
Industrial Verification of Avionic, 
Automotive, and Railway Systems 

– Practical Applications and 
Theoretical Foundations –

Jan Peleska 
University of Bremen and Verified Systems International GmbH 

jp@cs.uni-bremen.de

mailto:jp@cs.uni-bremen.de


Background 
• My research group at the University of Bremen 

• Specialised on verification of safety-critical 
control systems 

• Focus on test automation 

• Collaboration with Prof. Dr. habil. Wen-ling Huang 
in this field



Background 
• Verified Systems International GmbH 

• Founded 1998 as a spinoff company from the University of 
Bremen 

• Specialised on verification and validation of safety-critical 
systems – aerospace, railways, automotive 

• Tool development, hardware-in-the-loop test bench 
development, and service provision 

• Main customers Airbus, Siemens 

• 25 employees



Hardware-in-the-Loop Test 
Benches

System 
Under Test 

For testing integrated 
HW/SW systems



An Observation . . . 
• Many maths and computer science students in their 

first semesters seem to think that complex theory and 
difficult algorithms are only needed to pass exams . . . 

• This is not true! 

• Many of the most important innovations and products 
are based on highly complex mathematical 
foundations and on sophisticated software algorithms 

• I will try to illustrate this during my talk



Edsgar W. Dijkstra, 1930 – 2002

“Program testing can best show the presence 
of errors but never their absence.” 



Edsgar W. Dijkstra, 1930 – 2002

“Program testing can best show the presence 
of errors but never their absence.” 

This famous quotation was based on a number of 
well-observed facts 

• Control systems that are supposed to run 24/7 – 
that is, without termination – may perform an 
uncountable number of different input/output 
sequences of infinite length 

• For systems with state components of infinite type 
(time, speed, temperature,…) it is impossible to 
enumerate all possible state values during testing



Edsgar W. Dijkstra, 1930 – 2002

“Program testing can best show the presence 
of errors but never their absence.” 

This famous quotation was based on a number of 
well-observed facts 

• Control systems that are supposed to run 24/7 – 
that is, without termination – may perform an 
uncountable number of different input/output 
sequences of infinite length 

• For systems with infinite state vectors (time, 
speed, temperature,…) it is impossible to 
enumerate all possible state values during testing

Sorry, Edsgar, but this statement is 
actually not true in this generality!



Edsgar W. Dijkstra, 1930 – 2002

“Program testing can best show the presence 
of errors but never their absence.” 

Since about 1975, many computer scientists and 
mathematicians have contributed results implying 
that . . . 

“Under certain hypotheses, you can prove or 
disprove the correctness of “infinite” systems by 
a finite number of tests.”

Not t
rue 

in th
is ge

nera
lity 



Edsgar W. Dijkstra, 1930 – 2002

“Program testing can best show the presence 
of errors but never their absence.” 

Since about 1975, many computer scientists and 
mathematicians have contributed results implying 
that . . . 

“Under certain hypotheses, you can prove or 
disprove the correctness of “infinite” systems by 
a finite number of tests.”

Not t
rue 

in th
is ge

nera
lity 

. . . 
and 

this
 can

 be 
fully

 

auto
mated



Objectives
• Explain how safety-critical embedded systems 

are verified 

• Illustrate how complex mathematics and 
computer science techniques are needed to 

• Invent trustworthy verification methods 

• Create tools that implement these methods in the 
most efficient way



Objectives

• Show that automation is necessary: 

• otherwise these effective, but highly complex 
methods could never be applied in practice 

• Present some novel research results with 
significant practical implications



Overview
1. Safety-critical systems – examples 

2. Verification requirements of international standards 

3. Theory meets innovation 

A. Complete theories for testing with guaranteed fault 
coverage  

B. Theory translation for testing: a new complete equivalence 
class testing strategy 

C. Theory translation for property checking: a complete 
testing strategy for checking safety properties



Safety-critical systems 
– Examples



Safety-critical Systems

A . . . safety-critical system is a system whose 
failure or malfunction may result in one (or more) of 
the following outcomes:  
• death or serious injury to people 
• loss or severe damage to equipment/property 
• environmental harm

Definition taken from https://en.wikipedia.org/wiki/Life-critical_system

https://en.wikipedia.org/wiki/Life-critical_system




Safety-critical Systems – 
Examples

Airbag controller



Safety-critical Systems – 
Examples

Airbag controllerAircraft thrust 
reversal



Safety-critical Systems – 
Examples

Airbag controllerAircraft thrust 
reversal
Train speed 
supervision



Verification Requirements 
of International Standards



Verification Requirements of 
International Standards

• Safety-critical systems development and verification is 
controlled by laws 

• These laws state that development and verification must follow 
the rules specified in applicable standards 

• For developing control systems, the following standards apply  

• Avionic domain: RTCA DO-178C 

• Railway domain: CENELEC EN50128:2011 

• Automotive domain: ISO 26262



Verification Requirements of 
International Standards

• These standards differ in many details, but they contain 
some basic requirements 

• Development must be based on requirements  

• Structural requirements: interfaces, system 
components 

• Behavioural (functional) requirements: how inputs 
are transformed into outputs 

• Every piece of software code must be traced back to at 
least one requirement



• For the most critical applications, requirements should be 
expressed by formal models with mathematical interpretation   

• Syntax and static model semantics: is the model well-formed? 

• Behavioural model semantics: how does the model state, 
including inputs and outputs, evolve over time? 

• Requirements (models) must be verified 

• Internally consistent?  

• Consistent with related more abstract requirements  

• For example, a software requirement may be traced back to a 
system requirement 



• Code must be verified 

• Does it implement the related requirements 
correctly? 

• Verification is preferably performed by testing the 
software integrated in the controller’s hardware 

• Verification results need to be checked with respect 
to completeness and correctness 

• Tools automating development or verification steps 
need to be qualified



Theory meets Innovation –        
A. Complete Theories for Testing 
With Guaranteed Fault Coverage



Testing With Guaranteed 
Fault Coverage

• Objective 

• Can we construct complete test suites that 
guarantee to uncover every implementation 
fault ? 

• Can we derive these test suites from models of 
the control system’s required behaviour?

• Answer 

• Yes, under certain hypotheses expressed by fault models



Complete Test Suites
• Defined with respect to a fault model consisting of  

• a reference model M 

• a conformance relation ≦ for comparing other models to M 

• a fault domain Dom 

• Complete = sound + exhaustive 

• Sound = every M’ in Dom satisfying M’ ≦ M passes 

• Exhaustive = every M’ in Dom violating M’ ≦ M fails



Complete Test Suites
• For black-box testing, completeness depends on a pre-

specified fault domain 

• The true behaviour of the system under test must be 
captured in a (very large) class of models that may or 
may not be correct in relation to the given reference 
model  

SUT1

Reference model

True behaviour of SUT1 – 
complete test suite for D will uncover 
every deviation from reference 
model

SUT2

True behaviour of SUT2 – 
complete test suite for D may not 
uncover every deviation  
from reference model

Fault domain D



Application Scenario – Train Onboard 
Speed Control

Current 
speed

Current 
maximum 

speed

Emergency 
brake

Automated braking command

Onboard main controller

Brake controller

auto_on, auto_off

man_on, man_off

trigger, release

Train engine driver 
brake command



Formal Models – Train Onboard Speed Control

Current 
speed

Current 
maximum 

speed

Emergency 
brake

man_on, man_off

auto_on,  
auto_off

trigger, release

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Train engine driver 
brake command



• Discrete input 
events  

• Discrete internal 
state 

• Discrete output 
events 

Brake Controller

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Mathematical model: 
Finite State Machine



Finite State Machines – 
Behavioural Semantics

M = (Q, q0, I, O, h)

• Q 6= ?: finite set of states

• q0 2 Q: initial state

• I 6= ?: finite set of input alphabet

• O 6= ?: finite set of output alphabet

• h ✓ Q⇥ I ⇥O ⇥Q: transition relation



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

(RELEASED, auto on, trigger,TRIGGERED AUTO) 2 h



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

(RELEASED, auto on, trigger,TRIGGERED AUTO) 2 h

(TRIGGERED, auto on, trigger,TRIGGERED AUTO) 2 h



Example of a complete Test 
Method: the W-Method

• The W-Test Suite

P ·Q is defined for sets of traces.

P ·Q = {p.q | p 2 P ^ q 2 Q}

W(A) = P · (
m[

i=0

(Ii ·W ))

M. P. Vasilevskii 1973 and Tsun S. Chow 1978



Example for a complete Test 
Method: the W-Method

P ·Q is defined for sets of traces.

P ·Q = {p.q | p 2 P ^ q 2 Q}

W(A) = P · (
m[

i=0

(Ii ·W ))

Transition cover



Example for a complete Test 
Method: the W-Method

P ·Q is defined for sets of traces.

P ·Q = {p.q | p 2 P ^ q 2 Q}

W(A) = P · (
m[

i=0

(Ii ·W ))

Input traces of length i



Example for a complete Test 
Method: the W-Method

P ·Q is defined for sets of traces.

P ·Q = {p.q | p 2 P ^ q 2 Q}

W(A) = P · (
m[

i=0

(Ii ·W ))

Characterisation set



Example of a complete Test 
Method: the W-Method

• The W-Test Suite

P ·Q is defined for sets of traces.

P ·Q = {p.q | p 2 P ^ q 2 Q}

W(A) = P · (
m[

i=0

(Ii ·W ))

M. P. Vasilevskii 1973 and Tsun S. Chow 1978

Theorem. If the implementation 
1. Passes all tests specified in W(A) 
2. Behaves like an FSM with at most m 

internal states 
then the implementation is I/O-equivalent 
to the reference FSM: both perform 
exactly the same input/output sequences



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Test cases for hypothesis m = 3
1. man_on.man_on.auto_off/trigger.trigger.trigger
2. man_on.man_on.man_off/trigger.trigger.release
3. man_on.auto_on.auto_off/trigger.trigger.release
4. man_on.auto_on.man_off/trigger.trigger.trigger
5. man_on.man_off.auto_off/trigger.release.release
6. man_on.man_off.man_off/trigger.release.release
7. man_on.auto_off.auto_off/trigger.trigger.trigger
8. man_on.auto_off.man_off/trigger.trigger.release
9. auto_on.man_on.auto_off/trigger.trigger.release
10.auto_on.man_on.man_off/trigger.trigger.trigger
11.auto_on.auto_on.auto_off/trigger.trigger.release
12.auto_on.auto_on.man_off/trigger.trigger.trigger
13.auto_on.man_off.auto_off/trigger.trigger.release
14.auto_on.man_off.man_off/trigger.trigger.trigger
15.auto_on.auto_off.auto_off/trigger.release.release
16.auto_on.auto_off.man_off/trigger.release.release
17.man_off.auto_off/release.release
18.man_off.man_off/release.release
19.auto_off.auto_off/release.release
20.auto_off.man_off/release.release

This test suite uncovers 
every error, provided that 
the implementation has 
at most 3 states



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

man_off/trigger auto_off/release

man_on,auto_on/trigger

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Reference model

Faulty implementation 

Test case 14.
auto_on.man_off.man_off/trigger.trigger.trigger



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

man_off/trigger auto_off/release

man_on,auto_on/trigger

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Reference model

Faulty implementation 

Test case 14.
auto_on.man_off.man_off/trigger.trigger.trigger



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

man_off/trigger auto_off/release

man_on,auto_on/trigger

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Reference model

Faulty implementation 

Test case 14.
auto_on.man_off.man_off/trigger.trigger.trigger



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

man_off/trigger auto_off/release

man_on,auto_on/trigger

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Reference model

Faulty implementation 

Test case 14.
auto_on.man_off.man_off/trigger.trigger.trigger

man_off/release



Complete Testing Theories

• Since the W-Method described above has been 
invented, many important extensions have been 
elaborated 

• Nondeterministic finite state machines  

• Testing for reduction: system under test 
implements only a part of the I/O-sequences 
admissible by the reference FSM



Complete Testing Theories

• Since the W-Method described above has been 
invented, many important extensions have been 
elaborated 

• Nondeterministic finite state machines  

• Testing reduction: system under test implements 
only a part of the I/O-sequences admissible by 
the reference FSM

More details about the W-Method are  explained 
in Wen-ling Huang’s Alumni Distinguished 
Lecture Series   ‘Testing safety-critical discrete 
state systems – mathematical foundations and 
concrete algorithms’ 

Wednesday, 2016-05-25, 10:20 – 12:00, ST527



Complete Testing Theories
Which are the benefits from applying complete testing theories? 

• Every error is uncovered if system under test is inside the fault 
domain 

• Significant test strength also for implementations that are outside the 
fault domain 

• Fully justified test cases due to the underlying theory  

• This facilitates the certification of a safety critical system: 
otherwise every test suite has to be justified with respect to its test 
strength 

• Fully automated test generation, execution, and evaluation – you just 
need to construct the reference model



Theory Meets Innovation –            
B. Theory translation for testing: a 
new complete equivalence class 

testing strategy



Recall: Application Scenario – Train 
Onboard Speed Control

Current 
speed v

Current 
maximum 

speed v_m

Emergency 
brake

Automated braking command

Onboard main controller

Brake controller

auto_on, auto_off

man_on, man_off

trigger, release

Train engine driver 
brake command



B. Theory Translation
• Consider the following reference model for the speed controller 

in a European ETCS high-speed train 

• There the inputs are  

• allowed speed  

• actual speed 

• These are floating point values that cannot be enumerated as it 
was possible when testing against an FSM reference model 

• Can we develop a complete test suite despite the fact that the 
input domain is conceptually infinite?



Onboard Main Controller –  
Reference Model as SysML State Machine 

Allowed maximal speed v_m in [0,400]  
Current speed                v in [0,400] 



B. Theory Translation 
• Consider different semantic domains with their 

conformance relations 

• Finite state machines – I/O-equivalence  

• SysML state machines – I/O-equivalence  

• Fix a signature in each domain 

• Sig1  – SysML state machines over fixed I/O variables 
with real-valued inputs and discrete outputs  

• Sig2  – FSMs over fixed discrete I/O-alphabet



B. Theory Translation 
• Create a model map T from 

sub-domain of Sig1 to Sig2 

• Create a test case map T* 
from test cases of Sig2 to test 
cases of Sig1 

• Prove the satisfaction 
condition

T : Dom1 ! Sig2;

Dom1 ✓ Sig1

T ⇤ : TC(Sig2) ! TC(Sig1)

(T, T ⇤)



Satisfaction Condition
Condition 1. The model map is compatible with  
the conformance relations 

Condition 2. Model map and test case map  
preserve the pass relationship

8S,S 0 2 Dom1 : S 0 1 S , T (S 0) 2 T (S)

8S 2 Dom1, U 2 TC(Sig2) : T (S) pass2 U , S pass1 T

⇤(U)



Dom1 Dom1 Dom1

T T T T ⇤

1

2

pass
1

pass
2

T ;2 = 1;T pass
1

= T ; pass
2
;T ⇤

T (Dom1) T (Dom1) T (Dom1)

T ⇤(TC(Sig2))

TC(Sig2)

Satisfaction condition, 
reflected by commuting diagrams

Condition 1 Condition 2



Dom1 Dom1 Dom1

T T T T ⇤

1

2

pass
1

pass
2

T ;2 = 1;T pass
1

= T ; pass
2
;T ⇤

T (Dom1) T (Dom1) T (Dom1)

T ⇤(TC(Sig2))

TC(Sig2)

Satisfaction condition, 
reflected by commuting diagrams

Condition 1 Condition 2
T is a monotone 
mapping between 
partial orders



General Theorem for 
Translation of Testing Theories

Theorem 1. Suppose (T,T*) exist and fulfil the 
satisfaction condition. Then every complete 
testing theory established in Sig2 induces a 
likewise complete testing theory on  Sig1.

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing 
for Nondeterministic Systems. 
Under review in Formal Aspects of Computing, 2016

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan


Theory Translation
• Theorem 2. Every complete FSM 

testing theory for  

• I/O-equivalence or  

• reduction (I/O-sequence 
containment)  

induces a complete  equivalence 
class testing theory with analogous 
conformance relations for SysML state 
machines with infinite input domains, 
bounded nondeterminism, and finite 
internal state and finite outputs 

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing. 
J Softw Tools Technol Transfer 18, No. 3, pp. 265-283, 2016 
DOI 10.1007/s10009-014-0356-8., 2016

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing 
for Nondeterministic Systems. 
Under review in Formal Aspects of Computing, 2016

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan
http://link.springer.com/article/10.1007/s10009-014-0356-8
http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan


Theory Translation
• Theorem 2. Every complete FSM 

testing theory for  

• I/O-equivalence or  

• reduction (I/O-sequence 
containment)  

induces a complete  equivalence 
class partition testing theory with 
analogous conformance relations for 
SysML state machines with infinite 
input domains, bounded 
nondeterminism, and finite internal 
state and finite outputs 

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing. 
J Softw Tools Technol Transfer 18, No. 3, pp. 265-283, 2016 
DOI 10.1007/s10009-014-0356-8., 2016

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing 
for Nondeterministic Systems. 
Under review in Formal Aspects of Computing, 2016

More details are explained in Wen-ling Huang’s lecture 
‘Testing infinite state systems  -  
 mathematical foundations and concrete algorithms’ 
on Thursday, 2016-05-26, ST527, 15:20 – 17:00

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan
http://link.springer.com/article/10.1007/s10009-014-0356-8
http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan


Recall: Application Scenario – Train 
Onboard Speed Control

Current 
speed v

Current 
maximum 

speed v_m

Emergency 
brake

Automated braking command

Onboard main controller

Brake controller

auto_on, auto_off

man_on, man_off

trigger, release

Train engine driver 
brake command



Onboard Main Controller –  
Reference Model as SysML State Machine 

Allowed maximal speed v_m in [0,400]  
Current speed                v in [0,400] 



Application of Theorem 2
1. Calculate input equivalence classes 

2. Map speed monitor model to FSM with 

1. input equivalence classes as input alphabet 

2. original discrete outputs as output alphabet 

3. Use W-Method or similar method to create complete FSM 
test suite 

4. Translate FSM test suite to concrete test suite for speed 
monitor



R ⌘
_

i2IDX

�
↵i ^ (m, y) = (mi, yi) ^ (m0, y0) = (mi, yi)

�

_
_

(i,j)2J

�
gi,j ^ (m, y) = (mi, yi) ^ (m0, y0) = (mj , yj)

�

Ai = {s 2 S | s(↵i) ^ s(m) = mi ^ s(y) = yi}

Calculate equivalence classes – Step 1.  
Determine transition 
relation of the SysML state machine



g1,2 ⌘ vm < v ^ v  vm + dVWRN(vm)

g1,3 ⌘ vm + dVWRN(vm) < v  vm + dVIL1(vm)

g1,4 ⌘ vm + dVIL1(vm) < v  vm + dVIL2(vm)

g1,5 ⌘ vm + dVIL2(vm) < v

g2,3 ⌘ g1,3

g2,4 ⌘ g3,4 ⌘ g1,4

g2,5 ⌘ g3,5 ⌘ g4,5 ⌘ g1,5

g2,1 ⌘ v  vm

g3,1 ⌘ g4,1 ⌘ g2,1

g5,1 ⌘ v = 0 _ (v  vm ^ a = 1)



�1 ⌘ g1,1 ^ g2,1 ^ g3,1 ^ g4,1 ^ g5,5

⌘ 0 < v  vm ^ a = 0

�2 ⌘ g1,1 ^ g2,1 ^ g3,1 ^ g4,1 ^ g5,1

⌘ v = 0 _ (v  vm ^ a = 1)

�3 ⌘ g1,2 ^ g2,2 ^ g3,3 ^ g4,4 ^ g5,5

⌘ vm < v  vm + dVWRN(vm)

�4 ⌘ g1,3 ^ g2,3 ^ g3,3 ^ g4,4 ^ g5,5

⌘ vm + dVWRN(vm) < v  vm + dVIL1(vm)

�5 ⌘ g1,4 ^ g2,4 ^ g3,4 ^ g4,4 ^ g5,5

⌘ vm + dVIL1(vm) < v  vm + dVIL2(vm)

�6 ⌘ g1,5 ^ g2,5 ^ g3,5 ^ g4,5 ^ g5,5

⌘ vm + dVIL2(vm) < v

Calculate equivalence classes – Step 2.  
Identify logical formulas for each input equivalence class



Define

Xi = {(v, vm, a) 2 I | (v, vm, a) |= �i} i = 1, . . . , 6

I = {X1, X2, . . . , X6}. Then I is an IECP for the CSM



A1A2 X1,X2/(0,0)X3/(2,0)

A3

X4/(3,0)

A4

X5/(4,1)

A5

X6/(4,1)

X1,X2/(0,0)

X3,X4/(3,0)

X5/(4,1)

X6/(4,1)

X1,X2/(0,0)

X3,X4,X5/(4,1)

X6/(4,1)

X2/(0,0)

X1,X3,X4,X5,X6/(4,1)

Map SysML model of the speed monitor to FSM
FSM inputs: input equivalence classes Xi 
FSM outputs: finite outputs as defined for SysML model



Symbolic test cases resulting from W-Method

1. X4.X1.X3/(3,0).(0,0).(2,0)
2. X4.X1.X1/(3,0).(0,0).(0,0)
3. X4.X2.X3/(3,0).(0,0).(2,0)
4. X4.X2.X1/(3,0).(0,0).(0,0)
5. X4.X3.X3/(3,0).(3,0).(3,0)
6. X4.X3.X1/(3,0).(3,0).(0,0)
7. X4.X4.X3/(3,0).(3,0).(3,0)
8. X4.X4.X1/(3,0).(3,0).(0,0)
9. X4.X5.X3/(3,0).(4,1).(4,1)
10. X4.X5.X1/(3,0).(4,1).(0,0)
11. X4.X6.X3/(3,0).(4,1).(4,1)
12. X4.X6.X1/(3,0).(4,1).(4,1)
13. X5.X1.X3/(4,1).(0,0).(2,0)
14. X5.X1.X1/(4,1).(0,0).(0,0)
15. X5.X2.X3/(4,1).(0,0).(2,0)
16. X5.X2.X1/(4,1).(0,0).(0,0)
17. X5.X3.X3/(4,1).(4,1).(4,1)
18. X5.X3.X1/(4,1).(4,1).(0,0)
19. X5.X4.X3/(4,1).(4,1).(4,1)
20. X5.X4.X1/(4,1).(4,1).(0,0)

21. X5.X5.X3/(4,1).(4,1).(4,1)
22. X5.X5.X1/(4,1).(4,1).(0,0)
23. X5.X6.X3/(4,1).(4,1).(4,1)
24. X5.X6.X1/(4,1).(4,1).(4,1)
25. X6.X1.X3/(4,1).(4,1).(4,1)
26. X6.X1.X1/(4,1).(4,1).(4,1)
27. X6.X2.X3/(4,1).(0,0).(2,0)
28. X6.X2.X1/(4,1).(0,0).(0,0)
29. X6.X3.X3/(4,1).(4,1).(4,1)
30. X6.X3.X1/(4,1).(4,1).(4,1)
31. X6.X4.X3/(4,1).(4,1).(4,1)
32. X6.X4.X1/(4,1).(4,1).(4,1)
33. X6.X5.X3/(4,1).(4,1).(4,1)
34. X6.X5.X1/(4,1).(4,1).(4,1)
35. X6.X6.X3/(4,1).(4,1).(4,1)
36. X6.X6.X1/(4,1).(4,1).(4,1)
37. X1.X3/(0,0).(2,0)
38. X1.X1/(0,0).(0,0)
39. X2.X3/(0,0).(2,0)
40. X2.X1/(0,0).(0,0)
41. X3.X3/(2,0).(2,0)
42. X3.X1/(2,0).(0,0)



Symbolic test cases resulting from W-Method

1. X4.X1.X3/(3,0).(0,0).(2,0)
2. X4.X1.X1/(3,0).(0,0).(0,0)
3. X4.X2.X3/(3,0).(0,0).(2,0)
4. X4.X2.X1/(3,0).(0,0).(0,0)
5. X4.X3.X3/(3,0).(3,0).(3,0)
6. X4.X3.X1/(3,0).(3,0).(0,0)
7. X4.X4.X3/(3,0).(3,0).(3,0)
8. X4.X4.X1/(3,0).(3,0).(0,0)
9. X4.X5.X3/(3,0).(4,1).(4,1)
10. X4.X5.X1/(3,0).(4,1).(0,0)
11. X4.X6.X3/(3,0).(4,1).(4,1)
12. X4.X6.X1/(3,0).(4,1).(4,1)
13. X5.X1.X3/(4,1).(0,0).(2,0)
14. X5.X1.X1/(4,1).(0,0).(0,0)
15. X5.X2.X3/(4,1).(0,0).(2,0)
16. X5.X2.X1/(4,1).(0,0).(0,0)
17. X5.X3.X3/(4,1).(4,1).(4,1)
18. X5.X3.X1/(4,1).(4,1).(0,0)
19. X5.X4.X3/(4,1).(4,1).(4,1)
20. X5.X4.X1/(4,1).(4,1).(0,0)

21. X5.X5.X3/(4,1).(4,1).(4,1)
22. X5.X5.X1/(4,1).(4,1).(0,0)
23. X5.X6.X3/(4,1).(4,1).(4,1)
24. X5.X6.X1/(4,1).(4,1).(4,1)
25. X6.X1.X3/(4,1).(4,1).(4,1)
26. X6.X1.X1/(4,1).(4,1).(4,1)
27. X6.X2.X3/(4,1).(0,0).(2,0)
28. X6.X2.X1/(4,1).(0,0).(0,0)
29. X6.X3.X3/(4,1).(4,1).(4,1)
30. X6.X3.X1/(4,1).(4,1).(4,1)
31. X6.X4.X3/(4,1).(4,1).(4,1)
32. X6.X4.X1/(4,1).(4,1).(4,1)
33. X6.X5.X3/(4,1).(4,1).(4,1)
34. X6.X5.X1/(4,1).(4,1).(4,1)
35. X6.X6.X3/(4,1).(4,1).(4,1)
36. X6.X6.X1/(4,1).(4,1).(4,1)
37. X1.X3/(0,0).(2,0)
38. X1.X1/(0,0).(0,0)
39. X2.X3/(0,0).(2,0)
40. X2.X1/(0,0).(0,0)
41. X3.X3/(2,0).(2,0)
42. X3.X1/(2,0).(0,0)

Symbolic means that concrete test 
data still has to be selected from 
each Xi when it is referenced in a test 
case 

This can be done automatically 
using a mathematical constraint 
solver (SMT-solver)



Combination With Random 
and Boundary Value Testing

• Instead of always using the same representative of 
each input class representative, select a random 
value of this class, whenever it is used in the test 
case – combine this technique with boundary value 
tests

• Completeness is still guaranteed for SUTs inside the 
fault domain 

• For SUTs outside the fault domain, the test 
strength is significantly increased 

Felix Hubner, Wen-ling Huang, and Jan Peleska: 
Experimental Evaluation of a Novel Equivalence Class 
Partition Testing Strategy. In Blanchette and Kosmatov (eds.): 
Proceedings of the TAP 2015, Springer LNCS, 
Vol. 9154, pp. 155-173, 2015.

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan


Summary of the Benefits
• A new complete testing strategy for systems with infinite 

input domains and finite internal states and finite outputs 

• Effectively implementable in model-based testing tools – 
fully automated 

• Significantly higher test strength compared to heuristic 
test strategies 

• Significant reduction of test effort in application 
domains where the testing is very costly: railway 
interlocking systems

Jan Peleska, Wen-ling Huang, and Felix Hubner: 
A novel approach to HW/SW integration testing of 
route-based interlocking system controllers. To appear
in proceedings of the RSSR 2016, Springer LNCS,  2016.

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling


Summary of the Benefits
• When building a new tool for model-based testing 

of SysML state machines (with infinite input 
domains), the test case generation can be 
performed by an existing tool implementing these 
algorithms for FSMs

SysML test 
tool FSM test tool

T (S)

T ⇤(TestSuite(T (S))



Summary of the Benefits
• When building a new tool for model-based testing 

of SysML state machines (with conceptually infinite 
input domains), the test case generation can be 
performed by an existing tool implementing these 
algorithms for FSMs

SysML test 
tool FSM test tool

T (S)

T ⇤(TestSuite(T (S))

SysML test tool performs 
FSM abstraction and sends 
it to FSM test tool



Summary of the Benefits
• When building a new tool for model-based testing 

of SysML state machines (with conceptually infinite 
input domains), the test case generation can be 
performed by an existing tool implementing these 
algorithms for FSMs

SysML test 
tool FSM test tool

T (S)

T ⇤(TestSuite(T (S))

FSM tool generates complete test 
suite and sends the translated 
result to  SysML test tool



Theory Meets Innovation –             
C. Theory translation for property 

checking: a complete testing strategy 
for checking safety properties



C. Theory Translation

• Objective. Property checking by means of 
complete testing strategies 

• Property checking. Instead of checking the 
implementation with respect to conformance     
(e.g. I/O-equivalence) with a reference model, we 
just want to ensure that the implementation fulfils a 
specific property, for example, a safety property



Example. Brake controller

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

Safety property.  
Whenever the brakes have  
been triggered automatically  
by event auto_on, they 
can only be released 
by the auto_off  
command 

G
�
auto on ) X(trigger W auto o↵)

�
Linear Temporal Logic (LTL) Formula



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

G
�
auto on ) X(trigger W auto o↵)

�

Whenever (“Globally”) . . . 

Example. Brake controller

Safety property.  
Whenever the brakes have  
been triggered automatically  
by event auto_on, they 
can only be released 
by the auto_off  
command 



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

G
�
auto on ) X(trigger W auto o↵)

�

. . . command auto_on has been given . . .

Example. Brake controller

Safety property.  
Whenever the brakes have  
been triggered automatically  
by event auto_on, they 
can only be released 
by the auto_off  
command 



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

G
�
auto on ) X(trigger W auto o↵)

�

. . . then in the next step . . .

Example. Brake controller

Safety property.  
Whenever the brakes have  
been triggered automatically  
by event auto_on, they 
can only be released 
by the auto_off  
command 



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

G
�
auto on ) X(trigger W auto o↵)

�

. . . the brakes are triggered . . .

Example. Brake controller

Safety property.  
Whenever the brakes have  
been triggered automatically  
by event auto_on, they 
can only be released 
by the auto_off  
command 



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

G
�
auto on ) X(trigger W auto o↵)

�

. . . and stay triggered until . . .

Example. Brake controller

Safety property.  
Whenever the brakes have  
been triggered automatically  
by event auto_on, they 
can only be released 
by the auto_off  
command 



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off, man_on/trigger

auto_on/trigger

auto_off/release

man_off,man_on,auto_on/trigger

G
�
auto on ) X(trigger W auto o↵)

�

. . . the auto_off command has been given.

Example. Brake controller

Safety property.  
Whenever the brakes have  
been triggered automatically  
by event auto_on, they 
can only be released 
by the auto_off  
command 



Do we need a new method?
Not required, because we can proceed as follows 

• Generate the “most liberal” FSM that “just fulfils” the required 
safety property, but behaves “chaotically” otherwise – this is 
used as reference model 

• Apply a complete test method that allows to prove that the 
implementation is a reduction of the reference model 

• Reduction. The implementation only performs I/O-sequences 
that can also be performed by the reference model 

• Reduction implies that every safety property fulfilled by the 
reference model is also fulfilled by the implementation



The reference model “just fulfilling” 

G
�
auto on ) X(trigger W auto o↵)

�

S0  auto_off, man_off, man_on/release      auto_off, man_off, man_on/trigger

S1

 auto_on/trigger  auto_off/trigger  auto_off/release

 auto_on, man_off, man_on/trigger



C. Theory Translation: Can we extend this 
concept to property checking of more complex 

systems than those modelled by FSMs?
Yes, of course! We use again the theory translation 
method introduced above – see the recipe next page 

• This recipe is applicable (as before) to systems with 

• input variables over infinite domains  

• finite internal state variables 

• output variables with finite domains 

• . . . and to LTL safety formulas



1. Take the reference model S of the system and calculate its input equiva-

lence classes �! I = {X1, . . . , Xk}

2. Specify the LTL safety formula �! '

3. Extract all atomic propositions from ': �! AP = {p1, . . . , pn}

4. Decompose all pi 2 AP in such a way that the new atomic propositions

only contain free variables in either I, M , or O: �! AP = {q1, . . . , q`} =

AP I [APM [APO

5. Refine I by AP : �! I

6. Translate ' to the most nondeterministic FSM M' satisfying ': �! input

alphabet AP I , output alphabet APO

7. Generate FSM test suite from M' that is complete for showing that an

implementation in the fault domain is a reduction of M'

8. Translate FSM test suite to test suite for implementation S 0

9. If S 0
passes all tests, it fulfils the property �! S 0 |= '



1. Take the reference model S of the system and calculate its input equiva-

lence classes �! I = {X1, . . . , Xk}

2. Specify the LTL safety formula �! '

3. Extract all atomic propositions from ': �! AP = {p1, . . . , pn}

4. Decompose all pi 2 AP in such a way that the new atomic propositions

only contain free variables in either I, M , or O: �! AP = {q1, . . . , q`} =

AP I [APM [APO

5. Refine I by AP : �! I

6. Translate ' to the most nondeterministic FSM M' satisfying ': �! input

alphabet AP I , output alphabet APO

7. Generate FSM test suite from M' that is complete for showing that an

implementation in the fault domain is a reduction of M'

8. Translate FSM test suite to test suite for implementation S 0

9. If S 0
passes all tests, it fulfils the property �! S 0 |= '

These details are explained in Wen-ling 
Huang’s 3rd lecture ‘Property checking of 
safety-critical systems  -  mathematical 
foundations and concrete algorithms’ 
Friday, 2016-05-27, 10:20 – 12:00, ST527



Conclusion
Summarising, we have illustrated how . . . 

• . . . the theory of complete testing strategies helps in 
uncovering more errors and is effective in situations where 
certification considerations require to justify the suitability 
of test suites 

• . . . the translation of testing theories helps to design new 
testing strategies, in particular for equivalence class 
testing and property testing 

• . . . automation is necessary to exploit the benefits of these 
new methods: you could never design these tests by hand!



Verified Systems International 
was awarded the runner-up 
trophy of the European  
Innovation Radar Innovation 
Prize 2015 for integrating the 
equivalence class testing  
theory developed by 
Wen-ling Huang and Jan 
Peleska into their test 
automation product RT-Tester



Further Reading
1. Publications of Jan Peleska, Wen-ling Huang, and their co-authors. http://www.informatik.uni-

bremen.de/agbs/jp/jp_papers_e.html

2. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. 
Eng. 4(3), 178–187 (1978). 

3. ERTMS/ETCS SystemRequirements Specification, Chapter 3, Principles, volume 
Subset-026-3, Issue 3.4.0 (2015), available under http://www.era.europa.eu/Document-
Register/Pages/Set-2-System-Requirements-Specification.aspx

4. Nancy Leveson. SafeWare: System Safety and Computers. Addison Wesley 1995.

5. Neil Storey. Safety-critical Computer Systems. Addison-Welly, 1996. 

6. Alexandre Petrenko, Nina Yevtushenko: Adaptive Testing of Nondeterministic Systems with 
FSM. HASE 2014: 224-228.

http://www.informatik.uni-bremen.de/agbs/jp/jp_papers_e.html
http://www.era.europa.eu/Document-Register/Pages/Set-2-System-Requirements-Specification.aspx


Acknowledgements
I would like to express my gratitude to my friends and 
collaborators who inspired and contributed to the 
ideas presented in this talk. 

Ana Cavalcanti, Anne E. Haxthausen, Wen-ling Huang, 
Christoph Hilken, Felix Hübner, John Fitzgerald, Peter 
Gorm Larsen, Till Mossakowski, Mohammad Reza 
Mousavi, Alexandre Petrenko, Uwe Schulze, Linh Hong 
Vu, Jim Woodcock, Cornelia Zahlten

The work presented here has been performed in the context of project 
Implementable Testing Theories for Cyber-physical systems (ITTCPS) 
http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html 


