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Model-based Testing
Instead of writing test procedures, 

• develop a test model specifying 
expected behaviour of SUT (system 
under test) 

• use generator to identify “relevant” test 
cases from the model and calculate 
concrete test data 

• generate test procedures fully automatic 
• perform tracing requirements ↔ test 

cases in a fully automatic way
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Standards for Safety-critical 
Transportation Systems

• Railway domain: CENELEC EN 50128:2011  
Railway applications - Communication, signalling 
and processing systems - Software for railway 
control and protection systems 

• Avionic domain: RTCA DO-178C                          
Software considerations in airborne systems and 
equipment certification 

• Automotive domain: ISO 26262                                  
Road vehicles – Functional safety 
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What Standards Require 
About Model-based Testing

• All standards acknowledge the model-driven 
development and V&V approach 

• Only ISO26262 explicitly uses the term model-
based testing 

• RTCA DO-178B and its supplements addresses the 
model-driven approach in the most comprehensive 
way



Automotive Domain

• ISO 26262 – Part 6: Product development: software 
level – Appendix B: Model-based development 

“[In model-based development,] Testing activities 
are also treated differently since models can be 
used as a useful source of information for the 
testing process (model-based testing).”



Avionic Domain
• The RTCA DO-178C standard is complemented by 

several supplements; relevant for this presentation 
are 

• RTCA DO-331. Model-Based Development and 
Verification Supplement to DO-178C and 
DO-278A 

• RTCA DO-333. Formal Methods Supplement to 
DO-178C and DO-278A



From RTCA DO-331

SRATS. System requirements allocated to SW 
HLR. High-level requirements 
LLR. Low-level requirements



References of RTCA DO-331 
to Model-based Testing

• The term “model-base testing” is never used, but (model-
based) simulation is addressed [DO-331;MB.6.8] 

For Design Models, simulation may be used in combination with 
testing and appropriate coverage analysis to satisfy objectives 
related to the verification of the Executable Object Code. As 
simulation may involve different object code and a different 
environment than the target application, simulation alone cannot 
be used to satisfy objectives related to verification of the 
Executable Object Code. … However, if simulation cases are run 
in the target computer environment using the Executable Object 
Code, then they are also considered test cases and DO-178C 
section 6.4 applies. 



References of RTCA DO-331 
to Model-based Testing

• (Design) models have to be verified with respect to 
the original (informal) requirements 

• Model coverage analysis is performed to verify the 
completeness of the design model 

• Model coverage analysis can also be used (as 
soon as the model has been verified) to check the 
completeness of testing activities



Model Coverage Criteria
• … according to RTCA DO-331 

• Requirements coverage 

• Transition coverage (of state machines) 

• Decision coverage (of guard conditions and 
decision tables etc.) 

• Coverage of all equivalence classes, boundary 
conditions and enumerable value ranges



Complete Test Strategies
• Recall: complete = sound + exhaustive

• sound = every correct SUT (system under test) 
behaviour is accepted by each test suite generated 
according to the strategy 

• exhaustive = every erroneous SUT behaviour will be 
uncovered by at least one test case 

• RTCA DO-331 acknowledges the existence of 
complete strategies (MB.12.3.1 Exhaustive Input 
Testing)



What is not Addressed by 
the Standards

• How are requirements reflected (traceable) in the models? 

• Adequacy of test cases (suitability of strategies, coverage 
criteria) with respect to 

• Selection of equivalence classes

• Timing constraints 

• Concurrent behaviours

• How can security aspects be modelled and verified?
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Complete Test Strategies
• For black-box testing, completeness is specified with 

respect to a fault model

• Reference model 

• Conformance relation 

• Fault domain

F = (S,⇠,D(S,m, I2))



Complete Test Strategies
• For black-box testing:  

• complete = sound + exhaustive

• sound = every correct SUT behaviour is accepted 
by each test suite generated according to the 
strategy 

• exhaustive = every erroneous SUT behaviour will be 
uncovered by at least one test case, as long as the 
true SUT behaviour is reflected by a member of 
the fault domain 



Complete Test Strategies
• Why are black-box tests important for safety-critical 

systems ? 

• HW/SW integration testing and system integration 
testing must be performed on the unaltered target 
system 

• Typically, the target system does not provide sufficient 
monitoring means for white/grey-box testing 

• This is because standards do not allow for code to be 
present in the target, if it does not contribute to the 
specified functionality



Example
• Complete test strategy:  

• Novel equivalence class partition testing strategy 

• Applicable to  

• Nondeterministic models with Kripke Structure semantics 

• Infinite (or very large) input domains 

• Finite internal states 

• Finite control outputs 



Example
• Typical applications:  

• Analogue input sensors and discrete control 
decisions 

• Airbag controller 

• Speed controllers (e.g. in train protection 
systems) 

• Route controller in interlocking systems 



Example
• Typical applications:  

• Analogue input sensors and discrete control 
decisions 

• Airbag controller 

• Speed controllers (e.g. in train protection 
systems) 

• Route controller in interlocking systems 

Application example to 
be discussed below



Construction Principle for 
Equivalence Class Testing Strategies
• Associate test model with Kripke Structure K expressing 

behavioural semantics 

• States are valuation functions over input variables, internal 
model variables, and output variables 

• Specify conformance relation between reference model behaviour 
K and SUT behaviour K’ 

• I/O-equivalence. Every input sequence produces the same 
output sequence in K and K’ (suitable for deterministic 
applications) 

• Reduction. SUT behaviour K’ is a subset of reference model 
behaviours K (suitable for nondeterministic K)



Construction Principle for 
Equivalence Class Testing Strategies
• Factorise K-state space into I/O-equivalence 

classes 

• Classes are enumerated over internal state and 
output combinations 

• States of the same class produce the same 
responses to all input sequences

A = {A1, . . . , An}
8i, s, s0 2 Ai : s(~m, ~y) = s0(~m, ~y) ^ L(s) = L(s0)



Construction Principle for 
Equivalence Class Testing Strategies
• Factorise  K-input space into input equivalence 

class partitions 

• All input vectors of the same input class, when 
applied to members of the same I/O-equivalence 
class,  

• produce the same outputs 

• have the same target I/O-equivalence classes



Construction Principle for 
Equivalence Class Testing Strategies

• Together, I/O-equivalence classes and input 
equivalence classes induce an FSM abstraction of 
the Kripke Structure

h : A⇥ I ! A⇥DO

deterministic case

h : A⇥ I ! P(A⇥DO)

nondeterministic case



Construction Principle for 
Equivalence Class Testing Strategies
• For (deterministic or nondeterministic) FSM, 

complete strategies exist 

• When generating a test suite for an FSM 
abstraction, choose any representative 

~c 2 X 2 I

when abstract input X is required 



Complete Test Strategy
• Fault model for black-box testing

• Reference model 

• Conformance relation 

• Fault domain

F = (S,⇠,D(S,m, I2))



Complete Test Strategy

F = (S,⇠,D(S,m, I2))

CSM model as Kripke Structure – 


semantic representation of SysML model



Complete Test Strategy

F = (S,⇠,D(S,m, I2))

I/O-equivalence as 


conformance relation



Complete Test Strategy

F = (S,⇠,D(S,m, I2))

Maximal number of


I/O-equivalence classes for


each member of the fault domain
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Complete Test Strategy

F = (S,⇠,D(S,m, I2))

A refined IECP – satisfying

8X 2 I, X 0 2 I 0 :�
X \X 0 6= ? )

9X2 2 I2 : X2 ✓ X \X 0�

Refined IECP



F = (S,⇠,D(S,m, I2))

8X 2 I, X 0 2 I 0 :�
X \X 0 6= ? )

9X2 2 I2 : X2 ✓ X \X 0�

If X triggers behaviour in reference model state s,


and X’ triggers non-conforming behaviour of 


model representing SUT behaviour, then there exists


X2 in intersection of X, X’, and a member of X2 will 


be used in the test



t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1a mb10 mb13 t11:p; 
t13:m

mb11; 
mb12; 
mb20

t10; 
t11; 
t12

1b;2a;2b;
3;4;5a;5b;6b;

7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;
3;5b;6a

Example. Railway network and interlocking tables
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Marker Board = Virtual signal 

Direction = DOWN
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Railway network and interlocking tables

Point positions  
p = PLUS (straight)  

m = MINUS
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Route Controller 
Requirements

• All routes can be allocated 

• Conflicting routes are never allocated at the same time, as long 
as conflicting elements are still in use (sequential release 
method) 

• An element along a route is sequentially released, if  

• all previous elements have been sequentially released 

• the train has left the element under consideration 

• Routes are marked as free, as soon as all elements have been 
sequentially released



t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1 mb10 mb13 t11:p; 
t13:m

mb11; 
mb12; 
mb20

t10;
t11;
t12

2;3;4;5;6;7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1;2;3;5;6

Sequential release method

1a

7

Sequentially 
released

Route 7 can be allocated

Route 1 is allocated

No conflicts anymore 
with Route 1



Example – Nondeterministic 
Reference Models

• Even in a safety-critical context, nondeterministic 
models may be used … 

• … mostly to reduce model checking 
complexity by means of over-approximation 

• As a consequence, it is useful to have complete 
model-based testing strategies at hand that can 
cope with nondeterministic models … 

• … though the SUT will usually be deterministic



t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Railway network and interlocking tables

Route1

Route2

If no conflicting routes are allocated, route controller  
model specifies nondeterministic decision whether to 
allocate Route 1 or Route 2

Id Source Dest Conflicts
1 mb10 mb14 3,4,5,7
2 mb10 mb21 3,6,7,8
3 mb12 mb11 . . .
4 mb13 mb14 . . .

Id Source Dest Conflicts
5 mb15 mb12 . . .
6 mb15 mb20 . . .
7 mb20 mb11 . . .
8 mb21 mb14 . . .



Route Controller – Routes 1,2

Static Internal State: 
interlocking tables

Dynamic Internal State: 
route/element modes

Input 
variables

Output 
variables

p 2 Point : p.POS

e 2 Section : e.vacancy status

s 2 Signal : s.CMD

p 2 Point : p.CMD

r3, r3, . . . , r8 : RouteStatus



Examples for I/O-
Equivalence classes

• A1: No train at b10 and Routes 1,2 free and Routes 
3,5,6,7 free and t12,t13,t20 empty 

• A2: Train in direction UP at b10 and Route 1 
allocated and Routes 2,3,5,6,7 free and t12,t13,t20 
empty 

• A3: Train in direction UP at b10 and Route 2 
allocated and   Routes 1,3,5,6,7 free and 
t12,t13,t20 empty



Examples for Input Equivalence 
Classes and FSM Transitions

• X1: Train at b10 in direction up and Routes 3,5,6,7 
free and t12,t13,t20 empty

A1 A2

A2

X1

X1
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Relevance of Complete 
Strategies

• Relevance from the certification viewpoint 

• Justified strategy:  

• e.g. selection of equivalence classes 

• new test cases are guaranteed to increase the test 
strength 

• General relevance 

• Superior test strength – also for SUT behaviours outside 
the fault domain 



Experimental results submitted to TAP 2015



Complete IECP strategy — 
full requirements coverage — 

boundary tests included —
random selection from each input 

partition

Experimental results submitted to TAP 2015
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Discussion
• Conclusion 

• We have motivated that complete test suites are 
of practical value, because they exhibit 
considerable test strength also outside the 
specified fault domain 

• We advocate the inclusion of complete test suites 
into the catalogues of recommended methods in 
standards for safety-critical standards



Discussion
• Open questions 

• Is the strength of „conceptually complete“ test 
suites still superior to other approaches, if only a 
part of the test suite is executed? 

• Is the strength of complete test suites still 
superior to other approaches, if the true SUT 
performs security attacks whose behaviour is 
outside the fault domain ?
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