
Second Generation Model-based Testing

Provably Strong Testing Methods for the Certification of Autonomous
Systems

Part II of III –

Provably Strong Testing Methods for Autonomous Systems

Jan Peleska

University of Bremen and Verified Systems International GmbH

peleska@uni-bremen.de

2019-03-21

CyPhyAssure Spring School

mailto:peleska@uni-bremen.de

A Development Approach
– the Basis for Model-
based Testing

Wardziński A. (2008) Safety Assurance Strategies for Autonomous Vehicles.
In: Harrison M.D., Sujan MA. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2008. Lecture Notes in Computer Science, vol 5219. Springer,
Berlin, Heidelberg

Typical architecture of an autonomous system

Wardziński A. (2008) Safety Assurance Strategies for Autonomous Vehicles.
In: Harrison M.D., Sujan MA. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2008. Lecture Notes in Computer Science, vol 5219. Springer,
Berlin, Heidelberg

Identify
applicable scenario from finite

library of pre-definined
parametrised scenarios

Wardziński A. (2008) Safety Assurance Strategies for Autonomous Vehicles.
In: Harrison M.D., Sujan MA. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2008. Lecture Notes in Computer Science, vol 5219. Springer,
Berlin, Heidelberg

Scheduling of risk
mitigation actions and mission

accomplishment

Wardziński A. (2008) Safety Assurance Strategies for Autonomous Vehicles.
In: Harrison M.D., Sujan MA. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2008. Lecture Notes in Computer Science, vol 5219. Springer,
Berlin, Heidelberg

Safety objective. Select optimal
behavioural strategy that keeps risks at
acceptable level, while optimising the
mission reachability, as long as safety

permits

Wardziński A. (2008) Safety Assurance Strategies for Autonomous Vehicles.
In: Harrison M.D., Sujan MA. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2008. Lecture Notes in Computer Science, vol 5219. Springer,
Berlin, Heidelberg

Scenario. A transition system

whose computations are physically

consistent sequences of situations

Events/actions trigger transitions

between situations – either

increasing or lowering the risk

Scene. Snapshot of traffic and

environment constellations

Situation. Scene experienced from

the perspective of one traffic

participant – the SUT

Design Restrictions

• To ensure constant worst-case execution time boundaries
…

• … only a bounded number of scenarios is admissible
(no synthesis of new scenarios during runtime)

• … only a bounded number of risk mitigation
strategies are admissible (no learning of new
mitigation strategies during runtime)

Design Workflow and
MBT-Test Preparation

Scenario
Identification

Hardi Hungar: Scenario-Based Validation
of Automated Driving Systems. ISoLA
(3) 2018: 449-460

Ulbrich, S., et al.: Defining and substantiating the terms scene,

situation and scenario for automated driving.

In: IEEE International Annual Conference on Intelligent

Transportation Systems (ITSC) (2015)

Mario Gleirscher, Stefan Kugele: 
From Hazard Analysis to Hazard Mitigation Planning:
The Automated Driving Case. CoRR abs/1802.08327 (2018)

https://dblp.uni-trier.de/db/conf/isola/isola2018-3.html#Hungar18
https://dblp.uni-trier.de/db/conf/isola/isola2018-3.html#Hungar18
https://dblp.uni-trier.de/pers/hd/k/Kugele:Stefan
https://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08327

Scenario
Identification Hazard Analysis

Mario Gleirscher:
Hazard Analysis for Technical Systems. SWQD 2013: 104-124

Numerous publications, e.g.

Important research direction for autonomous systems
Runtime hazard identification instead of handling pre-specified

hazards only

For each scenario, …

https://dblp.uni-trier.de/db/conf/swqd/swqd2013.html#Gleirscher13

Scenario
Identification Hazard Analysis Hazard Mitigation

Strategy

Risk StructureMario Gleirscher, Stefan Kugele: 
From Hazard Analysis to Hazard Mitigation Planning:
The Automated Driving Case. CoRR abs/1802.08327 (2018)

Incremental

elaboration

For each scenario, …

https://dblp.uni-trier.de/pers/hd/k/Kugele:Stefan
https://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08327

Scenario
Identification Hazard Analysis Hazard Mitigation

Strategy

Risk Structure

For each scenario, …

Risk structure is created on
abstraction

Physical World

CPS State Space: variables

Abstract State Space: predicates

Risk State Space: hazard-related predicates

v1, …, vn

p1(v1, …, vn), …, pk(vk1
, …)

pH1
, …, pHm

Scenario
Identification Hazard Analysis Hazard Mitigation

Strategy

Safety Monitor –
Behavioural
Model

Risk Structure

For each scenario, …

q0

q1b/1

q2

a/1
b/0

a/0

a/0,b/1

Finite State Machine or

SysML State Machine or

Kripke Structure or

CSP model or

RoboChart or …

Scenario
Identification Hazard Analysis Hazard Mitigation

Strategy

Safety Monitor –
Behavioural
Model

Risk Structure

For each scenario, …

q0

q1b/1

q2

a/1
b/0

a/0

a/0,b/1

Safety Monitor triggers

mitigation actions
for risk minimisation

Example. Creating a CSP
Model for a Scenario-
specific Safety Monitor

Blue: Ego Vehicle

1

2

3

Scenario. Red car overtakes ego vehicle (blue car) and swerves into right lane

Variables if the CPS state space (scenario-independent)

⃗v red

⃗v blue

t

⃗x red

⃗x blue

⃗a red

⃗a blue

Sensor data and actuator data (no further details shown)

Time

Position of blue car

Position of red car

Speed of blue car

Speed of red car

Acceleration of blue car

Acceleration of red car

Variables in the abstract state space (“predicate space”)

d−2, d−1, d0, d1, d2 Relative distance thresholds red car/blue car

-2 : “red car is far behind blue car”,

-1 : “close behind”

 0 : “next to”

 1 : “close in front”

 2 : “far in front”

d0 ≡ ∥ ⃗x blue − ⃗x red ∥< ε

d−2 ≡ ∥ ⃗x blue − ⃗x red ∥> δfar ∧ pr1(⃗x blue) − pr1(⃗x red) > 0

…

…

d2 ≡ ∥ ⃗x blue − ⃗x red ∥> δfar ∧ pr1(⃗x blue) − pr1(⃗x red) < 0

Variables in the abstract state space (“predicate space”)

v−, v0, v+ Relative speed thresholds red car/blue car

- : “red car is much slower than blue car”,

0 : “red and blue car have the same speed”

1 : “red car is faster than blue car”

v− ≡∥ ⃗v blue − ⃗v red ∥> σ ∧ pr1(⃗v blue − ⃗v red) > 0

…

Variables in the abstract state space (“predicate space”)

ℓblue, ℓred, rblue, rred, sblue, sred
Blue car and red car, respectively, are

in left lane / right lane / continue straight

Rred ≡ pr2(
⃗v red

∥ ⃗v red ∥
) < − γ < 0

…

Rblue, Lblue, Rred, Lred
Blue car and red car change to

the right lane or in the left lane, respectively

rred ≡ pr2(⃗x red) < mid

…

Variables in the abstract state space (“predicate space”)

a−2, a−1, a0, a1, a2 Ego vehicle (blue car) accelerates in driving direction

-2: maximal brake force (negative acceleration)

-1: normal brake force

 0: no acceleration

 1: normal acceleration

 2: maximal acceleration

a−2 ≡ ∥ ⃗a blue ∥≤ amin < 0

…

Variables in the hazard space (“predicate space”)

h1 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred
Hazard h1.

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane

3

Result of hazard mitigation strategy: refined hazard

h1.1 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred ∧ v− Hazard h1.1.

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane,
the red car is much slower than the blue car

3

Mario Gleirscher, Stefan Kugele: 
From Hazard Analysis to Hazard Mitigation Planning:
The Automated Driving Case. CoRR abs/1802.08327 (2018)

Admissible mitigation action.

Maximal acceleration of blue car

https://dblp.uni-trier.de/pers/hd/k/Kugele:Stefan
https://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08327

Result of hazard mitigation strategy: refined hazard

h1.2 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred ∧ v0 Hazard h1.2.

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane,
the red car has same speed as the blue car

3

Admissible mitigation actions.

(1) Brake blue car with maximal force

(2) Maximal acceleration of blue car

Result of hazard mitigation strategy: refined hazard

h1.3 ≡ ℓred ∧ rblue ∧ d0 ∧ Rred ∧ v+ Hazard h1.3.

The red car is in the left lane,

the blue car is in the right lane,

the cars are very close to each other,

the red car is swerving into the right lane,
the red car is faster than the blue car

3

Admissible mitigation action.

Brake blue car with maximal force

Derive Safety Monitor Model from Hazard Mitigation Analysis

Objectives for the safety monitor
1. Input predicates from the predicate state space

2. In hazard states, enforce hazard mitigation actions obtained

from risk structure

3. Optimal mitigation actions force system into “acceptable risk

corridor” and still allow for mission completion

Inputs to safety monitor –
from predicate state space

d−2, d−1, d0, d1, d2

v−, v0, v+

ℓblue, ℓred, rblue, rred, sblue, sred

Rred, Lred

Outputs of safety monitor –
from predicate state space

Rblue, Lblue

a−2, a−1, a0, a1, a2

Interplay Between Mission
Planning and Safety Monitor

Mission Planning

Safety Monitor
d−2, d−1, d0, d1, d2
v−, v0, v+
ℓblue, ℓred, rblue, rred, sblue, sred

Rred, Lred
Rblue, Lblue

a−2, a−1, a0, a1, a2

Rplan
blue , Lplan

blue

aplan
−2 , aplan

−1 , aplan
0 , aplan

1 , aplan
2

Predicate space

data relevant for

mission planning

Nondeterministic CSP
Model

Scenario1 = MissionPlanning1
 [| { R_blue_plan, L_blue_plan, a_minus2_plan,
 a_minus1_plan, a_0_plan, a_1_plan, a_2_plan } |]
 SafetyMonitor1

MissionPlanning1 = (|~| e:{R_blue_plan, L_blue_plan,a_minus2_plan,
 a_minus1_plan, a_0_plan, a_1_plan,
 a_2_plan} @ e -> MissionPlanning1)

SafetyMonitor1 = FAR(0)

FAR(vRel) = l_blue -> Scenario2
 []
 . . .
 []
 r_red -> Scenario3
 []
 . . .
 d_minus1 -> NEAR(vRel)
 []
 d_0 -> CLOSE(vRel)
 []
 d_1 -> SafetyMonitor1
 []
 d_2 -> SafetyMonitor1
 []
 v_minus -> FAR(-1)
 []
 v_0 -> FAR(0)
 []
 v_plus -> FAR(1)
 []
 L_blue_plan -> L_blue -> FAR(vRel)
 []
 R_blue_plan -> FAR(vRel)
 []
 a_minus2_plan -> a_minus1 -> FAR(vRel)
 []
 a_minus1_plan -> a_minus1 -> FAR(vRel)
 . . .
 []
 a_2_plan -> a_1 -> FAR(vRel)

NEAR(vRel) = l_blue -> Scenario2
 []
 . . .
 []
 r_red -> Scenario3
 []
 . . .
 []
 d_minus2 -> FAR(vRel)
 []
 d_minus1 -> NEAR(vRel)
 []
 d_0 -> CLOSE(vRel)
 []
 d_1 -> SafetyMonitor1
 []
 d_2 -> SafetyMonitor1
 []
 v_minus -> NEAR(-1)
 []
 v_0 -> NEAR(0)
 []
 v_plus -> NEAR(1)
 []
 (vRel >= 0) & L_blue_plan -> L_blue -> NEAR(vRel)
 []
 (vRel < 0) & L_blue_plan -> NEAR(vRel)
 []
 R_blue_plan -> NEAR(vRel)
 []
 a_minus2_plan -> a_minus1 -> NEAR(vRel)
 []
 a_minus1_plan -> a_minus1 -> NEAR(vRel)
 []
 . . .

CLOSE(vRel) = l_blue -> Scenario2
 []
 . . .
 []
 (vRel == 0) & R_red -> (a_2 -> Scenario3
 |~|
 a_minus_2 -> Scenario4)
 []
 (vRel == -1) & R_red -> a_2 -> Scenario3
 []
 (vRel == 1) & R_red -> a_minus_2 -> Scenario4
 []
 d_minus2 -> FAR(vRel)
 []
 . . .
 []
 v_minus -> CLOSE(-1)
 []
 v_0 -> CLOSE(0)
 []
 v_plus -> CLOSE(1)
 []
 L_blue_plan -> CLOSE(vRel)
 []
 R_blue_plan -> CLOSE(vRel)
 []
 a_minus2_plan -> a_minus1 -> CLOSE(vRel)
 []
 a_minus1_plan -> a_minus1 -> CLOSE(vRel)
 []
 a_0_plan -> a_0 -> CLOSE(vRel)
 []
 a_1_plan -> a_1 -> CLOSE(vRel)
 []
 a_2_plan -> a_1 -> CLOSE(vRel)

Per-Scenario MBT

Per-Scenario MBT
• Test strategy options – complete strategies exist for each

option

• Show I/O-equivalence of SUT with safety monitor

• Show that SUT is a refinement of safety monitor
(allows for nondeterministic models and SUTs)

• This is explained in the breakout session

• Show that SUT implements safety-related requirements
correctly

Discussion of the Per-
Scenario MBT-Approach

Benefits

• Per-scenario approach simplifies hazard analysis,
because the focus is on a restricted scenario instead of a
very complex complete system model capturing all
relevant traffic states and evolutions

• The well-established complete MBT approach can be
applied to testing the safety monitor, just as for
“conventional”, non-autonomous systems

Remaining Risks

• The situation analysis might not identify the correct
scenario

• This might lead to inadequate hazard mitigation actions

Learning Without
Impairing Safety

Now where does learning fit in?

• What we can handle and probably get certified along the
lines described above

• Allow behavioural optimisations in mission planning,
because safety monitor masks unsafe learning effects

• Allow behavioural optimisations in control layer only
within the limits of abstract trajectory given by the
safety controller

• Additional runtime monitoring can supervise this and
enforce that the control layer data remains in these
limits Jan Peleska: 

Translating Testing Theories for Concurrent Systems.
Correct System Design 2015: 133-151.

 doi 10.1007/978-3-319-23506-6_10

https://dblp.uni-trier.de/db/conf/birthday/olderog2015.html#Peleska15

Now where does learning fit in?

• What we cannot handle today and probably wouldn’t
get certified

• Learn new hazards at runtime

• Learn new mitigation actions at runtime

Further Research
Points

Statistical Testing

• For validation testing, scenarios need to be tested with a
statistically significant number of different environment
behaviours (“red car” in our example)

• Formal approaches to combined system testing &
statistical testing

• Based on Probabilistic Automata, Markov Automata,
Stochastic Automata

Marcus Gerhold and Marielle Stoelinga.

Model-based testing of probabilistic systems.

Formal Aspects of Computing, 30(1):77–106, 2018

Equivalence Class Testing

• Recall. Safety monitor operates on abstracted predicate
space

• But concrete testing needs to stimulate SUT with
concrete values making some of these predicates true,
others false

• Complete equivalence testing theory gives answers
about how to select concrete data samples from
predicates

Wen-ling Huang, Jan Peleska: 
Complete model-based equivalence class
testing for nondeterministic systems.
Formal Asp. Comput. 29(2): 335-364 (2017)

https://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
https://dblp.uni-trier.de/db/journals/fac/fac29.html#HuangP17

Continuous
Certification

Approach to autonomous cyber-physical systems (ACPS) certification

• Virtual certification = certification in simulation environment

• Deployment after re-certification via software upload

Retrospective View on
Test-related Challenges

• Too many test cases required to create them manually

• No complete reference model available for MBT, so model-based
test generation does not necessarily lead to all relevant test cases

• Test models need comprehensive environment representation

• Some validation tests may need to be designed/executed during
runtime – runtime acceptance testing:

• Validation depends on contracts between configuration of
constituent systems

• Validation depends on mission details specified for the actual
task at hand

Allow for testing in
simulation environments,
performed in the cloud on

many CPU coresSolved for MBT of safety monitors
as described above

This task is easier when focussing
on a specific scenario

Facilitated by predicate abstraction

• For autonomous systems, test oracles need to cope with

1. Behaviour that is under-specified

2. Behaviour that is only acceptable if its risk level is
acceptable

3. Behaviour that is not deterministic, but follows some
(sometimes even unknown) probability distribution or
probabilistic reference model

Facilitated by predicate abstraction

Apply statistic testing

Apply statistic testing

Final Remark

• In Zen Buddhism, there is the notion of the great doubt

• Question every experience assumed to be true so far –
even the experience of enlightenment

• This great doubt seems to be most appropriate for
investigating new challenging research fields with
potentially hazardous consequences for our society

PLEASE ATTEND THE BREAKOUT
SESSION ON COMPLETE CSP
REFINEMENT TESTING LATER
TODAY!

