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Abstract. For safety-critical systems testing the justification of test
case selections is mandatory. In the case of systems under test (SUT) with
large data types (floats, doubles etc.) test cases are identified using the
equivalence class partitioning principle. While this heuristic is useful for
reducing the otherwise infeasible number of test cases to be performed,
justification of the class partitions selected is currently mainly performed
on an intuitive level which is inadequate for safety or mission critical
systems. In this paper, we therefore introduce a rigorous justification
principle for equivalence class partitions which is based on the fact that
the classes selected lead to an exhaustive test suite of the SUT, provided
that it fulfills certain fault hypotheses.

1 Introduction

Equivalence Class Testing. Equivalence class testing is a well-known heuristic
approach to testing software or systems whose state spaces, inputs and outputs
have value ranges of a cardinality inhibiting exhaustive enumeration of all possi-
ble values within a test suite. The heuristic suggests to create equivalence class
partitions structuring the input or output domain into disjoint subsets for which
“the behavior of a component or system is assumed to be the same, based on the
specification” [16, p. 228]. If this assumption is justified it suffices to test “just
a few” values from each class, instead of exploring the behavior of the system
under test (SUT) for each possible value. In order to investigate that the SUT
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respects the boundaries between different equivalence class partitions boundary
values are selected for each class, so that equivalence class and boundary value
testing are typically applied in combination. As an alternative to deriving equiv-
alence class partitions from the specification the structure of the SUT or its
model can be analyzed: classes are then defined as sets of data leading to the
same execution paths [18, B.19].

Motivation. For testing safety-critical systems the justification of the equiva-
lence class partitions selected is a major challenge. It has to be reasoned why
the behavior of the SUT can really be expected to be equivalent for all values
of a class, and why the number of representatives selected from each class for
the test suite is adequate. While being quite explicit about the code coverage to
be achieved when testing safety-critical systems, standards like [18, 15, 8] do not
provide any well-defined acceptance conditions for equivalence class partitions.

Exhaustive Testing. In contrast to heuristic test strategies exhaustive testing
– if applicable – needs no justification since it proves a conformance relation
between SUT and its specification model. Exhaustive testing methods are of
considerable theoretical value, and in some cases they can be applied in practice
[9]. Their utilization, however, is often infeasible, because exhaustive methods
either require explicit enumeration of state spaces or abstractions still leading to
very large numbers of test cases which cannot be executed within a reasonable
amount of time. In such an infeasibility situation it is a disadvantage that these
exhaustive approaches “forget” about the original structure of the test model,
so that heuristic approaches to test case reduction, such as equivalence class
partitioning, cannot be directly applied on the state spaces investigated by these
methods, or on abstractions thereof.

Main Contributions and Overview. In this paper we present a novel equiv-
alence class partitioning strategy for model-based testing. It is applicable to
sequential deterministic state machines (SM), as, for example, provided by mod-
eling formalisms like SysML [10] (Section 2). In contrast to other approaches to
SM testing we do not require the state space to be completely encoded in the
control states: instead, the state space is represented by the value vectors asso-
ciated with control states, input and output variables, as well as internal model
variables. These variables may have large data types such as floating point and
wide integers, so that explicit enumeration of the complete state space is impos-
sible.

The strategy is based on an abstraction derived from the reference model
which partitions both state space and input space into classes represented by
propositions: applying an input class to a state class ensures that the same data
transformation is applied for all members of these classes (Section 3). These
data transformations are elementary in the sense that they can be represented
by non-branching sequences of assignments. Under certain hypotheses, such as



implementation of data transformations as polynomials, it can be tested with a
bounded number of data sets whether the SUT implements the transformations
correctly (Section 6). Moreover, the abstraction gives rise to a deterministic fi-
nite state machine (DFSM) operating on abstract state classes as states, abstract
input classes as input alphabet and pairs of event and data transformation iden-
tifiers as outputs. We show that, under the assumption of certain reasonable
fault hypotheses specified in Section 4, the true SUT behavior may also be ab-
stracted to a DFSM operating on the same alphabets. This allows us to apply
the well-known W-Method [3] to derive a symbolic test suite which is exhaus-
tive for testing equivalence of these DFSM (“exhaustive” meaning that every
discrepancy between reference model and implementation will be uncovered by
the test suite). While not being directly applicable for testing the SUT, this
symbolic test suite gives rise to constraints whose solutions – these can be cal-
culated using an SMT constraint solver – represent concrete tests (Section 7).
It is also shown in Section 7 that equivalence of the DFSM abstractions implies
equivalence between the concrete specification model and the SUT in the sense
that every input sequence exercised on the SUT leads to the same output se-
quence and the same ordering between inputs and outputs as expected according
to the reference model. This justifies the adequateness of the equivalence class
partitioning strategy.

The practical value of the strategy is twofold: in [7] we have submitted an
algorithm for automated construction of the equivalence class partitions, so that
– together with the results presented here – the complete set of techniques for
automating this exhaustive strategy is available. For manual design of test cases
and for situations where the exhaustive strategy still leads to a number of test
cases that cannot be executed within acceptable time limits, the strategy can
be relaxed in the sense that basic partitions are still created, but only a subset
of concrete tests are derived from these partitions (Section 8). While being no
longer exhaustive, this relaxed strategy is still well-justified since it converges to
an exhaustive test suite if additional tests are created following the given strat-
egy. This convergence property is not provided by purely heuristic equivalence
partitioning strategies.

Related Work. Notable examples for exhaustive test methods have been given
in [3, 17, 12, 19]. There exists a large variety of research results related to testing
against hierarchic state machines similar to Harel’s Statecharts or to UML or
SysML state machines. We mention [6] as one representative and refer to the
references given there. These contributions, however, mainly deal with the state
machine hierarchy and do not tackle the problem of attributes from large do-
mains, which is the main motivation for the results presented here. In [2, pp. 205]
large data domains in the context of state machine testing are addressed, but
no formal justification of the heuristics presented there are given.

For the definition of the equivalence class partitioning we adapted abstraction
concepts known from Kripke Structures, as well as the basic ideas of counter-
example guided abstraction refinement [4, 5]. Our approach differs from these ex-



isting results in the application of SMT constraint solving techniques for finding
concrete representatives of paths through abstract state machines and associated
I/O data. The SMT technology applied has been described in [14, 13].

2 SysML state machines

While SysML state machines (SM) [10] are syntactically more restricted than
UML SMs, their behavior conforms to the behavioral semantics of the latter [11,
pp. 541]. The machine state (often called its configuration) consists of (1) the
activate basic control state (states `0, `1, . . . in Fig. 1) and – for hierarchic state
machines – its higher-level states, (2) the current valuation of all input interface
attributes, output interface attributes and internal model attributes and (3)
the current state of the event queue. A SM transition may fire if its trigger is
dispatched from the event queue (for example, ?a at state machine transition τ1
in the SM shown in Fig. 1) and if its guard condition (e. g., condition [x > 0] in
τ1) evaluates to true. If no triggers are specified (e. g., transition τ4), the empty
trigger ε which is always activated, applies.

If an event is dispatched from the queue its trigger is matched to all outgoing
transitions of the active control state (basic control state or one of its higher-level
states). Guard conditions are evaluated before a trigger is applied. If the event
does not match any outgoing transition or if the matching transitions’ guard
conditions evaluate to false, the trigger is lost because it has been removed from
the queue (this behavior may be altered by using deferred triggers [11, pp. 593],
but this is outside the scope of this paper). Guards associated with transitions
emanating from choice points (location `1 in Fig. 1) are only evaluated when the
choice point is reached: when evaluating the guard [m+x > 10] in transition τ2,
the action m = x/2; performed on m by transition τ1 is taken into account. Tran-
sitions emanating from choice points may not be associated with triggers. When
a transition fires, the SM executes according to the run to completion princi-
ple: consecutive transitions are also performed as long as their guard conditions
evaluate to true, and no additional trigger signals are required.

If, for example, τ1 in Fig. 1 fires in a state satisfying x ≥ 18∧ y+ x
2 −5 = x3,

then the SM performs transitions τ1, τ2, τ4, after which it becomes stable in
control state `4, because none of the guard conditions can become true without a
further change in the value of input x. During the run to completion all activities
associated with the transitions involved are executed; this leads to the generation
of output signals and to the change of control states, internal state attributes
and output attribute values, as specified in the assignments associated with each
action. Following the terminology of IO transitions systems [1] we call stable SM
states requiring a new trigger signal and / or a state change in input attributes
in order to fire the next transition quiescent.

We assume that multiple signals in triggers have been transformed into mul-
tiple SM transitions, each with a single trigger signal and all of them carrying the
same guard condition. Similarly, we assume that guard conditions only contain
Boolean operators ∧,¬, and that ¬ only occurs in front of atoms (negation nor-
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Fig. 1. SysML state machine for illustration of equivalence class testing algorithm.



mal form). This can be achieved by transforming arbitrary guard conditions into
disjunctive normal form and then creating separate transitions for each disjunct.

Due to the usual page restrictions, hierarchic states are not considered in this
article; a comprehensive treatment of hierarchy is described in [14, 13]. Further-
more it is assumed that the model has already been verified to be free of livelocks.
Recall that we assume that the SysML SMs are deterministic, an assumption
which is valid for SUT components in a safety-critical systems context. Finally,
it is assumed that the SM starts in a quiescent state which requires an input
signal in order to perform exactly one unguarded transition. This can always be
achieved by adding an auxiliary state to the SM, waiting for a “switch-on” signal
before transiting to the first original state which may be quiescent or transient,
dependent on the initial input data conditions. Observe that this auxiliary state
is never visited again during state machine executions.

Input/output data. In a reactive systems context inputs to the SUT consist of
sequences of data to be passed along SUT input interfaces over a period of time.
For SysML state machines an element of such an input sequence consists of a pair
(e,x = c), where e is a (possibly empty) SysML signal and x = c an assignment
of concrete values c to the vector of input attributes x. Each input element may
stimulate an SUT reaction consisting of a (possibly empty) sequence o of output
signals, together with a change of internal attributes, control states and output
attributes becoming visible after the run to completion has been performed. In
black box testing the changes of control states and internal attribute valuations
are invisible, but the consequences of these changes on later assignments to
output attributes and generation of output signals may be observed.

Equivalent behavior. Given a SysML state machine sm as specification model,
we use the term equivalent behavior of sm and SUT if every input sequence
passed to sm and SUT results in the same output sequence and in the same
interleaving of inputs and outputs for both sm and SUT. Observe that this very
simple notion of equivalence is well-suited for SysML state machines, because
they never block input triggers, and since we only admit deterministic reference
models which are free of livelocks, and also require determinism for the SUT in
our fault hypotheses (Section 4). Therefore the more refined notions of testing
equivalence, such as, for example, IO conformance [1] are not required in the
context of the present paper.

Equivalence class partitions. The availability of a SysML state machine as
specification model allows us to give a precise definition of equivalence class
partitions: in a given set of states (a state partition) all inputs from a certain
set (the input partition) shall cover the same sequence of guard condition eval-
uations, reactions to input triggers and produce the same sequence of output
signals, while applying the same data transformation activities (which may of
course result in different output values, depending on the concrete input data
supplied in each input sequence).



Formal Notation. Let ΣI denote the set of all input triggers of the SysML
SM, including the empty trigger ε. Let ΣO denote the machine’s output events.
Let V = I ∪O∪C ∪M the set of symbols addressed by the SM: input attributes
from I, output attributes from O, control states from C and internal attributes
from M . Let Prop denote the set of (atomic or non-atomic) propositions, and
Expr the set of expressions over symbols from V . For a control state ` ∈ C,
let τ(`) denote the set of SM transitions emanating from `. For transition τ ∈
τ(`), tgt(τ) ∈ C denotes the target control state of τ , eI(τ) ∈ ΣI its trigger,
g(τ) ∈ Prop its guard condition, eO(τ) ∈ ΣO its (possibly empty) output event
and a(τ) the action of τ consisting of an elementary block function changing the
state attributes by means of a sequence of assignments, a(τ) = 〈z1 = e1; . . . ; zk =
ek; 〉, zi ∈ V, ei ∈ Expr.

Function r : V → Expr is a term replacement function which maps every
variable symbol to the expression it should be replaced by. idV : V → Expr
is the identity function mapping each variable symbol to itself. Term replace-
ment functions are extended to expressions e(z1, . . . , zn) ∈ Expr by defining
r(e(z1, . . . , zn)) = e(r(z1), . . . , r(zn)). For a sequence of assignments, a = 〈z1 =
e1; . . . ; zk = ek; 〉 the resulting term replacement ra is defined recursively by
setting

ra = ρ(idV , 〈z1 = e1; . . . ; zk = ek; 〉)
ρ(r, 〈〉) = r
ρ(r, 〈z = e; 〉_ a′) = ρ(r ⊕ {z 7→ r(e)}, a′)

In this definition ⊕ denotes functional overriding : f ⊕ g(x) = g(x) if x is in the
domain of g, otherwise f ⊕ g(x) = f(x).

We use valuation functions s : V → D capturing the current state of a
machine: for an input, output or internal model attribute z, s(z) ∈ D denotes
its current value. Control states ` ∈ C are considered as Boolean variables,
s(`) = 1 denoting that the machine currently resides in basic control state `.
For propositions p we write s |= p if p evaluates to true when replacing all free
variables z in p by their current value s(z).

A pair (`, p) consisting of a control state ` and a proposition p is used as
abbreviation to specify the set of all machine states where ` is the active basic
control state and p holds, that is, (`, p) = {s : V → D | s |= ` ∧ p}.

A state machine state s is called quiescent if the machine will remain in
s without further actions, as long as no input signals and/or changes in input
attributes occur. This requires that all guard conditions of transitions emanating
from the control state ` associated with s shall evaluate to false if no further
input signals are required to trigger the transition. Formally this can be defined
as quiescent(`, s) ≡ s(`) ∧ (∀τ ∈ τ(`) : eI(τ) = ε ⇒ s |= ¬g(τ)) The set of all
quiescent states s associated with a control state ` is denoted by Quie(`) = {s :
V → D | quiescent(`, s)}

For any control state `, let qui(`) define the proposition specifying the condi-
tion to be fulfilled by quiescent states associated with `. If every state machine
transition emanating from ` is associated with a trigger ?e 6= ε, qui(`) = 1,



otherwise it is the negation of all guard conditions associated with transitions
from ` that only require the empty trigger, qui(`) =

∧
τ∈{τ∈τ(`) | eI(τ)=ε} ¬g(τ).

Quite frequently we will deal with a special kind of constraint, where the
constraint solution set is constructed by starting from a quiescence condition p
and changing the input attribute values in a way that enables certain (guard)
conditions p. To this end we define

S(p, p) = {d ∈ D|V−C| | ∃s : (V − C)→ D, c ∈ D|I| :
s |= p ∧ s⊕ {x 7→ c} |= p ∧ ∀z ∈ V − C : (s⊕ {x 7→ c})(z) = dz}

For constraint solution sets S(p, p) the boundary is denoted by ∂S(p, p). The
propositions characterizing the boundaries are denoted by ∂(p, p).

3 Equivalence Class Partitions Over SysML State
Machines

We intend to abstract SysML state machines in two ways. (1) State space abstrac-
tions comprehend several SM states s : V → D into a single abstraction value, in
order to associate sub-structure with quiescent states. (2) Trigger abstractions
associate states fulfilling a given guard condition with a single abstract state
element and combine it with a trigger signal. State abstraction are specified by
expressions (`, p) introduced above. Trigger abstractions are written in the form
(e, p) where e is a SysML signal (possibly the empty trigger) and p a predicate
whose atoms refer to at least one input attribute, that is, no atom of p refers to
internal and output variables only. Formally, this is expressed by p|I = p.

Definition 1. Let P = {(`1, p1), . . . , (`n, pn)} a collection of state abstractions
and I = {(?e1, p1), . . . , (?em, pm)} a collection of trigger abstractions associated
with a SysML state machine sm. Suppose that the following conditions hold:

1. All elements of P are disjoint,

∀i, j ∈ {1, . . . , n} : (`i, pi) ∩ (`j , pj) = ∅

2. All elements of I referring to the same trigger carry mutually exclusive
propositions,

∀(?ei, pi), (?ej , pj) ∈ I : (i 6= j∧?ei =?ej)⇒ ¬(pi ∧ pj)

3. P covers all quiescent states of sm,

n⋃
i=1

Quie(`i) =

n⋃
i=1

(`i, pi)

4. Given a state abstraction (`i, pi) and a trigger abstraction (?e, p), one out of
three cases may apply.



(a) No change of input attribute valuation can make p evaluate to true2

∀s ∈ (`i, pi), c ∈ D|I| : s⊕ {x 7→ c} |= ¬p
(b) No change of inputs making p evaluate to true will fire a SM transition

in combination with trigger ?e, but all of these changes lead to a partition
element associated with the same control state.

(∀s ∈ (`i, pi), c ∈ D|I|, τ ∈ τ(`i) :
(s⊕ {x 7→ c} |= p ∧ g(τ))⇒ (eI(τ) 6= ε ∧ eI(τ) 6=?e)))
⇒
(∃(`j , pj) ∈ P : `j = `i ∧ ∀s ∈ (`i, pi), c ∈ D|I| :

((s⊕ {x 7→ c} |= p)⇒ (s⊕ {x 7→ c} ∈ (`j , pj))))

(c) For all elements of (`i, pi) any change in the inputs making p true will
fire the same transition sequence τ1, . . . , τk.

∃(`j , pj) ∈ P, τ1, . . . , τk : (eI(τ1) =?e ∨ eI(τ1) = ε) ∧
src(τ1) = `i ∧

∧k
i=2(eI(τi) = ε ∧ src(τi) = tgt(τi−1)) ∧ tgt(τk) = `j ∧

(∀s ∈ (`i, pi), c ∈ D|I| : s⊕ {x 7→ c} |= p⇒
(s⊕ {x 7→ c} |= (g(τ1) ∧ ρ(idA, 〈a(τ1)〉)(g(τ2))∧∧k

i=3 ρ(idA, 〈a(τ1); . . . ; a(τi−1)〉)(g(τi)) ∧
ρ(idA, 〈a(τ1); . . . ; a(τk)〉)(pj))))

5. The state and trigger abstractions are complete in the sense that in every
state partition element every input possible for the SM is captured by a trigger
abstraction which is feasible in this element.

∀(`i, pi) ∈ P, s ∈ (`i, pi), ?e ∈ ΣI , c ∈ D|I| :
∃(?em, pm) ∈ I :?em =?e ∧ s⊕ {x 7→ c} |= p

Then (P, I) is called an equivalence class partitioning of sm. �

Observations. (1) In the definition above P may contain more than one par-
tition (`i, pi), (`j , pj) for the same control state ` = `i = `j . (2) The intuitive
meaning of condition 4(c) in the definition above is as follows. For a given ab-
stract input event (?e, p), all states s captured in partition (`i, pi) lead to the
same run to completion, involving the same (possibly empty) sequence of state
machine transitions τ1, . . . , τk, regardless of the concrete state s and the concrete
solution c of s⊕ {x 7→ c} |= g(τ1). In any case the target control state reached
after execution of the final state machine transition τk is always contained in the
same partition (`j , pj). Since all partitions contain quiescent states only the state
machine will remain stable in control state tgt(τk) = `j . (3) Condition 5. implies
that every possible run to completion sequence τ1, . . . , τk of the concrete SM is
also captured by some (`i, pi), (e, p) according to condition 4.(c): if this sequence
is triggered by (e,x = c) in state s of the concrete SM, then s is captured in
some state partition element (`i, pi) and x = c in some trigger abstraction (e, p).

2 In the predicates of Definition 1, x = (x1, . . . , x|I|) denotes the vector of all input
attributes xi ∈ I.



Lemma 1. Let P = {(`1, p1), . . . , (`n, pn)}, I = {(?e1, p1), . . . , (?em, pm)} an
equivalence class partitioning according to the requirements of Definition 1. Let
p a proposition satisfying var(p) ⊆ V ∧ p|I = p. Then, for any j ∈ {1, . . . ,m}

(P, I ′) = (P, (I − {(?ej , pj)}) ∪ {(?ej , pj ∧ p), (?ej , pj ∧ ¬p)})
is also an equivalence class partitioning conforming again to the rules of Defini-
tion 1. (P, I ′) is called a refinement of (P, I) in the trigger domain.

Proof. The lemma follows directly from the fact and that any solution of s⊕{x 7→
c} |= pj also solves s⊕ {x 7→ c} |= (pj ∧ p) ∨ (pj ∧ ¬p) �

Example 1. For the SysML state machine shown in Fig. 1 an equivalence class
partitioning is given, for example, by the following state and trigger abstractions.
They have been calculated using an algorithm designed by the authors [7].

P = {(`0, 1), (`2,m ≥ 9 ∧ y 6= x3), (`2, 4 < m < 9 ∧ y 6= x3),

(`2,m ≤ 4 ∧ y 6= x3), (`3,m > 8 ∧ y 6= x+m), (`3,m ≤ 8 ∧ y 6= x+m),

(`4,m ≥ 10 ∧ y + x ≥ 0), (`5,m ≤ 10 ∧ y + x ≥ 0)}

I = {(ε, pi0 ∧ pj2 ∧ pk3 ∧ pl4 ∧ pm5 ), (?a, pi0 ∧ pj2 ∧ pk3 ∧ pl4 ∧ pm5 )) |
i ∈ {0, . . . , 8}, j, k ∈ {0, 1, 2}, l,m ∈ {0, 1}}

where

p00 = (x ≤ 0), p10 = (x ≥ 18 ∧ y +
x

2
− 5 6= x3), p20 = (8 < x < 18 ∧ y +

x

2
− 5 6= x3),

p30 = (
20

3
< x ≤ 8 ∧ y +

x

2
− 5 6= x3), p40 = (0 < x ≤ 20

3
∧ y + 5 6= x),

p50 = (x ≥ 18 ∧ y +
x

2
− 5 = x3), p60 = (8 < x < 18 ∧ y +

x

2
− 5 = x3),

p70 = (
20

3
< x ≤ 8 ∧ y +

x

2
− 5 = x3), p80 = (0 < x ≤ 20

3
∧ y + 5 = x),

p02 = (y 6= x3), p12 = (y = x3 ∧ x+ y ≥ 0), p22 = (y = x3 ∧ x+ y < 0),

p03 = (y 6= x+m), p13 = (y = x+m ∧ x+ y ≥ 0), p23 = (y = x+m ∧ x+ y < 0),

p04 = p05 = (x+ y ≥ 0), p14 = p15 = (x+ y < 0).

�

Example 2. To illustrate case 4(a) in Definition 1, consider equivalence class
(`2,m ≤ 4 ∧ y 6= x3) in control state `2 and abstract input (?a, p) := (?a, x ≥
18 ∧ y + x

2 − 5 6= x3 ∧ y = x3 ∧ x + y ≥ 0 ∧ y = x + m) for the SysML state
machine shown in Fig. 1. Observe that p = p10∧p12∧p13∧p04∧p05 according to the
partitioning presented in Example 1. For any s ∈ (`2,m ≤ 4∧y 6= x3), there is no
x1 ≥ 18 satisfying s⊕{x 7→ x1} |= p, because the property (x ≥ 18∧y+ x

2 −5 6=
x3 ∧ y = x3 ∧ x+ y ≥ 0 ∧ y = x+m) implies m = x3 − x ≥ 183 − 18 = 5814. �



Example 3. To illustrate case 4(c) in Definition 1, consider state abstraction
(`0, 1) in control state `0 and input abstraction (?a, p) := (?a, 0 < x ∧ x <=
20
3 ∧ y + 5 = x ∧ y 6= x3 ∧ y 6= x + m ∧ x + y ≥ 0). Condition 4(c) applies

with SM transitions τ1, τ3, τ5 from Fig. 1 playing the part of τ1, . . . , τk, and
(`5,m ≤ 10 ∧ x+ y ≥ 0) playing the part of (`j , pj) in Definition 1, case 4(c).

We calculate the required term replacement functions

ρ(idA, 〈a(τ1)〉) = {x 7→ x,m 7→ x

2
, y 7→ y}

ρ(idA, 〈a(τ1); a(τ3)〉) = {x 7→ x,m 7→ x

2
, y 7→ y +

x

2
+ 5}

ρ(idA, 〈a(τ1); a(τ3); a(τ5)〉) = {x 7→ x,m 7→ x

2
+ 2, y 7→ y +

x

2
+ 5}

and their effect on the propositions involved:

ρ(idA, 〈a(τ1)〉)(m+ x ≤ 10) = x ≤ 20

3
ρ(idA, 〈a(τ1); a(τ3)〉)(y = x+m) = y + 5 = x

ρ(idA, 〈a(τ1); a(τ3); a(τ5)〉)(m ≤ 10 ∧ x+ y ≥ 0) = x ≤ 16 ∧ 3

2
x+ y + 5 ≥ 0

It is easy to see that - regardless of the valuation of m, y in `1 – every solution
c of s ⊕ {x 7→ c} |= p also solves the propositions x ≤ 20

3 , y + 5 = x and
x ≤ 16 ∧ 3

2x+ y + 5 ≥ 0. �

4 Fault Hypotheses

We specify a number of fault hypotheses for the SUT, that is, we restrict the
possible ways in which the SUT might fail. These hypotheses – in spite of being
formal – conform quite well to our intuitive understanding about the applica-
bility of equivalence class partition testing. Moreover, they result in sufficient
conditions for the existence of exhaustive test suites based on the equivalence
class partitioning principle. Conversely, it can be easily seen that SUTs violating
these hypotheses are not suitable candidates for this type of testing.

(FH1) Testability hypothesis. Given the reference model as a SysML state
machine sm, we assume that the true behavior of the SUT can also be repre-
sented as a deterministic sequential SysML state machine sm′ which is identical
to, or a mutation of sm. This mutation does not introduce any new input, out-
put or internal state attributes, but – in case of a failure in the SUT – may have
faulty (1) guard conditions, (2) trigger events, (3) data transformations, (4) out-
put events and (5) target control states. Along with corrupted guard conditions
the SUT’s SM representation sm′ may have additional transitions associated
with output events and data transformations not occurring in sm at all, and
may possess more or fewer control states than sm. Since sm′ operates on the
same internal state attributes as sm, any additional state information associated
with the erroneous behavior of sm′ is encoded in additional control states of sm′.



(FH2) Bounded state space abstraction. As a consequence of (FH1) the
true behavior of the SUT can also be abstracted according to Definition 1. We
assume the existence of a known upper bound m, so that, if the specification
model sm is abstracted to a partitioning with |P| = n, the SUT abstraction has
cardinality less or equal to |P ′| ≤ n+m.

x

y

p = x2 + y2  1

S1
†

S2
†

S3
†

I1

I2

I1 \ S(p, p) ✓ S1
†

I2 \ @S(p, p) ✓ S2
†

Fig. 2. Illustration of fault hypothesis (FH4).

(FH3) Bounded checks for data transformations. We assume the exis-
tence of a bound k > 0 and a universal condition ∆(s1, . . . , sk) such that k
different data values satisfying ∆ – that is, s1, . . . , sk |= ∆ suffice to check the
correctness of the transformation’s implementation in the SUT. In Section 6 it
is shown for the case where the SUT applies polynomial transformations how k
and ∆ can be determined.

(FH4) Guaranteed trapdoor diameter. A trapdoor is a condition which,
when fulfilled in a certain state, triggers faulty SUT behavior. When equivalence
class partition testing is justified each trapdoor depending on large datatypes
must be “wide enough” so that it is ensured that arbitrary members of at least



one partition will cause the SUT to “fall through the trapdoor” and reveal its
failure. More formally, trapdoors can be modeled as constraint solution sets
S†(p′, p†) (see Section 2 for the definition of the S(p, p) notation) depending
on state partitions (`′, p′) and trigger conditions p†: S†(p′, p†) specifies a set of
quiescent states s′ satisfying p′, from where a change {x 7→ c} of inputs will
make a guard condition p† become true, and this stimulates the erroneous SUT
behavior (possibly together with a trigger event e†).

Fault hypothesis (FH4) requires that trapdoors S†(p′, p†) are wide enough to
be detected by all members of at least one equivalence class partition constructed
over sm (since the SUT representation sm′ is unknown). To this end (FH4)
postulates the existence of constants dz ≥ 0, z ∈ V − C (control states from C
are disregarded) and boundary values minz ≤ maxz, z ∈ V − C, such that the
reachable state space of the SUT can be covered by means of a finite sub-paving
of interval vectors

I =
∏

z∈V−C
Iz

each vector Iz satisfying3 Iz ⊆ [minz,maxz] ∧ diam(Iz) ≤ dz. Moreover, for
each trapdoor S†(p′, p†), there exists an Ii ∈ I in the sub-paving, an equivalence
partition (`, p) ∈ P of sm and a trigger abstraction (eI , p) of sm such that at
least one of the following two conditions are satisfied.

1. Ii ∩ S(p, p) 6= ∅ ∧ Ii ∩ S(p, p) ⊆ S†(p′, p†)
2. Ii ∩ ∂S(p, p) 6= ∅ ∧ Ii ∩ ∂S(p, p) ⊆ S†(p′, p†)

Condition 1 states that the intersection of an interval vector with a solution
set S(p, p) triggering one well-defined sequence of output events and a specific
data transformation according to the specification model sm will always stimu-
late the erroneous SUT behavior associated with trapdoor S†(p′, p†). Condition 2
is weaker; here we just require that all elements at the boundary of S(p, p) are
completely contained in S†(p′, p†), if they are also contained in Ii.

Example 4. Fault hypothesis (FH4) is illustrated in Fig. 2. For trapdoor S1† the
intersection of the solution set S(p, p) and interval vector I1 is completely con-
tained in S1†, so any concrete test data picked from I1 ∩ S(p, p) has the potential

to uncover the failure associated with S1†. For trapdoor S2†, interval vector I2
has a non-empty intersection with the boundary of S(p, p), and this intersec-
tion is completely contained in S2†. Therefore boundary value tests picked from

I2 ∩ ∂S(p, p) may uncover the failure associated with S2†. Trapdoor S3†, however,
violates (FH4) because its intersection with ∂S(p, p) consists of a single point,
and its intersection with S(p, p) never covers the intersection of an interval vector
and S(p, p). As a consequence equivalence class tests will generally not uncover
failures caused by trapdoors like S3†. �

3 diam(Iz) denotes the diameter of an interval, that is, the distance between its least
upper bound and its greatest lower bound: diam([x, x]) = x− x.



5 DFSM-Abstractions for SysML State Machines

Let sm a SysML state machine associated with an equivalence class partitioning
(P, I) conforming to Definition 1. Let sm′ an implementation of the model
sm, conforming to the fault hypotheses (FH1) — (FH4) specified in Section 4.
Let SP = {I1, . . . , Iu} the sub-paving according to (FH4). We can associate an
abstract deterministic finite state machine (DFSM) with sm in the following way.
As elements of the input alphabet AI the non-empty conjunctions of propositions
from I with interval vectors from SP are used:

AI = {(?e, p ∧ ¬∂(p) ∧ I) | (?e, p) ∈ I ∧ I ∈ SP ∧ ∃s ∈ S : s |= p ∧ ¬∂(p) ∧ I} ∪
{(?e, ∂(p) ∧ I) | (?e, p) ∈ I ∧ I ∈ SP ∧ ∃s ∈ S : s |= ∂(p) ∧ I}

In this definition we have identified interval vectors I =
∏
z∈V−C [z, z] with

their defining propositions
∧
z∈V−C z ≤ z ≤ z. Recall from Section 2 that the

boundary ∂p of a proposition p is the proposition characterizing the boundary
of the constraint solution set S(p). As output alphabet the set AO = {(o, r) | o ∈
Σ∗O, r : V → Expr} is used. An DFSM output (o, r) consists of a finite sequence
o of SysML state machine output events and a term replacement function r: the
former is the sequence of events generated by the SysML state machine during
some run to completion involving transitions τ1, . . . , τk. The latter is the term
replacements function defined by the data transforming actions associated with
these transitions, that is, r = ρ(idA, 〈a(τ1); . . . ; a(τk)〉).

As state space the state partition is used, Q = P = {(`1, p1), . . . , (`n, pn)}
The initial DFSM state is the partition q0 = (`0, 1) ∈ Q which corresponds to
the initial state of the SysML state machine which is left unconditionally when
a “switch-on” signal occurs and which is never visited again after that.

An equivalence class partition (P, I) conforming to Definition 1 induces two
functions δ : Q × AI → Q and ω : Q × AI → AO. We define δ((`i, pi), (?e, p ∧
I)) = (`′, p′) if and only if condition 4 of Definition 1 is fulfilled by choosing
(`j , pj) = (`′, p′) in the existential quantification. Furthermore, we set

ω((`i, pi), (?e, p ∧ I)) = (eO(τ1) . . . eO(τk), ρ(idA, 〈a(τ1); . . . ; a(τk)〉)
where τ1, . . . , τk are the transitions occurring in the existential quantification of
condition 4.

Lemma 2. The DFSM defined above by (AI , AO, Q, q0, δ, ω) is well-defined.

Lemma 3. Let sm a SysML state machine which is abstracted to DFSM K =
(AI , AO, Q, q0, δ, ω). For any state s0 ∈ sm, and any SM input sequence ι =
(?e1,x = c1).(?e2,x = c2) . . . (?en,x = cn) with ?ej ∈ ΣI ,x = (x1, . . . , x|I|), xi ∈
I, cj ∈ D|I|, there is a unique abstract input sequence (?e1, p1).(?e2, p2) . . . (?en, pn)
such that, for all i = 1, . . . , n,

si−1 ⊕ {x 7→ ci} |= pi,

where si = tgt(si−1, (?ei,x = ci)) the quiescent target state reached when stim-
ulating in state si with trigger (?ei,x = ci).

Proof. This follows immediately from Definition 1 (2) and (3). �



Observation. While sequences o of output events can be observed during a
concrete test against the SUT, this is not possible for the term replacement
functions r : V → Expr. In the design of a concrete test suite derived from
applying the W-Method to abstract DFSMs as introduced above it will be a
major task to construct concrete test data which is suitable to “reveal” whether
the expected term replacement function has been applied by the SUT.

If the SUT is an erroneous implementation of the reference SysML state
machine sm, its SM representation sm′ is not equivalent to sm. Due to trapdoors
leading to illegal behavior of sm′ as described in Section 4, an abstraction of
sm′ according to the requirements of Definition 1 will therefore not necessarily
operate on the same set I of trigger abstractions as a given abstraction of sm. As
a consequence, their DFSMs K and K ′ may operate on different input alphabets.
The following algorithm constructs another DFSM K ′′ which has the following
properties: (1) K ′′ operates on the same input alphabet as K, (2) whenever sm′

is equivalent to sm, K ′′ is also equivalent to K, and (3) whenever sm′ has a
failure, K ′′ is not equivalent to K. Observe that the construction of K ′′ requires
the knowledge of sm′ which is generally not available since it reflects the true
behavior of the SUT. We need this algorithm, however, only to show the existence
of such a DFSM K ′′. For the generation of the equivalence partition test suite
its construction is not required, since the generation only depends on sm and
K.

The algorithm ascertaining the existence of K ′′ is shown in Fig. 3. It con-
structs the state space Q′′ and its associated transitions in an incremental fash-
ion, starting from the initial state of K ′ and traversing K ′ applying a breadth-
first-search. In each state under consideration, all input events from AI are ten-
tatively applied to the current state of K ′, with the following possible outcomes:
(1) the solution set associated with the event in the current state does not “fit”
into any of the solution sets associated with the trigger abstractions of K ′ ap-
plied to the current state. In this case the event from AI triggers the transition
that would have occurred in the current state of K. The output, target state and
all further transitions reachable from there are defined by K. (2) The solution
set associated with the event is a subset of some trigger abstraction of K ′. in
this case the associated transition occurring in K ′ is added to K ′′, together with
the target state reached by this transition in K ′′. The inputs events from AI
associated with the interior of a solution set (e. g. I ∩ S(p, p ∧ ¬∂(p)) and those
associated with the boundaries of solution sets are handled separately. Accord-
ing to fault hypothesis (FH4) described in Section 4 there are no other cases to
consider.

6 Testing Data Transformations

For arithmetic data transformations it is often possible to test the correctness of
a transformation implementation by the SUT with a limited number of values.
The following example shows this for the case where the SUT uses polynomial
transformations only. This case is of particular relevance in practice because



procedure generateDFSM(in K,K′ : DFSM; in (P ′, I′); out K′′ : DFSM)
begin
let (AI , AO, Q, q0, δ, ω) = K, (A′

I , AO, Q
′, q′0, δ

′, ω′) = K′ in
Q′′ = {q′0}; W = 〈q0〉; W ′ = 〈q′0〉; δ′′ = ∅; ω′′ = ∅;
while W ′ 6= 〈 〉 do
let (`, p) = head(W ), (`′, p′) = head(W ′) in
W = tail(W ); W ′ = tail(W ′);
foreach (?e, p ∧ ¬∂(p) ∧ I) ∈ AI do
if I ∩ S(p, p ∧ ¬∂(p)) = ∅ then continue;
if ∀(?e′, p′) ∈ I′ : I ∩ S(p, p ∧ ¬∂(p)) 6⊆ S(p′, p′) then
δ′′ = δ′′ ⊕ {((`′, p′), (?e, p ∧ ¬∂(p) ∧ I)) 7→ δ((`, p), (?e, p ∧ ¬∂(p) ∧ I)}
ω′′ = ω′′ ⊕ {((`′, p′), (?e, p ∧ ¬∂(p) ∧ I)) 7→ ω((`, p), (?e, p ∧ ¬∂(p) ∧ I))};
Q′′ = Q′′ ∪Q; δ′′ = δ′′ ∪ δ; ω′′ = ω′′ ∪ ω;

else let (?e′, p′) ∈ I′∧?e =?e′ ∧ I ∩ S(p, p ∧ ¬∂(p)) ⊆ S(p′, p′) in
δ′′ = δ′′ ⊕ {((`′, p′), (?e, p ∧ ¬∂(p) ∧ I)) 7→ δ′((`′, p′), (?e′, p′))};
ω′′ = ω′′ ⊕ {((`′, p′), (?e, p ∧ ¬∂(p) ∧ I)) 7→ ω′((`′, p′), (?e′, p′))};
if δ′((`′, p′), (?e′, p′)) 6∈ Q′′ then
Q′′ = Q′′ ∪ {δ′((`′, p′), (?e′, p′))};
W ′ = W ′ _ 〈δ′((`′, p′), (?e′, p′))〉;
W = W _ 〈δ((`, p), (?e, p ∧ ¬∂(p) ∧ I))〉;

endif
endlet endif

enddo
foreach (?e, ∂(p) ∧ I) ∈ AI do
if I ∩ S(p, ∂(p)) = ∅ then continue;
if ∀(?e′, p′) ∈ I′ : I ∩ S(p, ∂(p)) 6⊆ S(p′, p′) then
δ′′ = δ′′ ⊕ {((`′, p′), (?e, ∂(p) ∧ I)) 7→ δ((`, p), (?e, ∂(p) ∧ I)}
ω′′ = ω′′ ⊕ {((`′, p′), (?e, ∂(p) ∧ I)) 7→ ω((`, p), (?e, ∂(p) ∧ I))};
Q′′ = Q′′ ∪Q; δ′′ = δ′′ ∪ δ; ω′′ = ω′′ ∪ ω;

else let (?e′, p′) ∈ I′∧?e =?e′ ∧ I ∩ S(p, ∂(p)) ⊆ S(p′, p′) in
δ′′ = δ′′ ⊕ {((`′, p′), (?e, ∂(p) ∧ I)) 7→ δ′((`′, p′), (?e′, p′))};
ω′′ = ω′′ ⊕ {((`′, p′), (?e, ∂(p) ∧ I)) 7→ ω′((`′, p′), (?e′, p′))};
if δ′((`′, p′), (?e′, p′)) 6∈ Q′′ then
Q′′ = Q′′ ∪ {δ′((`′, p′), (?e′, p′))};
W ′ = W ′ _ 〈δ′((`′, p′), (?e′, p′))〉;
W = W _ 〈δ((`, p), (?e, ∂(p) ∧ I))〉;

endif
endlet endif

enddo
endlet

enddo
K′′ = (AI , AO, Q

′′, q′0, δ
′′, ω′′);

endlet
end

Fig. 3. Construction of the DFSM K′′ operating on the same input alphabet as K′.



polynomials are quite often used in the implementation of mathematical control
functions, and more complex (e. g., transcendent) functions are often approxi-
mated by polynomials.

Example 5. Consider the term replacement function ρ(idA, 〈a(τ2); a(τ1)〉) = {x 7→
x,m 7→ x/2, y 7→ y + x/2 − 5} associated with SM transition τ1.τ2 from `0 to
`2 in Fig 1. Assume that the SUT implements each data transformation as a
polynomial of degree less or equal n. Then it suffices to test the transformations

fm(x,m, y) = x/2, fy(x,m, y) = y + x/2− 5

with
(
n+3
n

)
values of (x,m, y). Exemplifying this for n = 1, recall that a polyno-

mial of degree one with 3 variables x,m, y is of the form:

p(x,m, y) = a3x+ a2m+ a1y + a0

To determine the coefficients a3, a2, a1, a0, we need 4 triples of values (xi,mi, yi)
such that the determinate of the matrix

x1 m1 y1 1
x2 m2 y2 1
x3 m3 y3 1
x4 m4 y4 1


is nonzero. It is equivalent to the fact that the vectors (x1 − x4,m1 −m4, y1 −
y4), (x2−x4,m2−m4, y2−y4), (x2−x4,m2−m4, y2−y4) are linear independent.

In the general case, a polynomial of degree n with k variables has
(
n+k
n

)
coefficients. For example, n = 2 and k = 3,

p(x,m, y) = a9x
2 + a8m

2 + a7y
2 + a6xm+ a5xy+ a4my+ a3x+ a2m+ a1y+ a0

To determine this polynomial we need 10 triples (x1,m1, y1), . . . , (x10,m10, y10)
such that the determinate of the matrix

x21 m2
1 y21 x1m1 x1y1 m1y1 x1 m1 y1 1

x22 m2
2 y22 x2m2 x2y2 m2y2 x2 m2 y2 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x210 m

2
10 y

2
10 x10m10 x10y10 m10y10 x10 m10 y10 1


is nonzero.

Since y is an output variable the associated test data cannot be directly set
by the test environment. Instead, control state `0 has to be visited several times,
such that

(
n+3
n

)
different values of y are observed, and each time the transition

sequence τ1.τ2 is fired. The identification of the input sequence necessary to
achieve this behavior is performed by means of a SMT constraint solver, as
described in Section 7.

�



Observe that it also has to be shown for every z ∈ V − I that an implemen-
tation of a term replacement function r is really independent on the variables
outside var(r(z)). This means that the data transformation functions have to be
tested with different variations of both the variables occurring in the expressions
r(z) and the variables not occurring there. In the polynomial case described in
the example above this means that sufficient tests have to be performed in order
to determine

(
n+|V |
n

)
coefficients.

If a data transformation error only affects internal model variables this will
not be immediately revealed on the SUT outputs. Consider, for example, an
erroneous implementation (Fig. 4) of the specification model in Fig. 1: the action
associated with transition τ1 assigns 1+x/2 to m instead of x/2. Even though τ2
or τ3 produce outputs on y depending on m, the error is masked, due to the faulty
assignments y = y+m− 6 and y = y+m+ 4, respectively. The error of internal
variable transformations, however, may be revealed indirectly in two ways: first,
if the internal variable occurs in guard conditions this will lead to erroneous state
transitions of the SUT which can be detected by means of the tests based on the
characterization set W . Second, the erroneous variable value may be propagated
to an output occurring in a subsequent SM transition, provided that the variable
is not reset (that is, written to in a way that is independent on its old value) on
the way to this transition.

Example 6. In the SM representing the SUT (Fig. 4) the erroneous assignment
in act(τ1) can be detected in two ways: first, a boundary value test will reveal
that data transformation y(x,m, y) = y+x/2−5 is applied by the SUT when x =
20/3, where the specification model still requires application of transformation
y(x, y,m) = y + x/2 + 5.

Second, transitions τ8, τ9 write to output y with expressions still depending
on the faulty m. By identifying one feasible path from τ1 to τ8 and one from
τ1 to τ9 we can test these paths with the required number of different variable
valuations as explained in Example 5 and uncover a faulty output on y. Take,
for example, the path τ0.τ1.τ2.τ4.τ6.τ7.τ9. This can be tested with input trace
(on, x = 9.998).(a, x = 9.998).(ε, x = −0.1). Initially y = 0, so this trace will
reveal the faulty SUT behavior through the erroneous output y = 55.891 gen-
erated by τ9 instead of y = 47.891 which is expected according to the model
(Fig. 1).

In contrast to this, the erroneous assignment m = 0; in transition τ9 does not
affect the correctness of the SUT, since m is reset in the next transition, before
the erroneous value of m is used in a guard condition or right-hand side of an
assignment expression. �

Summarizing the observations above, the correctness of a data transformation
f associated with some transition τ can be tested by observing its effect at every4

transition τ ′ satisfying the following conditions.

– τ ′ writes to output attributes

4 We have to visit all transformations writing to outputs, because some of them might
mask the error as shown in the example above for transitions τ2, τ3.
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l2 l3

l4 l5

?on/y=0;

?a[x>0]/!b;m=1+x/2;

[m+x<=10]/
y=y+m+4;

[m+x>10]/
y=y+m-6;

[y=x^3]/
m=m+1

[y=x+m]/
m=m+2

[m<=10 && x+y<0]/
!c;y=x+y+m;

[m >= 10 && x+y<0]/
!c;y=x+y+2*m;m=0;

Input: float x
Output: float y
Internal variable: float m
Input triggers: ?a
Output triggers: !b, !c

[m<10]/
m=2*m;

[m>10]/
m=2*m;

⌧2

⌧1

⌧3

⌧4 ⌧5

⌧6

⌧7

⌧8⌧9

l1

wait-for-switch-on

⌧0

Fig. 4. SysML state machine associated with faulty SUT: data transformation errors
in actions of τ1, τ2, τ3.



– There exists a path from tgt(τ) to src(τ ′) where the effect of f is not reset
before a(τ ′) has been executed.

Under certain hypotheses (such as ‘SUT uses polynomials of degree less or equal
to n’) the correctness can be checked by means of a finite number of tests,
re-running the paths tgt(τ) −→ src(τ ′) with the different data sets.

These observations will be considered in the generation of the concrete test
suite, as described in Section 7.

7 Test Suite Generation

7.1 Application of W-Method to Abstract DFSM

Given a DFSM K the W-Method [3] provides a recipe for testing a DFSM im-
plementation K ′′ in an exhaustive way, by means of suites represented by

W = TC · (
m⋃
i=0

AiI ·W )

TC denotes the transition cover, a set of sequences over input alphabet AI such
that for every transition from state q to state q′ on input x ∈ AI , there are
input sequences π, π.x ∈ TC so that π forces the machine into state q from its
initial state q0. The characterization set W contains input sequences such that
for each pair of non-equivalent states q1, q2, there exists an input sequence in
W provoking different outputs when applied to q1 or q2, respectively. Constant
m is an upper bound on the number of additional states implemented in the
SUT, when compared to the specification DFSM. A test from W consists of an
input sequence from the transition cover, followed by at most m arbitrary inputs
from AI , and finally succeeded by an input sequence from W . It has been shown
in [3] that the resulting test suite will uncover any violation of IO conformance
between SUT and specification DFSM.

Assuming the existence of an (unknown) abstracted DFSM K ′′ for the SUT
operating on the same alphabet as K we can define a test suite W on this ab-
stract level. This test suite, however, is not directly applicable to the concrete
SUT, since (1) not every path through the abstract specification DFSM is feasi-
ble for the concrete SysML state machine (this is a well known consequence of
the abstraction method), (2) abstract outputs (o, r) are not directly observable,
since in a black box test setting the SUT does not reveal the data transforma-
tion r applied when transiting between a pair of quiescent states. Using a SMT
constraint solver, however, it is possible to (a) identify the reachable abstract
states of the specification DFSM, (b) calculate concrete representatives of ab-
stract input events and (c) distinguish the resulting states by means of input
sequences finally leading to distinct outputs observable on the concrete SUT.

An abstract path through DFSM K is called q-feasible if the constraints
representing this path have at least one solution.



Theorem 1. Suppose K = (AI , AO, Q, q0, δ, ω) and K ′ = (AI , AO, Q
′, q′0, δ

′, ω′)
are two minimal DFSM abstractions over the same input alphabet. Then K and
K ′ are equivalent for any q0-feasible input sequence if and only if their initial
states q0, q

′
0 are equivalent for any q0-feasible input sequence from W.

Proof. The “only if part” is obvious, it remains to prove the “if part”. Let q0, q
′
0

the initial states of K and K ′ respectively, and suppose that they are equivalent
for any q0-feasible input sequence from W. For any state q in K, there is an
input sequence π ∈ TC, such that δ(q0, π) = q. Let q′ = δ′(q′0, π). Since TC
contains only q0-feasible input sequences by construction, q, q′ are equivalent for
any q0-feasible continuation from

⋃m
i=0A

i
I · W of π, and, in particular (using

i = 0), for any q0-feasible continuation from W of π. Recall that by construction
W contains sufficient q0-feasible continuations of π to distinguish q from all other
n− 1 states of K. Since q, q′ are equivalent for any q0-feasible continuation from
W of π, these continuation from W generate the same outputs when applied in
q′, so they partition the states of K ′ into at least n classes. By Lemma 0 in [3],⋃m
i=0A

i
I ·W distinguishes every pair of states in K ′.

Define a mapping f : Q → P(Q′), such that f(q) is the set of all q′ ∈ Q′

satisfying q′, q are equivalent for any q-feasible input sequence from
⋃m
i=0A

i
I ·W .

Then, according to the analysis in the previous paragraph, {δ(q′0, π) | π ∈ TC ∧
δ(q0, π) = q} ⊆ f(q).

For any q′ ∈ Q′, if there are q1, q2 in Q such that q′, qi are equivalent for any qi
feasible input sequence form W , i = 1, 2, then q1 = q2, because W distinguishes
states in Q, if q1 6= q2, there is an input sequence ι ∈W , feasible for both q1, q2,
ω(q1, ι) 6= ω(q2, ι), and ω′(q′, ι) = ω(qi, ι), i = 1, 2, a contradiction. Consequently,
for any q1 6= q2, we have f(q1) ∩ f(q2) = ∅.

From the lemmas and main theorem in [3] we conclude that, given q ∈ Q,
if for all q′1, q

′
2 ∈ f(q), q′1, q

′
2 are

⋃m
i=0A

i
I ·W -equivalent, then q′1 = q′2, because

K ′ is minimal and
⋃m
i=0A

i
I ·W distinguishes all states of Q′. Therefore, in this

situation, f(q) contains only one state.
Suppose now that there exist q′1, q

′
2 ∈ f(q) which are not

⋃m
i=0A

i
I · W -

equivalent. Since
⋃
q∈Q f(q) ⊆ Q′ and f(q) 6= ∅ are pairwise disjoint, we have

m > 0. Let x be any feasible input for q, Since m 6= 0, x ∈ ⋃mi=0A
i
I ·W . By

construction of f we have ∀q′ ∈ f(q) : ω′(q′, x) = ω(q, x) (∗).
For any q1, q2 ∈ Q, if there is a feasible input x ∈ AI with δ(q1, x) = q2,

then there is an input sequence π ∈ TC, such that π.x ∈ TC, δ(q0, π) = q1 and
δ(q0, π.x) = q2. Define q′1 := δ′(q′0, π) ∈ f(q1) , q′2 := δ′(q′0, π.x) ∈ f(q2), then
δ′(q′1, x) = q′2. Since q0, q

′
0 are equivalent for any q0-feasible input sequence from

W, we have ω′(q′1, x) = ω(q1, x). From (∗) we have

∀q ∈ Q : ∀q′ ∈ f(q) : ω′(q′, x) = ω(q, x) (1)

Let τ = x1.x2. . . . .xk be any q0-feasible input sequence. Define qi := δ(qi−1, xi),
q′i := δ′(q′i−1, xi) for i = 1, . . . , k. We claim

∀i ∈ {1, . . . , k} : ω(qi−1, xi) = ω′(q′i−1, xi) (2)



Case 1 : Suppose |f(q)| = 1 for all q ∈ Q.
Since q0, q

′
0 are equivalent for any q0-feasible input sequence fromW ⊇ ⋃mi=0A

i
I ·

W , {q′0} = f(q0) and ω(q0, x1) = ω′(q′0, x1). Since K,K ′ are deterministic, we
have {q′1} = f(q1) and ω(q1, x2) = ω′(q′1, x2). Inductively we have {q′i} = f(qi)
and ω(qi, xi+1) = ω′(q′i, xi+1), for all i = 0, . . . , k − 1.

Case 2 : There exists q ∈ Q, with |f(q)| > 1.
For this case m > 0 follows. Therefore we prove (2) by induction on m.
Induction base: for m = 1, there is exactly one q ∈ Q, with |f(q)| > 1 and
for any q′ ∈ Q′ there is a unique q ∈ Q with q′ ∈ f(q). For any qi−1, qi, if
q′i−1 ∈ f(qi−1), then qi, q

′
i are equivalent for any qi-feasible input sequence form

W . Hence q′i ∈ f(qi). From q0, q
′
0 are equivalent for any q0-feasible input sequence

form W, it implies q′0 ∈ f(q0) and q′1 ∈ f(q1), inductively we obtain q′i ∈ f(qi)
and then from (1) ∀i = 1, . . . , k : ω(qi−1, xi) = ω′(q′i−1, xi).
Induction hypothesis: suppose that equation (2) holds for m = t, t > 0.
Induction step: we show it holds for m = t+1: Because there are exact m = t+1
more states in K ′ than in K, and there is at least one f(q) with |f(q)| > 1, be-
tween any q′i, q

′
j ∈ {q′0, . . . , q′k} where q′i ∈ f(qi) and q′j is the next states after

q′i satisfying q′j ∈ f(q) for some q ∈ Q, there are at most t pairwise distinct
states in {q′i+1, . . . , q

′
j−1}. Suppose q′i ∈ f(qi), q

′
j ∈ f(q) for some q ∈ Q and for

any q′ ∈ {q′i+1, . . . , q
′
j−1}, q′ 6∈ f(q), for all q ∈ Q. Since q′i ∈ f(qi), we have

qi+1, q
′
i+1 are equivalent for any qi+1-feasible input sequence from

⋃m−1
i=0 AiI ·W ,

furthermore m−1 = t > 0, then ω(qi+1, xi+2) = ω′(q′i+1, xi+2) and qi+2, q
′
i+2 are

equivalent for any qi+2-feasible input sequence from
⋃m−2
i=0 AiI ·W . If q′i+2 6= q′i+1,

then 2 ≤ t = m − 1 and 1 ≤ m − 2, thus ω(qi+2, xi+3) = ω′(q′i+2, xi+3). If
q′i+2 = q′i+1, since qi+2, q

′
i+2 are equivalent for any qi+2-feasible input sequence

from W , and qi+1, q
′
i+1 = q′i+2 are equivalent qi+1-feasible input sequence from

W , we have qi+2 = qi+1 and ω(qi+2, xi+3) = ω(qi+1, xi+3) = ω′(q′i+1, xi+3) =
ω′(q′i+2, xi+3). Repeating this argument successively for q′i+1, q

′
i+2, . . . , q

′
j−1, we

have ω(qu, xu+1) = ω′(q′u, xu+1), for all u = i+ 1, . . . , j − 1 and qj , q
′
j are equiv-

alent for any qj-feasible input sequence from W , together with the assumption
q′j ∈ f(q) for some q ∈ Q, it implies q′j ∈ f(qj). Applying to the whole sequences
q′0, . . . , q

′
k, we then have ω(qu, xu+1) = ω′(q′u, xu+1), for all u = 0, . . . , k − 1.

Hence q0 and q′0 are equivalent for any q0-feasible input sequences. �

Theorem 2. Let state machine sm a SysML specification model and sm′ the
SysML representation of the SUT according to the fault hypothesis described in
Section 4. Let K = (AI , AO, Q, q0, δ, ω) the DFSM associated with sm according
to Section 5 and K ′′ = (AI , AO, Q

′′, q′′0 , δ
′′, ω′′) the DFSM constructed for sm′

as described above.

1. If sm′ equals sm (this means that the SUT is an error-free implementation
of sm), then K ′′ equals K.

2. If sm′ is non-equivalent to sm then K ′′ and K are non-equivalent for some
q0-feasible input sequence from W.

Proof. 1. If sm′ equals sm, the abstract DFSM K ′ created from sm′ already
equals K. The algorithm shown in Fig. 3 creates K ′′ equal to K ′ in this case,



because K ′′ only differs from K ′ if the input alphabet of K ′ differs from AI due
to the existence of trapdoors.
2. Suppose sm and sm′ are not equivalent, then there is an input sequence
ι = (?e1,x = c1).(?e2,x = c2) . . . (?en,x = cn) such that the associated output
sequences (o1,y = d1).(o2,y = d2) . . . (on,y = dn) and (o′1,y = d′1).(o′2,y =
d′n) . . . (o′n,y = d′n), y = (y1, . . . , y|O|), yi ∈ O, dj ∈ D|O| are not identical.
Without lost of generality we may assume (oi,y = di) = (o′i,y = d′i), for all
i = 1, . . . , n− 1 and (on,y = dn) 6= (o′n,y = d′n). Furthermore this discrepancy
at output n must have been caused by some input (?ej ,x = cj) with j ≤ n, such
that the behavior of sm′ was consistent to sm for j′ ≤ j.

Let (?e1, p1).(?e2, p2) . . . (?en, pn) the uniquely determined abstract input
sequence in K which is associated with ι and runs through state partitions
(`0, p0) . . . (`n, pn). According to Fault Hypothesis (FH4) we can assume that
there exists an abstract input (?ej , pj ∧ ¬∂(pj) ∧ I) or (?ej , ∂(pj) ∧ I) that is
contained in the trapdoor S†(p′j , p′j) at j leading to the faulty behavior of sm′.
K ′′ transits from (`′j , p

′
j) to the target state (`′j+1, p

′
j+1) of the associated tran-

sition in K ′. Observe that while x = cj solves p′j , p
′
j , it does not necessarily

solve pj ∧ ¬∂(pj) ∧ I or ∂(pj) ∧ I, respectively. In this case, however, we will
find another continuation of (?e1,x = c1) . . . (?ej−1,x = cj−1) which solve these
propositions.

Case 1. If the discrepancy at output n is caused by (`′j+1, p
′
j+1) not being

equivalent to (`j+1, pj+1) we can find a sequence in the characterization set W
revealing this discrepancy.

Case 2. If the discrepancy at output n is caused by an erroneous data trans-
formation r′ taken by sm′ at (`′j , p

′
j), this transformation is also used when

applying input trigger abstraction (?ej , pj ∧ ¬∂(pj) ∧ I) or (?ej , ∂(pj) ∧ I), re-
spectively in state (`′j , p

′
j). As a consequence, K ′′ already produces an output

(o′′, r′) at this state which differs from K in the data transformation.
Case 3. If the discrepancy at output n is caused by an erroneous sequence

o′′ of output events, then n = j and K ′′ differs from K in this place, due to o′′

differing from on.
In each of the 3 cases above K ′′ is non-equivalent to K. Now we can conclude

from Theorem 1 that there exists a q0-feasible abstract input sequence from W
revealing the non-equivalence between K and K ′′. �

7.2 Symbolic Test Suite

For the test suite W we choose a symbolic representation, that is, each input se-
quence inW is represented by a proposition identifying this sequence in a unique
way. Since the DFSM alphabet and its states are already based on propositions
the symbolic representation is very efficient to produce. At the same time the
SMT solver an be applied to check the feasibility of symbolic representations, in
order to avoid input sequences in W that cannot be realized with the SUT.

Symbolic Representations for Transition Cover. Given an abstract se-
quence of inputs (?e1, p1) . . . (?ek, pk) leading to a DFSM state (`i, pi) and an



input (?ek+1, pk+1) to be applied when in δ((`0, p0), (?e1, p1) . . . (?ek, pk)), this
directly induces a symbolic test case representation

s0(`0 ∧ p0) ∧∧k
i=1(s2i−1(pi) ∧

(
∧
z∈V−I s2i−1(z) = s2i−2(z) ∧

(
∧
z∈V s2i(z) = s2i−1(ω((`0, p0), (?e1, p1) . . . (?ei, pi)).r(z)) ∧

s2i(δ((`0, p0), (?e1, p1) . . . (?ei, pi)).`) ∧ s2i(δ((`0, p0), (?e1, p1) . . . (?ei, pi)).p)) ∧
s2k+1(pk+1) ∧ (

∧
z∈V−I s2k+1(z) = s2k(z)

In this formula δ(a, b).`, δ(a, b).p, ω(a, b).r denote the projections of the con-
trol state, constraint and term replacement function, respectively.

Example 7. The symbolic test case associated with the abstract input sequence
(?a, p(6,0,0,0,0)).(ε, p(0,0,0,1,1)) applied to state (`0, 1) is calculated according to
the above formula as follows.

s0(`0) ∧
8 < s1(x) < 18 ∧ s1(y) + s1(x)

2 − 5 = (s1(x)3 ∧ s1(y) 6= (s1(x)3 ∧
s1(y) 6= s1(x) + s1(m) ∧ s1(y) + s1(x) ≥ 0 ∧

s1(`0) ∧ s1(m) = s0(m) ∧ s1(y) = s0(y) ∧
s2(x) = s1(x) ∧ s2(m) = 4( s1(x)2 + 1) ∧ s2(y) = s1(y) + s1(x)

2 − 5 ∧
s2(`4) ∧ s2(m) ≥ 10 ∧ s2(x) + s2(y) ≥ 0 ∧
s3(x) ≤ 0 ∧ s3(y) 6= s3(x)3 ∧ s3(x) + s3(y) < 0 ∧ s3(y) 6= s3(x) + s3(m) ∧
s3(`4) ∧ s3(m) = s2(m) ∧ s3(y) = s2(y) ∧
s4(x) = s3(x) ∧ s4(m) = s3(m) ∧ s4(y) = s3(x) + s3(y) + 2s3(m) ∧
s4(`0)

Starting from the initial state with s0(y) = 0 an SMT solver can determine
solutions of such a proposition, whenever the feasibility of this formula has to
be checked or concrete test data is required. �

Applying the technique illustrated in the previous example the transition cover
can be automatically generated as a set of symbolic test cases whose feasibility
has already been checked in advance. In analogy, symbolic representations for
the characterization set are constructed.

Symbolic Representations for Characterization Set. Given DFSM K and
its characterization set W we can construct feasible sequences for elements of W ,
depending on the after state of a concrete solution for a sequence of TC ·AiI , 0 ≤
i ≤ m: given a concrete solution trace ι = (?e1,x = c1) . . . (?eu,x = cu) realizing
an element (?e1, p1) . . . (?eu, pu) ∈ TC · AiI with post state (`u, pu) as described
above, we can use the constraint solver to find continuations ι′ from the concrete
post state sm of ι (which can be calculated by simulating ι on sm), so that the
abstraction of ι′ distinguishes (`u, pu) from at least one other state abstraction in
K. The constraints whose solutions lead to these input sequences ι′ are specified
in analogy to those shown for the transition cover above.



Symbolic Representations for the Output Identification Set. The DFSM
abstractions K and K ′′ could be distinguished as soon as K ′′ produces another
output event sequence or applies another data transformation r′ than K. The
latter case, however, cannot always be observed directly on the level of concrete
tests: if r′ is faulty, but only changes internal model variables, this error will only
be revealed at a later point in time, when the internal model variable affects a
visible output or a guard condition. To this end, every concrete test sequence
generated from W has to be extended to each place where outputs are written.
These extensions are called the output (and guard) identification set WO. Again
these conditions are specified as constraints.

7.3 Concrete Test Suite

The concrete test suite is derived by creating solutions ι for each element of W
and finding continuations ι′ from WO for every ι. Based on the fault hypothesis
(FH3) (Section 4), k > 0 solutions ι.ι′ have to be constructed for each abstract
sequence from W with its continuation from WO.

Theorem 3. Provided that the fault hypotheses described in Section 4 are met,
the test suite specified above is exhaustive.

Proof. Let SysML state machine sm the specification model, and sm′ the SysML
SM representation of the SUT’s true behavior. Let K the abstract DFSM associ-
ated with sm, and K ′′ the DFSM constructed for sm′ according to the algorithm
from Fig. 3. If sm and sm′ are equivalent, there is nothing to show because by
definition they will respond to every input sequence in the same way.

Suppose now that sm, sm′ are not equivalent. Then, according to Theo-
rem 2, K,K ′′ are not equivalent, either, and there exists a q0-feasible input
sequence (?e0, p0) . . . (?en, pn) from W(K) revealing this non-equivalence. This
input sequence triggers a sequence of abstract outputs (o0, r0) . . . (on, rn) of
K and (o′0, r

′
0) . . . (o′n, r

′
n) of K ′′. It can be assumed that (oi, ri) = (o′i, r

′
i)

for i = 0, . . . , n − 1, so that the error in K ′′ only shows in the last output
(o′n, r

′
n) 6= (on, rn).

Now W(K) has been constructed in such a way that (?e0, p0) . . . (?en, pn)
is feasible for sm, that is, there exists a concrete sequence s0.s1.s2 . . . sn.sn+1

of states, starting in the initial state s0 of sm, and a concrete input sequence
ι = (?e0,x = c0) . . . (?en,x = cn) such that si ⊕ {x 7→ ci} |= pi, i = 0, . . . , n.
Moreover, the concrete test suite specified above ensures that such a ι is exercised
on the SUT. By construction ι triggers output sequences consistent with the
abstract output sequences specified above for K and K ′′, respectively.

If (o′n, r
′
n), (on, rn) already differ in o′n 6= on there is nothing more to do: the

test ι fails on the SUT after observation of output event.
If (o′n, r

′
n), (on, rn) only differ in r′n 6= rn, this difference will be revealed in

the concrete test suite, when every input trace γ of the output identification set
WO is applied to state sn+1, and each input trace ι.γ, γ ∈WO is tested with the
sufficient number of different input values. As a consequence, there is a test in
the concrete test suite that fails, which proves the theorem. �



8 Discussion

We have presented an equivalence class partitioning strategy for model-based
testing against SysML state machines or similar specification models. The classes
are formally justified in the sense that the resulting test suite can uncover any
violation of equivalence between SUT and specification model, as long as certain
well-defined fault hypotheses are valid. We did not consider timed state machines
in this paper, but we expect that the strategy presented here may be extended to
machines using dense-time clocks as in timed automata: the grid automata con-
cept used in [17] for constructing exhaustive test suites for timed automata can
be incorporated into our abstraction method, resulting in additional refinements
of the classes involving clock variables.

For situations where the test strategy described cannot be applied in an
exhaustive fashion we recommend the following relaxations that still allow to
justify the equivalence class partitioning chosen. (1) Create an initial partition-
ing as prescribed in Definition 1, so that all possible data transformations are
exercised. (2) Relax the requirement to refine the original trigger abstractions
I by interval vectors (Section 5), but select at least v + 1 random values for
each trigger abstraction, if it may be assumed that the SUT implements data
transformations of degree less or equal to v. This less stringent requirement is
suitable if the data transformations do not involve too many different model
variables (see explanations in Section 6), and if random data can be trusted to
be sufficiently capable of detecting trap doors. (3) Perform long-duration testing
to uncover effects of erroneous data transformations of internal model variables,
instead of testing every path from a change of internal model variable to its
effect on an output variable.

The contribution described in this paper is part of a more general inves-
tigation about justifiable test strategies for model-based testing of systems of
systems, involving sub-components with large data domains.
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