 2005.

15. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. WonderWeb
Deliverable D18: Ontology Library. Technical report, ISTC-CNR, 2003.

16. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. Avail-
able at www.tzi.de/cofi/hets, University of Bremen.

17. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Springer Verlag; Berlin, 2002.

18. P. F. Patel-Schneider, P. Hayes, and I. Horrocks, editors. OWL Web On-
tology Language – Semantics and Abstract Syntax. W3C Recommenda-
tion http://www.w3.org/TR/owl-semantics/, 10 February 2004.

19. G. Schreiber, H. Akkermans, A. Anjewierden, R. DeHoog, N. Shadbolt, W. Van de
Velde, and B. Wielinga. Knowledge Engineering and Management - The Com-
monKADS Methodology. MIT Press, Massacusetts, 2000.



20. E. Sirin, M. Grove, B. Parsia, and R. Alford. Pellet OWL reasoner.
http://www.mindswap.org/2003/pellet/index.shtml, May 2004.

21. S. Staab and R. Studer. Handbook of Ontologies. Springer Verlag, Berlin (DE),
2004.

22. H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept
hierarchies. In A. McIlraith, Sheila, D. Plexousakis, and F. van Harmelen, editors,
International Semantic Web Conference (ISWC’04), pages 289–303, Hiroshima,
Japan, 2004.

23. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

24. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic.
SPASS version 2.0. In A. Voronkov, editor, Automated Deduction – CADE-18,
volume 2392 of Lecture Notes in Computer Science, pages 275–279. Springer Verlag;
Berlin, July 27-30 2002.

25. J. Zimmer and S. Autexier. The MathServe System for Semantic Web Reasoning
Services. In U. Furbach and N. Shankar, editors, Proceedings of the third Interna-
tional Joint Conference on Automated Reasoning, volume 4130 of LNCS, Seattle,
USA, August 2006. Springer Verlag.


