
Efficient Data Validation for Geographical
Interlocking Systems

Technical Report
Issue 1.1 – 2019-01-17

Jan Peleska1, Niklas Krafczyk1, Anne E. Haxthausen2, and Ralf Pinger3

1 University of Bremen, Department of Mathematics and Computer Science,
Germany

{peleska,niklas}@uni-bremen.de
2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

aeha@dtu.dk
3 Siemens Mobility GmbH, Braunschweig, Germany

ralf.pinger@siemens.com

Abstract. In this paper, an efficient approach to data validation of ge-
ographical interlocking systems (IXLs) is presented. It is explained how
configuration rules for IXLs can be specified by temporal logic formulas
interpreted on Kripke Structure representations of the IXL configura-
tion. Violations of configuration rules can be specified using formulas
from a well-defined subset of LTL. By decomposing the complete con-
figuration model into sub-models corresponding to routes through the
model, the LTL model checking problem can be transformed into a CTL
checking problem for which highly efficient algorithms exist. Specialised
rule violation queries that are hard to express in LTL can be simpli-
fied and checked faster by performing sub-model transformations adding
auxiliary variables to the states of the underlying Kripke Structures. Fur-
ther performance enhancements are achieved by checking each sub-model
concurrently. The approach presented here has been implemented in a
model checking tool which is applied by Siemens for data validation of
geographical IXLs.

Keywords: Data validation, Interlocking systems, LTL, CTL, Model checking

1 Introduction

Background Railway interlocking systems (IXLs) are designed according to
different paradigms [22, Chapter 4]. Two of the most widely used are (a) route-
based interlocking systems and (b) geographical interlocking systems. The former
are based on predefined routes through the rail network and use interlocking
tables specifying safety conflicts between different routes and the point positions
and signal states to be enforced before a route may be entered by a train. For de-
sign type (b), routes through the railway network can be allocated dynamically

2 Peleska, Krafczyk, Haxthausen, and Pinger

by indicating the starting and destination points of trains intending to traverse
the railway network portion controlled by the IXL under consideration. In the
original technology, electrical relay-based circuits were applied, whose elements
and interconnections were designed in one-to-one correspondence with those of
the physical track layout. The electric circuit design ensured dynamic identifica-
tion of free routes from starting point to destination, the locking of points and
setting of signals along the route, as well as on neighbouring track segments for
the purpose of flank protection. In today’s software-controlled electronic inter-
locking systems, instances of software components “mimic” the elements of the
electric circuit. Typically following the object-oriented paradigm, different com-
ponents are developed, each corresponding to a specific type of physical track
element, such as points, track sections associated with signals, and others with
axle counters or similar devices detecting trains passing along the track. Similar
to connections between electric circuit elements, instances of these software com-
ponents are connected by communication channels reflecting the track network.
The messages passed along these channels carry requests for route allocation,
point switching and locking, signal settings, and the associated responses ac-
knowledging or rejecting these requests. The software components are developed
for re-use, so that novel interlocking software designs can be realised by means
of configuration data, specifying which instances of software components are re-
quired, their attribute values, and how their communication channels shall be
connected.

IXL design induces a distinguished verification and validation (V&V) step
which is called data validation. For route-based IXLs, its main objective is to en-
sure completeness and correctness of interlocking tables. For geographical IXLs,
the objective is to check whether the instantiation of software components is
complete, each component is equipped with the correct attribute values, and
whether the channel interconnections are adequate. The data validation objec-
tives are specified by means of rules, and the rules collection is usually quite
extensive (several hundred), so that manual data validation would be cumber-
some, costly, and error-prone task. Also, manually programmed checking soft-
ware is not a satisfactory solution, since the addition of new rules would require
frequent extensions of the code. These extensions are costly, since data valida-
tion tools need to be validated according to tool class T2, as specified in the
standard [6]. Therefore, it is desirable to use data validation tools processing a
logical query language to specify which rules should be enforced or which rule
violations should be detected. This type of tool can be validated once and for
all, since new validation rules can be specified by mans of new queries, without
changing the software code.

Previous Work This paper is a follow-up contribution to [14], where a solution
to the data validation problem for geographical IXLs by means of bounded model

Efficient Data Validation 3

checking (BMC) had been presented.4 During practical evaluation of the results
described there, it turned out that the BMC approach was highly effective as a
bug-finder: if violations of configuration rules were present, these were uncovered
effectively and within acceptable running time. The configuration experts from
Siemens, however, criticised that the tool would not prove the absence of con-
figuration errors. Typical for BMC algorithms, the running time of the checks
sometimes increased exponentially with the search depth, so that an exploration
of the model up to its recurrence diameter5 would have resulted in unacceptable
running time and storage consumption.

Main Contributions As a consequence of the experiences gained with the ap-
plication of BMC technology described in [14], an alternative approach has been
elaborated and implemented in a new data validation tool, the DVL-Checker
(Data Validation Language Checker). The new approach is described in the
present paper, and it is based on the following key insights which, to our best
knowledge, have not been explored before for the purpose of IXL data validation.

1. Exploiting known results about the temporal logic LTL, it is shown that
violations of safety-properties can be represented by a syntactic subset of
LTL which is denoted as data validation language (DVL). This ensures that
violations of IXL configuration rules can be specified using this subset.

2. Exploiting known results about LTL and CTL, we show how LTL formulae
φ representing safety violations (so-called DVL-queries) can be translated
to CTL formulae Φ(φ), such that CTL model checking of Φ(φ) is an over-
approximation for LTL model checking of φ in the sense of abstract inter-
pretation. This means that the absence of witnesses6 for CTL formula Φ(φ)
implies the absence of solutions for LTL formula φ, which proves that no
rule violations specified by φ are present.

3. For CTL, highly efficient and well-explored global model checking algorithms
can be applied. These have complexity O(| f | ·(|S | + |R |), where | f | is the
number of sub-formulae in CTL formula f , |S | is the size of the state space,
and |R | is the size of the transition relation. Moreover, the application of
CTL model checking is generally more efficient than LTL model checking,
since the latter represents an NP-hard problem [7, Section 4.2].

4. A decomposition of the complete IXL configuration into sub-models cor-
responding to directed routes through the railway network allows for (1)
significant reduction of false alarms that might result from the fact that
CTL checking for witnesses of Φ(φ) is an over-approximation of LTL check-
ing for φ, and (2) significant speed-up of the checking process by processing
sub-models concurrently.

4 The text of the previous paragraph describing the general problem and the more
detailed description in Section 2 have been reproduced in slightly modified form
from [14], in order to make the present paper self-contained.

5 The recurrence diameter denotes the number of steps to be performed by a BMC
algorithm to achieve exhaustive model exploration [3].

6 A witness is a sequence of states fulfilling a temporal logic formula.

4 Peleska, Krafczyk, Haxthausen, and Pinger

Overview In Section 2, the data validation approach to geographical IXLs is ex-
plained from an engineering perspective. The mathematical foundations required
to enable automated complete detection of IXL configuration rule violations are
elaborated in Section 3. This is done without any reference to the intended
application. The latter is described in Section 4, where the application of the
mathematical theory to IXL data validation is presented in detail. Section 5
contains references to related work and competing approaches. In Section 6, a
conclusion is presented.

11

21
12

22

32

id = 33
t = t1

id = 25
t = t1

id = 14
t = t1

id = 32
t = sig

id = 22
t = sig

id = 12
t = sig

id = 21
t = sig

id = 11
t = sig

id = 10
t = t3

id = 20
t = t3

13

23

24

id = 13
t = pt

id = 23
t = pt

id = 24
t = pt

a a

c

b

b

b a

b

a

b

a

c

a

b

a a

a

a

a

a

b

b

a

c

20

10

33

25

14

Fig. 1. Physical layout, associated software instances and channel connections.

2 Data Validation for Geographic Interlocking Systems

As indicated above, the software controlling geographical interlocking systems
consists of objects communicating over channels, each instance representing a
physical track element or a related hardware interface. A subset of these channels
– called primary channels in the following – reflect the physical interconnection
between neighbouring track elements which are part of possible routes, to be
dynamically allocated when a request for traversal from some starting point to
a destination is given (Fig. 1). Other channels – called secondary channels –

Efficient Data Validation 5

connect certain elements s1 to others s2, such that s1 and s2 are never neigh-
bouring elements on a route, but s2 may offer flank protection to s1, when some
route including s1 should be allocated. Since geographical interlocking is based
on request and response messages, each channel for sending request messages
from some instance s1 connected to an instance s2 is associated with a “re-
sponse channel” from s2 to s1. Primary channels are subsequently denoted by
variable symbols a, b, c, d , while secondary channels are denoted by e, f , g ,
Only points and diamond crossings use c-channels, and d -channels are used by
diamond crossings only.

All software instances are associated with a unique id and a type t corre-
sponding to the track element type they are representing. Depending on the
type, a list of further attributes a1, . . . , ak may be defined for each software in-
stance. By using default value 0 for attributes that are not applicable to a certain
component type, each element can be associated with the same complete list of
attributes. Each valuation of a channel variable contains either a default value 0,
meaning “no connection on this channel”, or the instance identification id > 0
of the destination instance of the channel.

Data validation rules state conditions about admissible sequences of element
types and about admissible parameters.

Example 1. A typical pattern of data validation rules checks the existence of
expected follow-up elements for an element of a given type.

Rule 1. From channel a of an element of type sig pointing in downstream
direction, an element of the same type with its b-channel pointing upstream
is found, before a border element of type t1 or t3 is reached.

Every rule can be transformed into a rule violation condition. For Rule 1, the
violation would be specified as

Violation of Rule 1. From channel a of an element of type sig pointing in
downstream direction, no element of the same type with its b-channel point-
ing upstream is found, before a border element of type t1 or t3 is reached.

The configuration in Fig. 1 violates Rule 1, because, for example, the path
segment π1 = s21.s23.s24.s22.s25 contains the follow-up element s22, but this is
reached along π1 via its a-channel. Practically, this means that the signal with
id 22 does not point into the expected driving direction, so the expected route
exit signal along π1 is missing. An example of a path segment which is consistent
with this rule is π2 = s32.s24.s23.s13.s11.s10. 2

Example 2. Another typical pattern of data validation rules refers to the element
types that are required or admissible in certain segments of a route marked by
elements of specific type.

Rule 2. Between channel a of an element of type sig and channel b of the
associated downstream element of the same type sig , there must be at least
one element of type t3.

6 Peleska, Krafczyk, Haxthausen, and Pinger

The corresponding rule violation can be specified as

Violation of Rule 2. Between channel a of an element of type sig and channel
b of the associated downstream element of type sig , there does not exist any
element of type t3.

The configuration in Fig. 1 violates this rule, because the path segments con-
necting the signals of type sig do not contain any element of type t3. 2

Example 3. Another typical pattern of data validation rules restricts the number
of elements of a certain type that may be allocated between two elements of
another type. The following fictitious rule illustrates this pattern (the real rules
are slightly more complex and refer to other element types).

Rule 3. From channel a of a signal of type sig pointing in downstream direction,
no more than k points (t = pt) are allowed, before the corresponding signal
with type sig and channel b pointing in upstream direction is reached.

The corresponding rule violation is specified as

Violation of Rule 3. From channel a of a signal of type sig pointing in down-
stream direction, more than k points (t = pt) are encountered, before the
corresponding signal with type sig and channel b pointing in upstream di-
rection is reached. 2

Slightly more complex rules have to be specified for ensuring the correct
configuration of elements offering flank protection to routes crossing points. In
Fig. 2, several variants of signals and points offering flank protection to point p1

are shown. Note that several more variants have to be considered in practise.

Flank protection by point is the preferred solution. Driving direction AB/BA
of a point p1 can be protected from trains entering the C-stem of p1, if another
point p2 exists that may prevent trains from entering p1’s C-stem. This is illus-
trated in Fig. 2 (c). Driving direction AC/CA is protected from trains entering
the B-stem of p1 by points p2 shown in Fig. 2 (d). If flank protection by point
is not possible, then protection by signal may be realised for driving directions
AB/BA and AC/CA as shown in Fig. 2 (a) and (b), respectively.

Example 4. The variants of flank protection shown in Fig. 2 lead to the following
rules applicable to every element p1 with type t = pt . It suffices to check flank
protection for one driving direction, because then it also holds for the opposite
driving direction. Therefore, the rules are only formulated for the case where the
B and C-stems of the point under consideration point in driving direction.

Efficient Data Validation 7

AB/BA

(a) Flank protection of directions AB/BA by signal

AC/CA

(b) Flank protection of directions AC/CA by signal

AB/BA

(c) Flank protection of directions AB/BA by point

AB/BA

p1

p1

p2

p2

(d) Flank protection of directions AC/CA by point

AC/CA

p1 p2

AC/CA

p1 p2

A B

C

A B

C

CC

C

BA

C

B

A

A

A
B

B
B

C

C

C

A
B

C

Fig. 2. Several variants of flank protection.

Rule 4.1 (protection of driving direction AB/BA) If p1’s c-channel points
in downstream direction, another point p2 with its b channel or c-channel
pointing towards the C-stem of p1 is required, or a signal with a-channel
pointing towards the C-stem of p1 is required before another point p3 with
its a-channel pointing towards the C-stem of p1 is encountered.
The condition about p3 ensures that the flank protection is implemented not
too far away from the point p1 to be protected: after encountering a point
like p3, two signals instead of one would be required to protect p1, because
trains could approach p1’s C-stem via the B-stem or A-stem of p3.

Rule 4.2 (protection of driving direction AC/CA) If p1’s b-channel points
in downstream direction, another point p2 with its b channel or c-channel
pointing towards the B-stem of p1 is required, or a signal with a-channel
pointing towards the B-stem of p1 is required before another point p3 with
its a-channel pointing towards the B-stem of p1 is encountered.

For all points displayed in Fig. 1, Rule 4.1 and Rule 4.2 are fulfilled. The corre-
sponding rule violations are specified as

Violation of Rule 4.1 If p1’s c-channel points in downstream direction, no
other point p2 with its b channel or c-channel pointing towards the C-stem

8 Peleska, Krafczyk, Haxthausen, and Pinger

of p1 can be found, and no signal with a-channel pointing towards the C-
stem of p1 can be found before another point p3 with its a-channel pointing
towards the C-stem of p1 is encountered.

Violation of Rule 4.2 If p1’s b-channel points in downstream direction, no
other point p2 with its b channel or c-channel pointing towards the B-stem
of p1 can be found, and no signal with a-channel pointing towards the B-
stem of p1 can be found before another point p3 with its a-channel pointing
towards the B-stem of p1 is encountered. 2

3 Logical Foundations

In this section, the logical foundations of the model checking method for data
validation are explained. The underlying theory is described without references
to their practical application in the IXL context; the latter is explained in Sec-
tion 4.

3.1 Kripke Structures

A State Transition System is a triple TS = (S ,S0,R), where S is the set of
states, S0 ⊆ S is the set of initial states, R ⊆ S × S is the transition relation.
The intuitive interpretation of R is that a state change from s1 ∈ S to s2 ∈ S is
possible in TS if and only if (s1, s2) ∈ R.

A Kripke Structure K = (S ,S0,R,L,AP) is a state transition system (S ,S0,R)
augmented by a set AP of atomic propositions and a labelling function L : S → 2AP

mapping each state s of K to the set of atomic propositions valid in s. Further-
more, it is required that the transition relation R is total in the sense that
∀ s ∈ S : ∃ s ′ ∈ S : (s, s ′) ∈ R. It is assumed that AP always contains the truth
values false, true.

A computation of a state transition system (or a Kripke structure) is an
infinite sequence π = s0.s1.s2 · · · ∈ Sω of states si ∈ S , such that the start state
is an initial state, that is, s0 ∈ S0, and each pair of consecutive states is linked
by the transition relation, that is, ∀ i > 0 : (si−1, si) ∈ R. The terms path or
execution are used synonymously for computations.

In the context of this paper, state spaces S consist of valuation functions
s : V → D mapping variable names from V to their actual values in D . For
the context of this paper, it suffices to consider D = int, because all configura-
tion parameters used for the interlocking systems under consideration may be
encoded as integers. For the Boolean values true, false, the integer values 1, 0
are used, respectively.

3.2 First Order Formulae and Their Valuation

Given a Kripke Structure K with variable valuation functions s : V → int as
states, arithmetic expressions over variables from V are interpreted in a given

Efficient Data Validation 9

state s by the rules shown in Table 1. These rules extend the domain of each val-
uation s to integer constants and arithmetic expressions over variables from V .

Table 1. Expression evaluation.

s(d) = d for integer constants d

s(x ω e) = s(x)ω s(e) for variables x and expressions e

and arithmetic operators ω ∈ {+,−, /, ∗, <<,>>,%}

Table 2. Semantics of atomic propositions.

s |= true

s 6|= false

s |= v ν d iff s(v) ν d for comparison operators ν ∈ {=, 6=, <,6, >,>}
s |= v ν w iff s(v) ν s(w)

Table 3. Semantics of first-order formulae.

s |= ¬f iff s 6|= f

s |= f ∧ g iff s |= f and s |= g

s |= f ∨ g iff s |= f or s |= g

Atomic propositions are constructed by composing variables or arithmetic
expressions using comparison operators. The valuation of atomic propositions is
specified in Table 2, where d denotes integer constants, and v ,w denote variables
from V or arithmetic expressions over variables from V . We write s |= p if p
evaluates to true in state s.

10 Peleska, Krafczyk, Haxthausen, and Pinger

An (unquantified) first-order formula f over V is a logical formula with
atomic propositions over V as specified above, composed by logical operators
¬,∧,∨. The domain of valuation functions s is extended once more to first-order
formulae, as specified in Table 3.

3.3 Linear Temporal Logic LTL – Safety Properties and Their
Violations

Linear Temporal Logic LTL Linear Temporal Logic (LTL) is a logical for-
malism aiming at the specification of computation properties. The material pre-
sented here is based on [7]. Given a Kripke structure with state valuations over
variables from V , we use unquantified first-order LTL with the following syntax.

– Every unquantified first-order formula over V as specified above is an un-
quantified first-order LTL formula.

– If f , g are unquantified first-order LTL formulae, then ¬f , f ∧ g , f ∨ g , Xf
(Next), Gf (Globally), Ff (Finally), f Ug (Until), and f Wg (Weak Until)
are also unquantified first-order LTL formulae.

Operators X, G, F, U, and W are called path operators.

Table 4. Semantics of LTL formulae.

πi |=LTL true for all i > 0

πi 6|=LTL false for all i > 0

πi |=LTL f iff π(i) |= f if f is an unquantified first-order formula over V ,

to be evaluated as specified in Table 1, 2 and 3.

πi |=LTL ¬ϕ iff πi 6|=LTL ϕ

πi |=LTL ϕ ∧ ψ iff πi |=LTL ϕ and πi |=LTL ψ

πi |=LTL ϕ ∨ ψ iff πi |=LTL ϕ or πi |=LTL ψ

πi |=LTL Xϕ iff πi+1 |=LTL ϕ

πi |=LTL Gϕ iff πi+j |=LTL ϕ for all j > 0

πi |=LTL Fϕ iff there exists j > 0 such that πi+j |=LTL ϕ

πi |=LTL ϕUψ iff there exists j > 0 such that πi+j |=LTL ψ and

πi+k |=LTL ϕ for all 0 6 k < j

πi |=LTL ϕWψ iff

πi+k |=LTL ϕ for all k > 0,

or there exists j > 0 such that πi+j |=LTL ψ and

πi+k |=LTL ϕ for all 0 6 k < j

Efficient Data Validation 11

The models of LTL formulae are infinite paths π = s0.s1.s2. · · · ∈ Sω; we
write π |=LTL f if formula f holds on path π according to the semantic rules
specified in Table 4.7 We use notation πi = si .si+1.si+2 . . . to denote the path
segment of π starting at element π(i). A Kripke structure K fulfils LTL formula
f if and only if every computation of K is a model of f :

K |=LTL f iff π |=LTL f for all computations π of K

In the remainder of the paper, some equivalences between LTL formulae will
be used in proofs. These are listed in the following lemma.

Lemma 1. Let ϕ,ψ be LTL formulae. Then

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ) ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
Gϕ ≡ ϕW false Fϕ ≡ ¬G¬ϕ ϕUψ ≡ ϕWψ ∧ Fψ
Fϕ ≡ trueUϕ ¬Xϕ ≡ X¬ϕ ¬Gϕ ≡ F¬ϕ

¬(ϕWψ) ≡
(
¬ψU¬(ϕ ∨ ψ)

)
Proof. We prove ¬(ϕWψ) ≡

(
¬ψU¬(ϕ∨ψ)

)
by transforming the left-hand side

and right-hand side into their semantic representation and proving semantic
equivalence of the resulting quantified first-order expressions. The other state-
ments are established in an analogous way.

πi |=LTL ¬(ϕWψ)

⇔ πi 6|=LTL ϕWψ [Semantics of ¬, Table 4]

⇔ ¬
(
∀ k > 0 : πi+k |=LTL ϕ

)
∧

¬
(
∃ j > 0 : (πi+j |=LTL ψ ∧ ∀ 0 6 k < j : πi+k |=LTL ϕ)

)
[Semantics of W, negated]

⇔
(
∃ h > 0 : πi+h 6|=LTL ϕ

)
∧(

∀ j > 0 : (πi+j 6|=LTL ψ ∨ ∃ 0 6 k < j : πi+k 6|=LTL ϕ)
)

[First-order logic rules for negation and quantification]

⇔
(
∃ h > 0 : πi+h |=LTL ¬ϕ

)
∧(

∀ j > 0 : (πi+j |=LTL ¬ψ ∨ ∃ 0 6 k < j : πi+k |=LTL ¬ϕ)
)

[LTL semantics of ¬]

⇔
(
(∃ h > 0 : πi+h |=LTL ¬ϕ) ∧ (∀ j > 0 : πi+j |=LTL ¬ψ)

)
∨(

∃ j > 0 : (πi+j |=LTL ψ ∧ ∀ 0 6 k < j : πk |=LTL ¬ψ ∧ ∃ 0 6 h < j : πi+h |=LTL ¬ϕ)
)

[First-order logic rules for ∨, ∧, ∀, and ∃,]

[note that second disjunct implies ∃ h > 0 : πi+h |=LTL ¬ϕ]

⇔
(
∃ h > 0 : (πi+h |=LTL (¬ϕ ∧ ¬ψ) ∧ ∀ 0 6 k < h : πi+k |=LTL ¬ψ)

)
[First-order logic rules]

⇔ πi |=LTL

(
¬ψU¬(ϕ ∨ ψ)

)
[LTL semantics of U, rules for ∧,∨]

2

7 The operators ∨, G, F, U are redundant and can be expressed using the remaining
LTL operators alone. Therefore, they are sometimes introduced as syntactic ab-
breviations. For the purpose of this paper, however, it is better to represent their
semantics in an explicit way.

12 Peleska, Krafczyk, Haxthausen, and Pinger

Safety Properties A safety property P is a collection of computations π ∈ Sω,
such that for every π′ ∈ Sω with π′ 6∈ P , the fact that π′ does not fulfil P can
already be decided on a finite prefix of π′. It has been shown in [23] that every
safety property P can be characterised by a Safety LTL formula f , so that the
computations in P are exactly those fulfilling f . The Safety LTL formulae are
specified as follows [23, Theorem 3.1]:

1. Every unquantified first-order formula is a Safety LTL-formula.
2. If f , g are Safety LTL-Formulae, then so are

f ∧ g , f ∨ g , Xf , f Wg , Gf .

Observe that in these safety formulae, the negation operator must only occur in
first-order sub-formulae.

Suppose that a safety property P is specified by Safety LTL formula f . When
looking for a path π violating f , the violation π |=LTL ¬f can be equivalently
expressed by a formula containing only first-order expressions composed by the
operators ∧,∨,X,U. This is shown in the following theorem.

Theorem 1. Let f be a Safety LTL formula. Then ¬f can be equivalently ex-
pressed using first-order expressions composed by operators ∧,∨,X,U.

Proof. We use structural induction over the syntax of safety LTL formulae.

Base case. If f is a first-order expression, then its negation is again a first-order
expression.

Induction hypothesis. Suppose that the negation of Safety LTL formulae f , g
can be expressed using first-order expressions composed by operators ∧,∨,X,U
only.

Induction step. Since every Safety LTL formula can be expressed using operators
∧,∨,X,W,G, we need to show that the negations of f ∧ g , f ∨ g , Xf , f Wg ,
Gf can also be expressed using first-order expressions composed by operators
∧,∨,X,U. To prove this, we use the equivalences for LTL formulae established
in Lemma 1.

Since ¬(f ∧g) ≡ ¬f ∨¬g and f , g can be negated using first-order expressions
composed by operators ∧,∨,X,U only, the induction step holds for operator ∧.

Since ¬(f ∨g) ≡ ¬f ∧¬g and f , g can be negated using first-order expressions
composed by operators ∧,∨,X,U only, the induction step holds for operator ∨.

Since ¬Xf ≡ X¬f and f can be negated using first-order expressions com-
posed by operators ∧,∨,X,U only, the induction step holds for operator X.

Since ¬(f Wg) ≡
(
¬gU¬(f ∨ g)

)
≡

(
¬gU(¬f ∧¬g)

)
and f , g can be negated

using first-order expressions composed by operators ∧,∨,X,U only, the induc-
tion step holds for operator W.

Since ¬Gf ≡ F¬f ≡ (trueU¬f) and f can be negated using first-order
expressions composed by operators ∧,∨,X,U only, the induction step holds for
operator G. This completes the proof. 2

Efficient Data Validation 13

As a consequence of Theorem 1, a model checker specialised on the detection
of safety violations only needs to support the evaluation of first-order formulae
and operators ∧,∨,X,U.

Safety Violation Formulae on Finite Paths It will be explained in Section 4
how IXL configurations may be interpreted as Kripke structures. This interpreta-
tion needs one relaxation of the Kripke structure definition K = (S ,S0,R,L,AP):
we admit state transition systems (S ,S0,R) whose transition relation is no longer
total. This leads to the possibility that computations are finite, because some
states may not possess any post-states under R. These states correspond to
boundary elements in the IXL configuration that may be reached along paths
through the rail network controlled by the IXL but do not possess outgoing main
channels in the given driving direction.

From Theorem 1 above we know that the LTL formulae we are interested in
– these express safety violations – can be represented by ∧,∨,X,U. For finite
paths π, we introduce the convention that

πi =

{
π(i) . . . π(#π − 1) iff #π > i (#π is the length of π)
ε (empty path) iff i > #π

Next, the additional semantic rule

ε 6|=LTL ϕ for all LTL formulae ϕ

is introduced. With this addition, the LTL semantics specified in Table 4 can
be applied to finite paths as well: Xϕ is always false when evaluated on a path
segment of length 1 or 0.

Theorem 2. If the transition relation R of a Kripke structure K is not total
and K can be represented as an acyclic finite directed graph, then the semantic
extension of LTL to finite paths specified above coincides with the finite linear
encodings for LTL semantics introduced in [3] that is used for bounded LTL
model checking. 2

3.4 Computation Tree Logic CTL

Syntax of CTL formulae. While LTL formulae have computations of Kripke
structures as models, CTL has trees of computations as models. As a conse-
quence, two new path quantors are introduced in addition to the path operators
already known from LTL: Quantor E denotes existential path quantification, in
the sense that “there exists a path segment starting at the current node of the
computation tree, such that the formula specified after E holds on this segment.”
Quantor A denotes universal path quantification, in the sense that “on all path
segments starting at the current node of the computation tree the formula speci-
fied after A holds.” The CTL syntax is defined by the following grammar, where

14 Peleska, Krafczyk, Haxthausen, and Pinger

f denotes unquantified first-order formulae as specified in Section 3.2, formulae
φ are called state formulae, and formulae ψ are called path formulae.

CTL-formula ::= φ
φ ::= f | ¬φ | φ ∨ φ | φ ∧ φ | Eψ | Aψ
ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xφ | Fφ | Gφ | φUφ | φW φ

According to this grammar, the path operators X,F,G,U,W can never be
prefixed by another temporal operator in CTL. Only pairs consisting of path
quantifier and temporal operator can occur in a row.

Table 5. Semantics of CTL formulae.

K , s |=CTL f iff s |= f for any unquantified first-order formula f
with “|=” as defined in Table 3

K , s |=CTL ¬φ iff K , s 6|=CTL φ
K , s |=CTL φ1 ∨ φ2 iff K , s |=CTL φ1 or K , s |=CTL φ2

K , s |=CTL φ1 ∧ φ2 iff K , s |=CTL φ1 and K , s |=CTL φ2

K , s |=CTL Eψ iff there is a path π from s such that K , πi |=CTL ψ
K , s |=CTL Aψ iff on every path π from s holds K , πi |=CTL ψ
K , πi |=CTL φ iff K , π(i) |=CTL φ
K , πi |=CTL ¬ψ iff K , πi 6|=CTL ψ
K , πi |=CTL ψ1 ∨ ψ2 iff K , πi |=CTL ψ1 or K , πi |=CTL ψ2

K , πi |=CTL ψ1 ∧ ψ2 iff K , πi |=CTL ψ1 and K , πi |=CTL ψ2

K , πi |=CTL Xψ iff K , πi+1 |=CTL ψ

K , πi |=CTL Gψ iff for all k ≥ 0 K , πi+k |=CTL ψ

K , πi |=CTL Fψ iff there exists k ≥ 0 such that K , πi+k |=CTL ψ
K , πi |=CTL ψ1Uψ2 iff there exists j ≥ 0 such that K , πi+j |=CTL ψ2 and

K , πi+k |=CTL ψ1 for all 0 6 k < j

K , πi |=CTL ψ1Wψ2 iff πi+k |=CTL ψ1 for all k > 0,
or there exists j > 0 such that K , πi+j |=CTL ψ2 and

K , πi+k |=CTL ψ1 for all 0 6 k < j

Semantics of CTL formulae. The semantics of CTL formulae is explained
using a Kripke structure K , specific states s of K and paths π through the
computation tree of K . We write

K , s |=CTL φ (s a state of K , φ a state formula)

to express that φ holds in state s of K . We write

K , π |=CTL ψ (π a computation of K , ψ a path formula)

Efficient Data Validation 15

to express that ψ holds along path π through K . For CTL formulae φ we say φ
holds in the Kripke model K and write K |=CTL φ if and only if K , s0 |=CTL φ
holds in every initial state s0 of K .

The semantics of CTL formulae is specified in Table 5, where f denotes
unquantified first-order formulae, φ, φi denote state formulae, and ψ,ψj denote
path formulae. First-order formulae are interpreted just as in LTL, as specified
in Table 3.

3.5 Over-approximation of LTL Safety Violation Formulae by CTL

Full LTL and CTL have different expressiveness, and neither one is able to
express all formulae of the other with equivalent semantics [7]. In this section,
however, it will be shown that any safety violation specified by an LTL formula f
on a path π can also be detected by applying CTL model checking to a translated
formula Φ(f) on any Kripke structure K containing π as a computation. This is,
however, an over-approximation, in the sense that witnesses for Φ(f) in K will
not always correspond to “real” rule violations in the IXL configuration. This
will be illustrated by examples, and it is explained why the choice of sub-models
described in Section 4.2 significantly reduces the number of such false alarms.

Recalling from Theorem 1 that any safety violation can be specified using
first-order formulae and operators ∧,∨,X,U, we specify a partial transformation
function Φ : LTL 7→ CTL as follows.

Φ(f) = f for all first-order expressions f

Φ(f ∧ g) = Φ(f) ∧ Φ(g)

Φ(f ∨ g) = Φ(f) ∨ Φ(g)

Φ(Xf) = EX(Φ(f))

Φ(f Ug) = E(Φ(f)UΦ(g))

Observe that Φ maps every LTL formula in its domain to a CTL state formula,
since first-order expressions are state-formulae, and any LTL formula starting
with a temporal operator is prefixed under Φ with the existential path quantor E.
With this transformation at hand, the following theorem states that the absence
of witnesses for Φ(f) in K guarantees the absence of a rule violation f on π.

Theorem 3. Let π be any path and f an LTL formula specifying a safety vio-
lation on π. Let K be a Kripke structure over state space S containing π as a
computation. Then

π |=LTL f implies K |=CTL Φ(f).

Proof. The proof uses structural induction over the syntax of LTL formulae
representing safety violations. These are expressed by first-order formulae and
operators ∧,∨,X,U according to Theorem 1.

Base case. Let π be a path and f a first-order formula, such that π |=LTL f .
According to the semantic rules of LTL specified in Table 4, this is equivalent

16 Peleska, Krafczyk, Haxthausen, and Pinger

to π(0) |= f . This means that state π(0) is a model for f . Now let K be any
Kripke structure possessing π as a computation. Then π(0) is an initial state of
K . Since expression evaluation is the same for LTL and CTL, K , π(0) |=CTL f
follows from π(0) |= f . Observing that Φ(f) = f for first-order formulae f , we
have shown that π |=LTL f implies K |=CTL Φ(f) for first-order formulae f .

Induction hypothesis. Suppose that πi |=LTL f and πi |=LTL g implies
K , π(i) |=CTL Φ(f) and K , π(i) |=CTL Φ(g), respectively, for given LTL formulae
f , g expressing safety violations and any path π for any i > 0, and any K
containing π as a computation.

Induction step. Using the induction hypothesis, it has to be shown that the
validity of πi |=LTL f ∧g , πi |=LTL f ∨g , πi |=LTL Xf , and πi |=LTL f Ug implies
K , π(i) |=CTL Φ(f)∧Φ(g), K , π(i) |=CTL Φ(f)∨Φ(g), K , π(i) |=CTL XΦ(f), and
K , π(i) |=CTL Φ(f)UΦ(g), respectively.

If πi |=LTL f ∧ g , this is equivalent to πi |=LTL f and πi |=LTL g according to
the LTL semantics specified in Table 4. According to the induction hypothesis,
this implies K , π(i) |=CTL Φ(f) and K , π(i) |=CTL Φ(g). According to the CTL
semantics specified in Table 5, this is equivalent to K , π(i) |=CTL Φ(f) ∧ Φ(g).

If πi |=LTL f ∨ g , this is equivalent to πi |=LTL f or πi |=LTL g according to
the LTL semantics specified in Table 4. According to the induction hypothesis,
this implies K , π(i) |=CTL Φ(f) or K , π(i) |=CTL Φ(g). According to the CTL
semantics specified in Table 5, this is equivalent to K , π(i) |=CTL Φ(f) ∨ Φ(g).

If πi |=LTL Xf , this is equivalent to πi+1 |=LTL f according to the LTL
semantics specified in Table 4. According to the induction hypothesis, this im-
plies K , π(i + 1) |=CTL Φ(f). Since Φ(f) is a state formula, this is equivalent to
K , πi+1 |=CTL Φ(f) according to the CTL semantics specified in Table 5. Fur-
thermore, the CTL semantics states that this is equivalent to K , π |=CTL XΦ(f).
This establishes the existence of a computation in K (namely π) where XΦ(f)
is fulfilled. This fact is equivalent to K |=CTL EXΦ(f) which is again equivalent
to K |=CTL Φ(Xf) by definition of Φ.

If πi |=LTL f Ug , this is equivalent to

∃ j > 0 :
(
πi+j |=LTL g ∧ ∀ 0 6 k < j : πi+k |=LTL f

)
according to the LTL semantics specified in Table 4. This implies

∃ j > 0 :
(
π(i + j) |=CTL Φ(g) ∧ ∀ 0 6 k < j : π(i + k) |=CTL Φ(f)

)
according to the induction hypothesis. Since Φ(f), Φ(g) are state formulae, the
CTL semantics specified in Table 5 states that this equivalent to

∃ j > 0 :
(
πi+j |=CTL Φ(g) ∧ ∀ 0 6 k < j : πi+k |=CTL Φ(f)

)
,

which establishes

M , π |=CTL Φ(f)UΦ(g).

Now we have shown the existence of a computation of K (namely π) where
Φ(f)UΦ(g) holds; this can be re-phrased as K |=CTL E(Φ(f)UΦ(g)) which is

Efficient Data Validation 17

equivalent to K |=CTL Φ(f Ug) according to the definition of Φ. This completes
the induction step and the proof of Theorem 3. 2

3.6 CTL Model Checking

Basic Concept of Classical CTL Model Checking. The CTL model check-
ing algorithm used for IXL data validation is based on the “classical” algorithm
described in [7, Chapter 4]. It is specialised, however, on the CTL syntax re-
quired for uncovering safety violations. From Theorem 1 and Theorem 3 we
know that for this purpose, only unquantified first-order formulae and the CTL
operators ∧,∨,EX,EU need to be supported. The algorithm’s main concepts
are summarised as follows.

– The CTL specification formula is decomposed into its (binary) syntax tree.
– Starting at the leaves of the syntax tree (the leaves represent unquantified

first-order formulae), the algorithm processes a sequence of sub-formulae φi
in bottom-up manner. This is implemented by means of a recursive in-order
traversal of the syntax tree.

– The goal of each processing step is to annotate all states s ∈ S satisfying
s |=CTL φi with the new sub-formula φi . To this end, a labelling function
Lφ : S → CTL is used.

– The algorithm stops when the last formula φi having been processed coin-
cides with the specification φ.

– The result of the algorithm is the set Sφ = {s ∈ S | φ ∈ Lφ(s)}.
– The Kripke model (S ,S0,R,L,AP) satisfies φ if its initial states are a subset

of Sφ.
– For the DVL Checker, the initial model states are the entry elements into

the track network controlled by the interlocking system.

Overview over the algorithm. In Fig. 3, the entry function of the recursive
algorithm is shown. checkCTL returns the set {s ∈ S | φ ∈ label(s)} of all states
satisfying the given formula ψ. It remains to check whether the initial states S0

of the Kripke Structure K form a subset of {s ∈ S | φ ∈ label(s)}.
In Fig. 4, the main function calcLabel of the algorithm is shown. It traverses

the syntax tree representation of the formula ψ to be checked and calls recursively
itself or special sub-functions for processing sub-formulae.

Complexity Considerations. Studying the algorithms below, it is easy to see
that the running time for checking K |=CTL f is O(| f | · (|S | + |R |), where
| f | is the number of sub-formulae in CTL formula f , |S | is the size of the
state space, and |R | is the size of the transition relation. This is a well-known
result which is elaborated, for example, in [7, Theorem 1]. As a consequence, the
running time is affected by the model size in a linear way only, while model size
may affect the running time of BMC in an exponential way. The running time

18 Peleska, Krafczyk, Haxthausen, and Pinger

is also lower than using LTL model checking algorithms directly, since the latter
are NP-hard [7, Section 4.2].

function checkCTL(in (S ,S0,R,L,AP) : KripkeStructure; in φ : CTL) : P(S)

begin

label : S → 2CTL;

label := {s 7→ true | s ∈ S};
calcLabel((S ,S0,R,L,AP), φ, label);

checkCTL := {s ∈ S | φ ∈ label(s)};
end

Fig. 3. Main algorithm for CTL property checking against Kripke structures.

procedure calcLabel(in (S ,S0,R,L,AP) : KripkeStructure;

in φ : CTL;

inout label : S → 2CTL)

begin

if φ is a first-order formula then

calcLabelFO((S ,S0,R,L,AP), φ, label);

elseif φ = φ0 ∧ φ1 then

calcLabel((S ,S0,R,L,AP), φ0, label);

calcLabel((S ,S0,R,L,AP), φ1, label);

calcLabelAND((S ,S0,R,L,AP), φ0, φ1, label);

elseif φ = φ0 ∨ φ1 then

calcLabel((S ,S0,R,L,AP), φ0, label);

calcLabel((S ,S0,R,L,AP), φ1, label);

calcLabelOR((S ,S0,R,L,AP), φ0, φ1, label);

elseif φ = EXφ0 then

calcLabel((S ,S0,R,L,AP), φ0, label);

calcLabelEX((S ,S0,R,L,AP), φ0, label);

elseif φ = E(φ0Uφ1) then

calcLabel((S ,S0,R,L,AP), φ0, label);

calcLabel((S ,S0,R,L,AP), φ1, label);

calcLabelEU((S ,S0,R,L,AP), φ0, φ1, label);

endif

end

Fig. 4. Label calculation – control algorithm driven by formula syntax.

Efficient Data Validation 19

procedure calcLabelFO(in (S ,S0,R,L,AP) : KripkeStructure;

in φ : First-order formula;

inout label : S → 2CTL)

begin

foreach s ∈ S do

if s |= φ then

label(s) := label(s) ∪ {φ};
endif

enddo

end

Fig. 5. Algorithm for labelling states with first-order formulae.

procedure calcLabelOR(in (S ,S0,R,L,AP) : KripkeStructure;

in φ0 : CTL; in φ1 : CTL;

inout label : S → 2CTL)

begin

foreach s ∈ S do

if φ0 ∈ label(s) ∨ φ1 ∈ label(s) then

label(s) := label(s) ∪ {φ0 ∨ φ1};
endif

enddo

end

Fig. 6. Algorithm for labelling states with φ0 ∨ φ1) formulae.

procedure calcLabelAND(in (S ,S0,R,L,AP) : KripkeStructure;

in φ0 : CTL; in φ1 : CTL;

inout label : S → 2CTL)

begin

foreach s ∈ S do

if φ0 ∈ label(s) ∧ φ1 ∈ label(s) then

label(s) := label(s) ∪ {φ0 ∧ φ1};
endif

enddo

end

Fig. 7. Algorithm for labelling states with φ0 ∧ φ1) formulae.

20 Peleska, Krafczyk, Haxthausen, and Pinger

procedure calcLabelEX (in (S ,S0,R,L,AP) : KripkeStructure;

in φ : CTL;

inout label : S → 2CTL)

begin

foreach s ∈ S do

if ∃ s ′ ∈ S : R(s, s ′) ∧ φ ∈ label(s ′) then

label(s) := label(s) ∪ {EXφ};
endif

enddo

end

Fig. 8. Algorithm for labelling states with EXφ formulae.

procedure calcLabelEU (in (S ,S0,R,L,AP) : KripkeStructure;

in φ0 : CTL; in φ1 : CTL;

inout label : S → 2CTL)

begin

T := 〈s ∈ S | φ1 ∈ label(s)〉;
foreach s ∈ T do

label(s) := label(s) ∪ {E(φ0Uφ1)};
enddo

while T 6= 〈 〉 do
s := head(T);

T := tail(T);

foreach u ∈ {v ∈ S | R(v , s)} do
if E(φ0Uφ1) 6∈ label(u) ∧ φ0 ∈ label(u) then

label(u) := label(u) ∪ {E(φ0Uφ1)};
T := T _ 〈u〉;

endif

enddo

enddo

end

Fig. 9. Algorithm for labelling states with E(φ0Uφ1) formulae.

Theorem 4. Let π ∈ S∗ ∪Sω be a finite or infinite path and f an LTL formula
specifying a rule violation on π. Let K be a Kripke structure over state space
S containing π as a computation. Then π |=LTL f implies that the CTL model
checking algorithms above find a witness for Φ(f).

Efficient Data Validation 21

Proof. For infinite paths π the statement follows from Theorem 3, since the
algorithms above are sound and complete for CTL model checking [7]. Analysis of
algorithms calcLabelEX and calcLabelEU above shows that they can be applied
to finite paths in a way that is consistent with the semantic LTL extension to
finite paths specified in Section 3.3. 2

4 Model Checking of IXL Configurations

4.1 IXL Configurations as Kripke Structures

The configurations for geographical IXLs described in Section 2 give rise to
Kripke structures K = (S ,S0,R,L,AP) with variable symbols from some set V
as follows (symbol d denotes int-values).

V = {id , t} ∪ C ∪A

C = {c | c is a primary or secondary channel symbol}
A = {a | a is an attribute}
S = {s : V → int | There exists a configuration instance with

id, type, channel, and attribute valuation s}
S0 = S

R = {(s, s ′) | ∃ c ∈ C : s(c) = s ′(id)}
AP = {id = d | ∃ s ∈ S : s(id) = d} ∪ {t = d | ∃ s ∈ S : s(t) = d} ∪

{c = d | c ∈ C ∧ ∃ s ∈ S : s(c) = d} ∪
{a = d | a ∈ A ∧ ∃ s ∈ S : s(a) = d}

L : S → 2AP ; s 7→ {v = d | v ∈ V ∧ s(v) = d}

Each K-state in S is represented by a valuation function s mapping id, type,
channel, and attribute symbols to corresponding integer values, such that there
is a configuration element with exactly these values. The atomic propositions
consist of all equalities v = d , where v is a symbol of V and d an integer value
occurring for v in at least one configuration element. Every K-state is an initial
state, because configuration rules are checked from any element as starting point.
Two elements s, s ′ are linked by the transition relation whenever s has a channel
c connected to s ′; this is expressed by s(c) carrying the id of s ′. The labelling
function maps each state s exactly to the propositions v = s(v), v ∈ V that are
valid in this state. Using the state valuation rules specified in Section 3.2, this
can be equivalently expressed by L(s) = {v = d | s |= v = d}.

With the Kripke structure at hand, IXL configuration rules can be expressed
by LTL Safety formulas, so rule violations may be expressed in LTL using first-
order formulas and operators ∧,∨,X,U, as shown in Section 3. Specifying rule
violations on Kripke structure K representing a complete IXL configuration is
quite complicated, however, because most rules refer to routes traversed in a
certain driving direction, whereas K ’s transition relation connects any pair of

22 Peleska, Krafczyk, Haxthausen, and Pinger

configuration elements linked by any channel. This results in computations that
do not correspond to any “real” route through the network.

Example 5. The Kripke structure corresponding to the configuration shown in
Fig. 1 has a path s10.s11.s13.s23.s21.s20, because all elements in this sequence are
linked by some channel a, b, c. This path, however, cannot be realised as a train
route, due to the topology of points s13 and s23. 2

In [14], this problem has been overcome by using existentially quantified LTL
with rigid variables as introduced in [19]. Apart from the fact that quantified
LTL formulae are harder to create and understand, this would not allow for the
over-approximation by means of CTL as described in Section 3.5. Therefore, we
will now introduce sub-models of full configuration models where the problem
of infeasible paths no longer occurs.

4.2 Sub-models

The border elements of an IXL configuration can be identified by the fact that
only one of the main channels a, b is connected to another element, while the
other channel is undefined. Element 20 in Fig. 1, for example, is a border ele-
ment, because it has channel a connected to element 21, while channel b remains
unconnected. Points or diamond crossings are never used as border elements, so
only channels a, b need to be considered when identifying them in the Kripke
structure K representing the complete configuration. Each border element intro-
duces a well-defined driving direction specified by the channel which is defined
and, therefore, “points into” the network specified by the configuration.

A sub-model is now created for every boundary element sb as a Kripke struc-
ture K (sb) according to the following rules.

1. The driving direction corresponds to the direction specified by the defined
channel a or b of boundary element sb .

2. The sub-model is induced by the largest acyclic directed graph G with initial
element sb , such that
– each element which is reachable in driving direction is part of this graph,
– for points entered by their B-stem or C-stem, the only continuation is

via the element connected to the points’ A-stem,
– for points entered by their A-stem, the continuations are via the elements

connected to the points’ B-stem or C-stem,
– for diamond crossings entered via A,B,C,D-stem, the only possible con-

tinuations are via elements connected to the D,C,B,A-stems, respectively.
– The graph expansion stops when an element is reached for the second

time.
– The graph expansion stops when a border element is reached by its

defined channel, so that no outgoing channel is available.
3. The states of K (sb) are the nodes of G .
4. Every state is an initial state.

Efficient Data Validation 23

5. The transition relation of K (sb) contains all pairs of states (s, s ′), such that
there exists an edge from s to s ′ in G .

6. Every element of the sub-model is equipped with additional attributes dirA,
dirB , dirC , dirD with value 1 if its respective channel a, b, c, or d points
in driving direction; otherwise the attribute carries value 0. Note that for
points and diamond crossings, several dirX -attributes can have value 1.

7. Every element is associated with Boolean attributes upA, upB , upC , upD
(“upstream A, B, C, D”). For a given element s in a sub-model, upA = 1
if and only if there exists a predecessor element s ′ which is linked by its
a-channel to s. For B, C, D, the attribute values are analogously defined.

8. Further auxiliary attributes are added to each sub-model state as described
in Section 4.4 below.

id = 33
t = t1

id = 32
t = sig

id = 21
t = sig

id = 11
t = sig

id = 10
t = t3

id = 20
t = t3

id = 13
t = pt

id = 23
t = pt

id = 24
t = ptb a

c
b

a a

a
a

upB = 1
pCnt = 2

dirB = 1
upB = 1
pCnt = 2

dirB = 1
dirC = 1
up_A = 1
pCnt = 2

dirA = 1
upA = 1
pCnt = 1

dirA = 1
upA = 1 dirA = 1

upA = 1 dirA = 1
upA = 1

dirA = 1
upC = 1
pCnt = 3

driving direction

Fig. 10. Sub-model created from border element s33 in Fig. 1. Only attributes with
positive value are shown.

Example 6. The complete IXL configuration depicted in Fig. 1 has border ele-
ments s10, s20, s33, s25, s14. The sub-model resulting from border element s33 is
shown in Fig. 10, together with the new auxiliary attributes dirA, . . . (the mean-
ing of attribute pCnt is explained in Section 4.4 below). Element s33 induces the

24 Peleska, Krafczyk, Haxthausen, and Pinger

driving direction along its channel a; since it is a border element, its channel b
is not linked to another element. 2

4.3 Specifying Rule violations on Sub-models

The description of rule violations in LTL becomes rather straightforward when
specified for sub-models; this is illustrated in the following examples.

Example 7. The rule violation specified in Example 1, when applied to a sub-
model as the one depicted in Fig. 10, may be expressed in unquantified first-order
LTL as

φ1 ≡ t = sig ∧ dirA = 1 ∧X
(
(t 6= sig ∨ dirA = 0)U(t = t1 ∨ t = t3)

)
This LTL formula is translated via Φ defined in Section 3.5 into CTL formula

Φ(φ1) ≡ t = sig ∧ dirA = 1 ∧EX
(
E
(
(t 6= sig ∨ dirA = 0)U(t = t1 ∨ t = t3)

))
The only witness for Φ(φ1) in the sub-model shown on Fig. 10 is the path
s32.s24.s23.s21.s20, and this is also a witness for φ1, so in this example, the CTL
over-approximation does not produce any false alarms in this case. 2

Example 8. The rule violation specified in Example 2, when applied to a sub-
model, may be expressed in unquantified first-order LTL as

φ2 ≡ t = sig ∧ dirA = 1 ∧X
(
t 6= t3U(t = sig ∧ dirA = 1)

)
This LTL formula is translated via Φ defined in Section 3.5 into CTL formula

Φ(φ2) ≡ t = sig ∧ dirA = 1 ∧EX
(
E
(
t 6= t3U(t = sig ∧ dirA = 1)

))
It is easy to see that for the sub-model shown in Fig. 10, the only witness is
given by path s32.s24.s23.s13.s11, so, again, there are no false alarms possible for
this rule violation. 2

The rule violations 4.1 and 4.2 associated with flank protection as described
in Example 4 may be formalised as follows. In the formulas below, we use ab-
breviation

boundary ≡ (dirA + dirB + dirC + dirD = 0).

boundary evaluates to true if and only if the element is a boundary element,
since they are the only ones without outgoing channels in driving direction.

Efficient Data Validation 25

Example 9. The rule violations 4.1 and 4.2 associated with flank protection as
described in Example 4 may be formalised as follows.

φ4.1 ≡ t = pt ∧ dirC = 1 ∧X
(
upC = 1 ∧

((t 6= pt ∨ dirA = 0) ∧ (t 6= sig ∨ dirA = 1))

U(boundary ∨ (t = pt ∧ dirA = 0))
)

Condition XupC = 1 means that we are only interested in paths where the
successor element of the point p1 is connected to p1’s C-stem. The left operand
of the U-operator specifies that no protecting points or signals are found. The
right hand side of the U-operator specifies that we stop looking for suitable
flank protection as soon as we have found a point offering no protection (this is
equivalent to its a-channel pointing back towards p1) or if the end of the route
has been reached.

This LTL formula is translated via Φ defined in Section 3.5 into CTL formula

Φ(φ4.1) ≡ t = pt ∧ dirC = 1 ∧EX
(
upC = 1 ∧

E((t 6= pt ∨ dirA = 0) ∧ (t 6= sig ∨ dirA = 1))

U(boundary ∨ (t = pt ∧ dirA = 0))
)

The formalisation of rule violation 4.2 (erroneous protection for driving di-
rections AC/CA) is specified in LTL as follows. Example 4 may be formalised
as follows.

φ4.2 ≡ t = pt ∧ dirB = 1 ∧X
(
upB = 1 ∧

((t 6= pt ∨ dirA = 0) ∧ (t 6= sig ∨ dirA = 1))

U(boundary ∨ (t = pt ∧ dirA = 0))
)

and in translated form as

Φ(φ4.2) ≡ t = pt ∧ dirB = 1 ∧EX
(
upB = 1 ∧

E((t 6= pt ∨ dirA = 0) ∧ (t 6= sig ∨ dirA = 1))

U(boundary ∨ (t = pt ∧ dirA = 0))
)

2

4.4 Query Simplification by Auxiliary Parameters

We have seen that auxiliary attributes can be introduced during sub-model cre-
ation, in order to facilitate the construction of rule violation formulae. Moreover,
these attributes may be used to speed up the checking process.

Consider again the Example 3 in Section 2, where the number of elements of
a certain type located between two reference elements needs to be counted. In
principle, violation formulas associated with rules of that kind could be specified

26 Peleska, Krafczyk, Haxthausen, and Pinger

using Counting LTL, an extension of LTL allowing to check whether a path ful-
fils constraints referring to the number of states fulfilling certain properties [17].
Checking Counting LTL formulae, however, is EXPSPACE-complete, and there-
fore, we cannot expect to find model checking algorithms for Counting LTL that
are as efficient as the CTL-algorithms presented above.

Instead, a new auxiliary attribute pCnt is introduced during sub-model cre-
ation. In every state of the sub-model, this attribute contains the number of
points encountered in driving direction so far. This is illustrated in Fig. 10.

Example 10. With auxiliary attribute pCnt at hand, the violation of Rule 3 from
Example 3 is specified in LTL as

φ3 ≡ t = sig ∧ dirA = 1 ∧X
(
(t 6= sig ∨ dirA = 0)UpCnt > k

)
Translated to CTL, this results in

Φ(φ3) ≡ t = sig ∧ dirA = 1 ∧EX
(
E
(
(t 6= sig ∨ dirA = 0)UpCnt > k

))
Assuming that k > 3, there are obviously no witnesses for Φ(φ3) in the sub-
model from Fig. 10. For k = 2, checking Φ(φ3) results in witness s32.s24.s23.s13,
and again, this is also a witness for the LTL formula φ3. 2

In analogy to the example shown here, further auxiliary attributes are added
by the DVL Checker during sub-model creation.

4.5 Parallelisation

The concept to use sub-models for verifying DVL-queries allows for parallelisa-
tion of checking activities. The concurrent checker design is shown as a UML ac-
tivity chart [21, Chapter 15] in Fig. 11. The concurrent checking process receives
file names of the DVL-query and the IXL configuration model to be verified.
After the query file has been successfully parsed (error exits are not shown in
Fig. 11), action PrepareJobs identifies all jobs to be performed and places them
into a queue. Each job consists of a triple (query,id,direction), where id is the
identification of a boundary element. Attribute direction is A or B, depending on
whether channel a or b of the boundary element is defined. After the job queue
has been completely filled, the worker threads of a thread pool are activated
(signal START).

Example 11. The sub-model depicted in Fig. 10 is identified by id = 33 and
direction = A. 2

The checker threads process these jobs concurrently, until the job queue is
empty. Each thread (see Fig. 12) creates the sub-model identified by boundary
element id and direction. After that, the CTL checker functions described in
Section 3.6 are executed in action CTLChecker, and any witness found in the
sub-model for the given query is written to the output interface.

Efficient Data Validation 27

Fig. 11. Concurrent checker design.

4.6 Evaluation

The efficiency of the CTL model checking algorithms in combination with the
parallelisation allows for checking queries interactively, because the results are
obtained in less than five seconds on standard PC hardware, even for the largest
configurations used by Siemens. No false alarms have been encountered with the
DVL queries checked so far on the IXL configurations provided by Siemens.

The bounded model checking version used before as described in [14] could
also produce witnesses for faulty configurations in acceptable time (less than 10
seconds), but was unable to prove the absence of errors, due to running time
that was exponential in the length of the search paths and very high memory
consumption.

28 Peleska, Krafczyk, Haxthausen, and Pinger

Fig. 12. Internal structure of a checker thread.

5 Related Work

Data validation for railway interlocking systems is a well-established V&V task
in railway technology. At the same time, it is a very active research field, since the
complexity of today’s IXL configurations require a high degree of automation for
checking their correctness. There seems to be an agreement among the research
communities that hard-coded data validation programs are inefficient, due to the
large number of rules to be checked and the frequent adaptations and extensions
of rules that are necessary to take into account the requirements of different
IXLs. These observations are confirmed by numerous publications on IXL data
validation, such as [1,14,13,11,16].

Efficient Data Validation 29

It is interesting to point out that some V&V approaches for IXLs do not ex-
plicitly distinguish between data validation and the verification of dynamic IXL
behaviour; this is the case, for example, in [5,16]. We agree, however, with [11]
(and have state this, for example, in [15]), where it is emphasised that data val-
idation should be a separate activity in the IXL V&V process. This assessment
is motivated by the analogy to software verification, where the correctness of
static semantics – this corresponds to the IXL configuration data – is verified
before the correctness of dynamic program behaviour – this corresponds to the
dynamic IXL behaviour – is analysed.

As observed in [2], data validation approaches based on the B tool family
seem to be the most widely used both in industry and academia in Europe, we
name [18,1,13,11,16] as noteworthy examples for this fact.

The methodology and tool support described in the present paper differs
significantly from the B methodology: whereas the methods based on the B fam-
ily require specifications in first-order logic and perform verification by theorem
proving, our approach is based on temporal logic and model checking. Moreover,
our methodology is strictly specialised on geographic interlocking systems, while
– in principle – the B-methods can be applied to any type of IXL technology. Our
more restricted approach, however, comes with the advantage that rule specifi-
cations are simpler to construct than in B, since the temporal logic formulae do
not require quantification over variables. Moreover, the sub-model construction
technique used in our methodology ensures that the proper verification by CTL
model checking is always fully automatic and fast, whereas the B-approaches
may require interactive user support during theorem proving [13].

An general overview of trends in formal methods applications to railway sig-
nalling can be found in [4,9,2]. Many other research groups have been using
model-checking for the behavioural verification of interlocking systems. In [10] a
systematic study of applicability bounds of the symbolic model-checker NuSMV
and the explicit model checker SPIN showed that these popular model check-
ers could only verify small railway yards. Several domain-specific techniques to
push the applicability bounds for model checking interlocking systems have been
suggested. Here we will just mention some of the most recent ones. In [24] Win-
ter pushes the applicability bounds of symbolic model checking with NuSMV
by optimising the ordering strategies for variables and transitions using domain
knowledge about the track layout. Fantechi suggests in [8] to exploit a distributed
modelling of geographical interlocking systems and break the verification task
into smaller tasks that can be distributed to multiple processors such that they
can be verified in parallel. In [20], it is suggested to shrink the state space using
abstraction techniques reducing the number of track sections and the number of
trains. In [15], we have shown that bounded model checking in combination with
k-induction can cope with the size of real-world route-based interlocking systems
for verifying their behaviour. As an alternative to the B-family, the RAISE tool
offers the possibility to perform combined verification by theorem proving and
model checking [12].

30 Peleska, Krafczyk, Haxthausen, and Pinger

6 Conclusion

We have presented an efficient model checking approach for data validation of
geographical interlocking systems, which is fast enough to uncover violations
of configuration rules or prove the absence of rule violations interactively. The
checking speed has been achieved by translating LTL formulae specifying rule
violations to CTL formulae and using the “classical” global CTL model checking
algorithms. It has been shown that for the class of LTL formulae specifying rule
violations, CTL model checking is an over-approximation for the (slower) alter-
native to check for witnesses of LTL formulae directly. Therefore, the absence
of CTL witnesses proves the absence of path segments fulfilling the original rule
violation formula specified in LTL. Further speed-up has been achieved by run-
ning checks concurrently on configuration sub-models augmented by auxiliary
attributes, instead of performing a single check on the full model.

The concepts and algorithms presented here have been implemented in the
DVL-Checker tool which is used by Siemens for the validation of IXL configura-
tions in new interlocking systems provided by Siemens for Belgian railways.

References

1. Badeau, F., Doche-Petit, M.: Formal Data Validation with Event-B.
arXiv:1210.7039 [cs] (Oct 2012), http://arxiv.org/abs/1210.7039, arXiv:
1210.7039

2. Basile, D., ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F., Piattino, A., Tren-
tini, D., Ferrari, A.: On the Industrial Uptake of Formal Methods in the Railway
Domain. In: Furia, C.A., Winter, K. (eds.) Integrated Formal Methods. pp. 20–29.
Lecture Notes in Computer Science, Springer International Publishing (2018)

3. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science 2(5) (Nov
2006), http://arxiv.org/abs/cs/0611029, arXiv: cs/0611029

4. Bjørner, D.: New Results and Current Trends in Formal Techniques for the Devel-
opment of Software for Transportation Systems. In: Proceedings of the Symposium
on Formal Methods for Railway Operation and Control Systems (FORMS’2003),
Budapest/Hungary. L’Harmattan Hongrie (May 15-16 2003)

5. Celebi, B.T., Kaymakci, O.T.: Verifying the accuracy of interlocking tables
for railway signalling systems using abstract state machines. Journal of Mod-
ern Transportation 24(4), 277–283 (Dec 2016), https://doi.org/10.1007/

s40534-016-0119-1

6. CENELEC: EN 50128:2011 Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (2011)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts (1999)

8. Fantechi, A.: Distributing the Challenge of Model Checking Interlocking Control
Tables. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Meth-
ods, Verification and Validation. Applications and Case Studies, Lecture Notes
in Computer Science, vol. 7610, pp. 276–289. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-34032-1_26

http://arxiv.org/abs/1210.7039
http://arxiv.org/abs/cs/0611029
https://doi.org/10.1007/s40534-016-0119-1
https://doi.org/10.1007/s40534-016-0119-1
http://dx.doi.org/10.1007/978-3-642-34032-1_26

Efficient Data Validation 31

9. Fantechi, A., Fokkink, W., Morzenti, A.: Some Trends in Formal Methods Ap-
plications to Railway Signaling. In: Formal Methods for Industrial Critical Sys-
tems, pp. 61–84. John Wiley & Sons, Inc. (2012), http://dx.doi.org/10.1002/
9781118459898.ch4

10. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model Checking Interlock-
ing Control Tables. In: Schnieder, E., Tarnai, G. (eds.) Proceedings of For-
mal Methods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2010), Braunschweig, Germany. Springer (2011)

11. Fredj, M., Leger, S., Feliachi, A., Ordioni, J.: OVADO. In: Fantechi, A., Lecomte,
T., Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Systems.
Modelling, Analysis, Verification, and Certification. pp. 87–98. Lecture Notes in
Computer Science, Springer International Publishing (2017)

12. Geisler, S., Haxthausen, A.E.: Stepwise development and model checking of a dis-
tributed interlocking system - using RAISE. In: Havelund, K., Peleska, J., Roscoe,
B., de Vink, E.P. (eds.) Formal Methods - 22nd International Symposium, FM
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 15-17, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10951, pp.
277–293. Springer (2018), https://doi.org/10.1007/978-3-319-95582-7_16

13. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for Data Validation
Projects. In: Butler, M., Schewe, K.D., Mashkoor, A., Biro, M. (eds.) Abstract
State Machines, Alloy, B, TLA, VDM, and Z. pp. 167–182. Lecture Notes in Com-
puter Science, Springer International Publishing (2016)

14. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM Workshops.
Lecture Notes in Computer Science, vol. 8368, pp. 205–220. Springer (2013)

15. Hong, L.V., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of
interlocking systems featuring sequential release. Sci. Comput. Program. 133, 91–
115 (2017), http://dx.doi.org/10.1016/j.scico.2016.05.010

16. Keming, W., Zheng, W., Chuandong, Z.: Formal modeling and data validation of
general railway interlocking system. WIT Transactions on The Built Environment
181 (2019)

17. Laroussinie, F., Meyer, A., Petonnet, E.: Counting LTL. In: Markey, N., Wijsen,
J. (eds.) TIME 2010 - 17th International Symposium on Temporal Representation
and Reasoning, Paris, France, 6-8 September 2010. pp. 51–58. IEEE Computer
Society (2010), https://doi.org/10.1109/TIME.2010.20

18. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR abs/1210.6815 (2012)

19. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems -
specification. Springer (1992)

20. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and Model Checking Abstractions of Complex Railway Models using CSP‖B. In:
Biere, A., Nahir, A., Vos, T. (eds.) Hardware and Software: Verification and Test-
ing. Lecture Notes in Computer Science, vol. 7857, pp. 193–208. Springer Berlin
Heidelberg (2013)

21. Object Management Group: OMG Unified Modeling Language (OMG UML), su-
perstructure, version 2.5.1. Tech. rep., OMG (2017)

22. Pachl, J.: Railway Operation and Control. VTD Rail Publishing (January 2002)
23. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of

Computing 6(5), 495–511 (Sep 1994), http://link.springer.com/article/10.

1007/BF01211865

http://dx.doi.org/10.1002/9781118459898.ch4
http://dx.doi.org/10.1002/9781118459898.ch4
https://doi.org/10.1007/978-3-319-95582-7_16
http://dx.doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1109/TIME.2010.20
http://link.springer.com/article/10.1007/BF01211865
http://link.springer.com/article/10.1007/BF01211865

32 Peleska, Krafczyk, Haxthausen, and Pinger

24. Winter, K.: Symbolic Model Checking for Interlocking Systems. In: Railway Safety,
Reliability and Security: Technologies and System Engineering, pp. 298–315. IGI
Global (2012)

	Efficient Data Validation for Geographical Interlocking SystemsTechnical ReportIssue 1.1 – 2019-01-17
	Introduction
	Data Validation for Geographic Interlocking Systems
	Logical Foundations
	Kripke Structures
	First Order Formulae and Their Valuation
	Linear Temporal Logic LTL – Safety Properties and Their Violations
	Safety Violation Formulae on Finite Paths

	Computation Tree Logic CTL
	Over-approximation of LTL Safety Violation Formulae by CTL
	CTL Model Checking

	Model Checking of IXL Configurations
	IXL Configurations as Kripke Structures
	Sub-models
	Specifying Rule violations on Sub-models
	Query Simplification by Auxiliary Parameters
	Parallelisation
	Evaluation

	Related Work
	Conclusion

