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Contents of this Presentation. In this presentation we introduce methods and tool sup-
port for automated model-based testing of embedded real-time systems specified in UML 2.0.
Our approach focuses on (1) composite structure diagrams for the definition of system
components, operational environment, interfaces, and parallelism, (2) class diagrams and
method specifications for the description of guard conditions, event handlers and further
actions involving data transformations, (3) Statecharts for the specification of reactive sys-
tem behaviour.

We describe the automated generation of test cases for SW integration and HW/SW inte-
gration testing, where test cases are derived from composite structure diagrams and State-
charts, and classes and methods have to be investigated in order to decide how to trigger the
state transitions desired, by making true the associated guard conditions and by generating
the necessary events.

Given a specification model of the system under test (SUT) using the 3 UML ingredients
listed above, test cases can be generated in a fully automated way. The result, however,
will be unsatisfactory in frequent situations as long as the automation tool generates test
cases from the model in an arbitrary or random manner: Test cases which are “interesting”
from the domain experts’ point of view will occur very late in the test suite or event not
at all, and the automation process will come up with many cases which could be readily
identified by these experts as “useless” or of “low priority”.

In order to increase the effectiveness of the automated test case generation process we
introduce built-in and user-defined test case generation strategies. The former are test case
generation concepts which – according to our experience – are crucial for the most test
campaigns:

• A strategy for transition coverage. This strategy aims at finding an as small as
possible set of test cases which suffice to exercise each state transition of a Statechart
(and therefore also each of its states) at least once. The importance of transition
coverage is due to the fact that it implies requirements coverage for many UML
specification models.



This strategy can also be further refined in an automatic way such that the compo-
nents of compound guard conditions, say [c0 and c1] are exercised with all signif-
icant combinations, say (1) c0 = c1 = true, (2) c0 = true, c1 = false, (3)
c0 = false, c1 = true (so-called MC/DC coverage for guard conditions).

• A strategy for time-related boundary value tests: In this strategy the points in time
when an additional input is fed into the system under test are selected in such a
way that time bounds specified in the Statecharts model are just met or just violated.
This strategy helps to verify the correctness of timing behaviour, such as reaction on
missed deadlines and timeouts.

• A strategy for robustness tests: Following this strategy the test automation system
feeds input data to the system under test which should be ignored and discarded
according to the system’s current state.

For user-defined strategies, an easy-to-use variant of temporal logic is provided, allowing
to describe

• which states or transitions of a Statechart should be covered at least / at most how
many times in the test case execution,

• in which order certain states or transitions should be visited,

• which input ranges should be used,

• which time bounds should be enforced for time-dependant inputs.

An equally useful but conceptually different type of user-defined strategies is elaborated by
means of behavioural environment specifications: Testing experts provide specifications
of the admissible behaviour of the operational environment E. Now test data is no longer
generated directly from the SUT specification S but from E, and the specification S is
only used for checking the SUT outputs observed against the the expected behaviour S.

Generating the concrete (potentially timed) sequence of input data needed for the imple-
mentation of a test case it is necessary to interpret the guard conditions and input events
which determine whether a specific transition is feasible. Moreover, inputs trigger actions
in the system under test which may lead to the change of internal object states and further
state transitions. To cope with these problems a constraint generator collects the conditions
which have to be fulfilled in order to drive the system under test along the path through the
specification model as proposed by the strategy. A constraint solver tries to construct the
concrete test data – that is, the sequence of input data associated with the points in time
specifying when to pass each input to the system under test – leading to the desired execu-
tion path. If the path is infeasible, learning mechanisms help to avoid future investigations
of paths containing infeasible fragments.

Practical Application. A major portion of the results presented here has been imple-
mented in the RT-Tester tool developed by Verified Systems International GmbH in co-
operation with the first author’s research group at the University of Bremen. The tool is



currently applied in the field of avionic systems and railway control systems of the highest
criticality levels. While RT-Tester supports all testing stages – from module testing via
software and HW/SW integration testing to system integration testing (see, for example,
[Pel02]) – the techniques described here are typically applied on software and HW/SW
integration level. It should be emphasised that while this presentation refers to a specific
tool, our objective is to point out the general conceptual and algorithmic features which –
according to our experience – should be present in every test automation tool suitable for
model-based testing of a wide range of embedded applications.

Related Work. In [PZ07] the close relationship between module testing and static anal-
ysis is elaborated, and we advocate that tools for the automation of module tests should
also support automated static analysis and vice versa. In the model-based testing approach
described in the present contribution, module testing and static analysis are used for the
verification of the methods occurring as guard conditions, for the capture of events and for
the implementation of actions: In the practical application of model-driven development
with UML 2.0 these methods are typically directly coded using C/C++ or other program-
ming languages, while more abstract method specification styles such as OCL are currently
more of an academic interest. We recommend to check these programmed method imple-
mentations on module level before performing the model-driven software integration and
HW/SW integration tests described here.

In contrast to other approaches to automated static analysis (see, e. g. [Cou05]) and test-
ing we do not restrict the C/C++-code which is allowed to specify methods; in particular,
the utilisation of arrays, pointers and pointer arithmetic is supported. In order to make
this feasible the gcc compiler has been expanded for the extraction of detailed type in-
formation [Löd07]. Moreover, our abstract C/C++ interpreter follows some basic ideas
of [VB04] but uses a more detailed memory model whose technical details are currently
prepared for publication [PL08].

For the generation of concrete sequences of test input data it is necessary to solve poten-
tially non-linear constraint systems involving transcendent mathematical functions. The
constraint solver implemented in the RT-Tester system closely follows the ideas described
in [FHT+07] but uses additional data structures and learning techniques in order to opti-
mise test case generation according to the selected strategies. In particular, we use tree
structures for the encoding possible paths leading to specific locations or edges in the
specification model; the basic concepts underlying these structures have been described
in [BFPT06].
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