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A Development Approach 
– the Basis for Model-
based Testing



Wardziński A. (2008) Safety Assurance Strategies for Autonomous Vehicles. 
In: Harrison M.D., Sujan MA. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2008. Lecture Notes in Computer Science, vol 5219. Springer, 
Berlin, Heidelberg

Typical architecture of an autonomous system
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Identify 
applicable scenario from finite 

library of pre-definined 
parametrised scenarios
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Scheduling of risk 
mitigation actions and mission 

accomplishment
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Safety objective. Select optimal 
behavioural strategy that keeps risks at 
acceptable level, while optimising the 
mission reachability, as long as safety 

permits
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Scenario. A transition system

whose computations are physically

consistent sequences of situations

Events/actions trigger transitions

between situations – either 

increasing or lowering the risk

Scene. Snapshot of traffic and

environment constellations 

Situation. Scene experienced from

the perspective of one traffic 

participant – the SUT 



Design Restrictions

• To ensure constant worst-case execution time boundaries 
…


• … only a bounded number of scenarios is admissible 
(no synthesis of new scenarios during runtime)


• … only a bounded number of risk mitigation 
strategies are admissible (no learning of new 
mitigation strategies during runtime)



Design Workflow and   
MBT-Test Preparation

Scenario 
Identification

Hardi Hungar: Scenario-Based Validation 
of Automated Driving Systems. ISoLA 
(3) 2018: 449-460

Ulbrich, S., et al.: Defining and substantiating the terms scene, 

situation and scenario for automated driving. 

In: IEEE International Annual Conference on Intelligent 

Transportation Systems (ITSC) (2015)

Mario Gleirscher, Stefan Kugele: 
From Hazard Analysis to Hazard Mitigation Planning: 
The Automated Driving Case. CoRR abs/1802.08327 (2018)

https://dblp.uni-trier.de/db/conf/isola/isola2018-3.html#Hungar18
https://dblp.uni-trier.de/db/conf/isola/isola2018-3.html#Hungar18
https://dblp.uni-trier.de/pers/hd/k/Kugele:Stefan
https://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08327


Scenario 
Identification Hazard Analysis

Mario Gleirscher:
Hazard Analysis for Technical Systems. SWQD 2013: 104-124

Numerous publications, e.g.

Important research direction for autonomous systems 
Runtime hazard identification instead of handling pre-specified 

hazards only

For each scenario, …

https://dblp.uni-trier.de/db/conf/swqd/swqd2013.html#Gleirscher13


Scenario 
Identification Hazard Analysis Hazard Mitigation 

Strategy

Risk StructureMario Gleirscher, Stefan Kugele: 
From Hazard Analysis to Hazard Mitigation Planning: 
The Automated Driving Case. CoRR abs/1802.08327 (2018)

Incremental 

elaboration

For each scenario, …

https://dblp.uni-trier.de/pers/hd/k/Kugele:Stefan
https://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08327


Scenario 
Identification Hazard Analysis Hazard Mitigation 

Strategy

Risk Structure

For each scenario, …

Risk structure is created on 
abstraction

Physical World

CPS State Space: variables

Abstract State Space: predicates

Risk State Space: hazard-related predicates

v1, …, vn

p1(v1, …, vn), …, pk(vk1
, …)

pH1
, …, pHm



Scenario 
Identification Hazard Analysis Hazard Mitigation 

Strategy

Safety Monitor – 
Behavioural 
Model

Risk Structure

For each scenario, …

q0

q1b/1

q2

a/1
b/0

a/0

a/0,b/1

Finite State Machine or

SysML State Machine or

Kripke Structure or 

CSP model or

RoboChart or …



Scenario 
Identification Hazard Analysis Hazard Mitigation 

Strategy

Safety Monitor – 
Behavioural 
Model

Risk Structure

For each scenario, …

q0

q1b/1

q2

a/1
b/0

a/0

a/0,b/1

Safety Monitor triggers 

mitigation actions 
for risk minimisation 



Example. Creating a CSP 
Model for a Scenario-
specific Safety Monitor



Blue: Ego Vehicle

1

2

3

Scenario. Red car overtakes ego vehicle (blue car) and swerves into right lane



Variables if the CPS state space (scenario-independent)

⃗v red

⃗v blue

t

⃗x red

⃗x blue

⃗a red

⃗a blue

Sensor data and actuator data (no further details shown)

Time

Position of blue car

Position of red car

Speed of blue car

Speed of red car

Acceleration of blue car

Acceleration of red car



Variables in the abstract state space (“predicate space”)

d−2, d−1, d0, d1, d2 Relative distance thresholds red car/blue car

-2 : “red car is far behind blue car”,

-1 : “close behind”

 0 : “next to”

 1 : “close in front”

 2 : “far in front”

d0 ≡ ∥ ⃗x blue − ⃗x red ∥< ε

d−2 ≡ ∥ ⃗x blue − ⃗x red ∥> δfar ∧ pr1( ⃗x blue) − pr1( ⃗x red) > 0

…

…

d2 ≡ ∥ ⃗x blue − ⃗x red ∥> δfar ∧ pr1( ⃗x blue) − pr1( ⃗x red) < 0



Variables in the abstract state space (“predicate space”)

v−, v0, v+ Relative speed thresholds red car/blue car

- : “red car is much slower than blue car”,

0 : “red and blue car have the same speed”

1 : “red car is faster than blue car” 

v− ≡∥ ⃗v blue − ⃗v red ∥> σ ∧ pr1( ⃗v blue − ⃗v red) > 0

…



Variables in the abstract state space (“predicate space”)

ℓblue, ℓred, rblue, rred, sblue, sred
Blue car and red car, respectively, are

in left lane / right lane / continue straight

Rred ≡ pr2(
⃗v red

∥ ⃗v red ∥
) < − γ < 0

…

Rblue, Lblue, Rred, Lred
Blue car and red car change to 

the right lane or in the left lane, respectively

rred ≡ pr2( ⃗x red) < mid

…



Variables in the abstract state space (“predicate space”)

a−2, a−1, a0, a1, a2 Ego vehicle (blue car) accelerates in driving direction

-2: maximal brake force (negative acceleration)

-1: normal brake force

 0: no acceleration

 1: normal acceleration 

 2: maximal acceleration

a−2 ≡ ∥ ⃗a blue ∥≤ amin < 0

…



Variables in the hazard space (“predicate space”)

h1 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred
Hazard h1. 

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane

3



Result of hazard mitigation strategy: refined hazard

h1.1 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred ∧ v− Hazard h1.1. 

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane, 
the red car is much slower than the blue car

3

Mario Gleirscher, Stefan Kugele: 
From Hazard Analysis to Hazard Mitigation Planning: 
The Automated Driving Case. CoRR abs/1802.08327 (2018)

Admissible mitigation action.

Maximal acceleration of blue car

https://dblp.uni-trier.de/pers/hd/k/Kugele:Stefan
https://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08327


Result of hazard mitigation strategy: refined hazard

h1.2 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred ∧ v0 Hazard h1.2. 

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane, 
the red car has same speed as the blue car

3

Admissible mitigation actions.

(1) Brake blue car with maximal force

(2) Maximal acceleration of blue car



Result of hazard mitigation strategy: refined hazard

h1.3 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred ∧ v+ Hazard h1.3. 

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane, 
the red car is faster than the blue car

3

Admissible mitigation action.

Brake blue car with maximal force



Derive Safety Monitor Model from Hazard Mitigation Analysis

Objectives for the safety monitor 
1. Input predicates from the predicate state space

2. In hazard states, enforce hazard mitigation actions obtained 

from risk structure

3. Optimal mitigation actions force system into “acceptable risk 

corridor” and still allow for mission completion

Inputs to safety monitor – 
from predicate state space

d−2, d−1, d0, d1, d2

v−, v0, v+

ℓblue, ℓred, rblue, rred, sblue, sred

Rred, Lred

Outputs of safety monitor – 
from predicate state space

Rblue, Lblue

a−2, a−1, a0, a1, a2



Interplay Between Mission 
Planning and Safety Monitor

Mission Planning

Safety Monitor
d−2, d−1, d0, d1, d2
v−, v0, v+
ℓblue, ℓred, rblue, rred, sblue, sred

Rred, Lred
Rblue, Lblue

a−2, a−1, a0, a1, a2

Rplan
blue , Lplan

blue

aplan
−2 , aplan

−1 , aplan
0 , aplan

1 , aplan
2

Predicate space

data relevant for 

mission planning



Nondeterministic CSP 
Model

Scenario1 = MissionPlanning1  
            [| { R_blue_plan, L_blue_plan, a_minus2_plan, 
                 a_minus1_plan, a_0_plan, a_1_plan, a_2_plan } |]  
            SafetyMonitor1 

MissionPlanning1 = (|~| e:{R_blue_plan, L_blue_plan,a_minus2_plan,  
                           a_minus1_plan, a_0_plan, a_1_plan,  
                           a_2_plan} @ e -> MissionPlanning1)



SafetyMonitor1 = FAR(0) 

FAR(vRel) = l_blue -> Scenario2 
            [] 
             . . .  
            [] 
            r_red -> Scenario3 
            [] 
            . . .  
            d_minus1 -> NEAR(vRel) 
            [] 
            d_0 -> CLOSE(vRel) 
            [] 
            d_1 -> SafetyMonitor1 
            [] 
            d_2 -> SafetyMonitor1 
            [] 
            v_minus -> FAR(-1) 
            [] 
            v_0 -> FAR(0) 
            [] 
            v_plus -> FAR(1) 
            [] 
            L_blue_plan -> L_blue -> FAR(vRel) 
            [] 
            R_blue_plan -> FAR(vRel) 
            [] 
            a_minus2_plan -> a_minus1 -> FAR(vRel) 
            [] 
            a_minus1_plan -> a_minus1 -> FAR(vRel) 
            . . .  
            [] 
            a_2_plan -> a_1 -> FAR(vRel) 



NEAR(vRel) = l_blue -> Scenario2 
            [] 
            . . . 
            [] 
            r_red -> Scenario3 
            [] 
            . . . 
            [] 
            d_minus2 -> FAR(vRel) 
            [] 
            d_minus1 -> NEAR(vRel) 
            [] 
            d_0 -> CLOSE(vRel) 
            [] 
            d_1 -> SafetyMonitor1 
            [] 
            d_2 -> SafetyMonitor1 
            [] 
            v_minus -> NEAR(-1) 
            [] 
            v_0 -> NEAR(0) 
            [] 
            v_plus -> NEAR(1) 
            [] 
            (vRel >= 0) & L_blue_plan -> L_blue -> NEAR(vRel) 
            [] 
            (vRel < 0) & L_blue_plan -> NEAR(vRel) 
            [] 
            R_blue_plan -> NEAR(vRel) 
            [] 
            a_minus2_plan -> a_minus1 -> NEAR(vRel) 
            [] 
            a_minus1_plan -> a_minus1 -> NEAR(vRel) 
            [] 
            . . . 



CLOSE(vRel) = l_blue -> Scenario2 
            [] 
            . . . 
            [] 
            (vRel == 0) & R_red -> (a_2 -> Scenario3  
                                    |~|  
                                    a_minus_2 -> Scenario4) 
            [] 
            (vRel == -1) & R_red -> a_2 -> Scenario3   
            [] 
            (vRel == 1) & R_red -> a_minus_2 -> Scenario4 
            [] 
            d_minus2 -> FAR(vRel) 
            [] 
            . . . 
            [] 
            v_minus -> CLOSE(-1) 
            [] 
            v_0 -> CLOSE(0) 
            [] 
            v_plus -> CLOSE(1) 
            [] 
            L_blue_plan -> CLOSE(vRel) 
            []  
            R_blue_plan -> CLOSE(vRel) 
            [] 
            a_minus2_plan -> a_minus1 -> CLOSE(vRel) 
            [] 
            a_minus1_plan -> a_minus1 -> CLOSE(vRel) 
            [] 
            a_0_plan -> a_0 -> CLOSE(vRel) 
            [] 
            a_1_plan -> a_1 -> CLOSE(vRel) 
            [] 
            a_2_plan -> a_1 -> CLOSE(vRel)



Per-Scenario MBT



Per-Scenario MBT
• Test strategy options – complete strategies exist for each 

option


• Show I/O-equivalence of SUT with safety monitor


• Show that SUT is a refinement of safety monitor 
(allows for nondeterministic models and SUTs) 

• This is explained in the breakout session 

• Show that SUT implements safety-related requirements 
correctly



Discussion of the Per-
Scenario MBT-Approach



Benefits

• Per-scenario approach simplifies hazard analysis, 
because the focus is on a restricted scenario instead of a 
very complex complete system model capturing all 
relevant traffic states and evolutions


• The well-established complete MBT approach can be 
applied to testing the safety monitor, just as for 
“conventional”, non-autonomous systems



Remaining Risks

• The situation analysis might not identify the correct 
scenario


• This might lead to inadequate hazard mitigation actions



Learning Without 
Impairing Safety



Now where does learning fit in?

• What we can handle and probably get certified along the 
lines described above


• Allow behavioural optimisations in mission planning, 
because safety monitor masks unsafe learning effects


• Allow behavioural optimisations in control layer only 
within the limits of abstract trajectory given by the 
safety controller


• Additional runtime monitoring can supervise this and 
enforce that the control layer data remains in these 
limits Jan Peleska: 

Translating Testing Theories for Concurrent Systems. 
Correct System Design 2015: 133-151.

    doi 10.1007/978-3-319-23506-6_10

https://dblp.uni-trier.de/db/conf/birthday/olderog2015.html#Peleska15


Now where does learning fit in?

• What we cannot handle today and probably wouldn’t 
get certified


• Learn new hazards at runtime


• Learn new mitigation actions at runtime



Further Research 
Points



Statistical Testing

• For validation testing, scenarios need to be tested with a 
statistically significant number of different environment 
behaviours (“red car” in our example)


• Formal approaches to combined system testing & 
statistical testing 

• Based on Probabilistic Automata, Markov Automata, 
Stochastic Automata

Marcus Gerhold and Marielle Stoelinga. 

Model-based testing of probabilistic systems. 

Formal Aspects of Computing, 30(1):77–106, 2018



Equivalence Class Testing

• Recall. Safety monitor operates on abstracted predicate 
space


• But concrete testing needs to stimulate SUT with 
concrete values making some of these predicates true, 
others false


• Complete equivalence testing theory gives answers 
about how to select concrete data samples from 
predicates

Wen-ling Huang, Jan Peleska: 
Complete model-based equivalence class 
testing for nondeterministic systems. 
Formal Asp. Comput. 29(2): 335-364 (2017)

https://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
https://dblp.uni-trier.de/db/journals/fac/fac29.html#HuangP17


Continuous 
Certification



Approach to autonomous cyber-physical systems (ACPS) certification 

• Virtual certification = certification in simulation environment

• Deployment after re-certification via software upload



Retrospective View on 
Test-related Challenges



• Too many test cases required to create them manually 


• No complete reference model available for MBT, so model-based 
test generation does not necessarily lead to all relevant test cases


• Test models need comprehensive environment representation


• Some validation tests may need to be designed/executed during 
runtime – runtime acceptance testing:


• Validation depends on contracts between configuration of 
constituent systems


• Validation depends on mission details specified for the actual 
task at hand

Allow for testing in 
simulation environments, 
performed in the cloud on 

many CPU coresSolved for MBT of safety monitors 
as described above

This task is easier when focussing 
on a specific scenario

Facilitated by predicate abstraction



• For autonomous systems, test oracles need to cope with


1. Behaviour that is under-specified


2. Behaviour that is only acceptable if its risk level is 
acceptable


3. Behaviour that is not deterministic, but follows some 
(sometimes even unknown) probability distribution or 
probabilistic reference model 

Facilitated by predicate abstraction

Apply statistic testing

Apply statistic testing



Final Remark

• In Zen Buddhism, there is the notion of the great doubt


• Question every experience assumed to be true so far – 
even the experience of enlightenment


• This great doubt seems to be most appropriate for 
investigating new challenging research fields with 
potentially hazardous consequences for our society



PLEASE ATTEND THE BREAKOUT 
SESSION ON COMPLETE CSP 
REFINEMENT TESTING LATER 
TODAY!


