
Model-based Testing for
Safety-Critical Systems

Jan Peleska
University of Bremen

jp@informatik.uni-bremen.de
FoMSESS 2015

With contributions by
Anne E. Haxthausen, Wen-ling Huang, Felix Hübner and Linh Hong Vu

mailto:jp@informatik.uni-bremen.de

Overview
• Model-based testing

• Standards for safety-critical transportation systems

• What standards require about model-based testing

• Complete test strategies …

• … and their relevance for model-based testing of
safety-critical systems

• Discussion

Overview
• Model-based testing

• Standards for safety-critical transportation systems

• What standards require about model-based testing

• Complete test strategies …

• … and their relevance for model-based testing of
safety-critical systems

• Discussion

Model-based Testing
Instead of writing test procedures,

• develop a test model specifying
expected behaviour of SUT (system
under test)

• use generator to identify “relevant” test
cases from the model and calculate
concrete test data

• generate test procedures fully automatic
• perform tracing requirements ↔ test

cases in a fully automatic way

Overview
• Model-based testing

• Standards for safety-critical transportation systems

• What standards require about model-based testing

• Complete test strategies …

• … and their relevance for model-based testing of
safety-critical systems

• Discussion

Standards for Safety-critical
Transportation Systems

• Railway domain: CENELEC EN 50128:2011
Railway applications - Communication, signalling
and processing systems - Software for railway
control and protection systems

• Avionic domain: RTCA DO-178C
Software considerations in airborne systems and
equipment certification

• Automotive domain: ISO 26262
Road vehicles – Functional safety

Overview
• Model-based testing

• Standards for safety-critical transportation systems

• What standards require about model-based testing

• Complete test strategies …

• … and their relevance for model-based testing of
safety-critical systems

• Discussion

What Standards Require
About Model-based Testing

• All standards acknowledge the model-driven
development and V&V approach

• Only ISO26262 explicitly uses the term model-
based testing

• RTCA DO-178B and its supplements addresses the
model-driven approach in the most comprehensive
way

Automotive Domain

• ISO 26262 – Part 6: Product development: software
level – Appendix B: Model-based development

“[In model-based development,] Testing activities
are also treated differently since models can be
used as a useful source of information for the
testing process (model-based testing).”

Avionic Domain
• The RTCA DO-178C standard is complemented by

several supplements; relevant for this presentation
are

• RTCA DO-331. Model-Based Development and
Verification Supplement to DO-178C and
DO-278A

• RTCA DO-333. Formal Methods Supplement to
DO-178C and DO-278A

From RTCA DO-331

SRATS. System requirements allocated to SW
HLR. High-level requirements
LLR. Low-level requirements

References of RTCA DO-331
to Model-based Testing

• The term “model-base testing” is never used, but (model-
based) simulation is addressed [DO-331;MB.6.8]

For Design Models, simulation may be used in combination with
testing and appropriate coverage analysis to satisfy objectives
related to the verification of the Executable Object Code. As
simulation may involve different object code and a different
environment than the target application, simulation alone cannot
be used to satisfy objectives related to verification of the
Executable Object Code. … However, if simulation cases are run
in the target computer environment using the Executable Object
Code, then they are also considered test cases and DO-178C
section 6.4 applies.

References of RTCA DO-331
to Model-based Testing

• (Design) models have to be verified with respect to
the original (informal) requirements

• Model coverage analysis is performed to verify the
completeness of the design model

• Model coverage analysis can also be used (as
soon as the model has been verified) to check the
completeness of testing activities

Model Coverage Criteria
• … according to RTCA DO-331

• Requirements coverage

• Transition coverage (of state machines)

• Decision coverage (of guard conditions and
decision tables etc.)

• Coverage of all equivalence classes, boundary
conditions and enumerable value ranges

Complete Test Strategies
• Recall: complete = sound + exhaustive

• sound = every correct SUT (system under test)
behaviour is accepted by each test suite generated
according to the strategy

• exhaustive = every erroneous SUT behaviour will be
uncovered by at least one test case

• RTCA DO-331 acknowledges the existence of
complete strategies (MB.12.3.1 Exhaustive Input
Testing)

What is not Addressed by
the Standards

• How are requirements reflected (traceable) in the models?

• Adequacy of test cases (suitability of strategies, coverage
criteria) with respect to

• Selection of equivalence classes

• Timing constraints

• Concurrent behaviours

• How can security aspects be modelled and verified?

Overview
• Model-based testing

• Standards for safety-critical transportation systems

• What standards require about model-based testing

• Complete test strategies …

• … and their relevance for model-based testing of
safety-critical systems

• Discussion

Complete Test Strategies
• For black-box testing, completeness is specified with

respect to a fault model

• Reference model

• Conformance relation

• Fault domain

F = (S,⇠,D(S,m, I2))

Complete Test Strategies
• For black-box testing:

• complete = sound + exhaustive

• sound = every correct SUT behaviour is accepted
by each test suite generated according to the
strategy

• exhaustive = every erroneous SUT behaviour will be
uncovered by at least one test case, as long as the
true SUT behaviour is reflected by a member of
the fault domain

Complete Test Strategies
• Why are black-box tests important for safety-critical

systems ?

• HW/SW integration testing and system integration
testing must be performed on the unaltered target
system

• Typically, the target system does not provide sufficient
monitoring means for white/grey-box testing

• This is because standards do not allow for code to be
present in the target, if it does not contribute to the
specified functionality

Example
• Complete test strategy:

• Novel equivalence class partition testing strategy

• Applicable to

• Nondeterministic models with Kripke Structure semantics

• Infinite (or very large) input domains

• Finite internal states

• Finite control outputs

Example
• Typical applications:

• Analogue input sensors and discrete control
decisions

• Airbag controller

• Speed controllers (e.g. in train protection
systems)

• Route controller in interlocking systems

Example
• Typical applications:

• Analogue input sensors and discrete control
decisions

• Airbag controller

• Speed controllers (e.g. in train protection
systems)

• Route controller in interlocking systems

Application example to
be discussed below

Construction Principle for
Equivalence Class Testing Strategies
• Associate test model with Kripke Structure K expressing

behavioural semantics

• States are valuation functions over input variables, internal
model variables, and output variables

• Specify conformance relation between reference model behaviour
K and SUT behaviour K’

• I/O-equivalence. Every input sequence produces the same
output sequence in K and K’ (suitable for deterministic
applications)

• Reduction. SUT behaviour K’ is a subset of reference model
behaviours K (suitable for nondeterministic K)

Construction Principle for
Equivalence Class Testing Strategies
• Factorise K-state space into I/O-equivalence

classes

• Classes are enumerated over internal state and
output combinations

• States of the same class produce the same
responses to all input sequences

A = {A1, . . . , An}
8i, s, s0 2 Ai : s(~m, ~y) = s0(~m, ~y) ^ L(s) = L(s0)

Construction Principle for
Equivalence Class Testing Strategies
• Factorise K-input space into input equivalence

class partitions

• All input vectors of the same input class, when
applied to members of the same I/O-equivalence
class,

• produce the same outputs

• have the same target I/O-equivalence classes

Construction Principle for
Equivalence Class Testing Strategies

• Together, I/O-equivalence classes and input
equivalence classes induce an FSM abstraction of
the Kripke Structure

h : A⇥ I ! A⇥DO

deterministic case

h : A⇥ I ! P(A⇥DO)

nondeterministic case

Construction Principle for
Equivalence Class Testing Strategies
• For (deterministic or nondeterministic) FSM,

complete strategies exist

• When generating a test suite for an FSM
abstraction, choose any representative

~c 2 X 2 I

when abstract input X is required

Complete Test Strategy
• Fault model for black-box testing

• Reference model

• Conformance relation

• Fault domain

F = (S,⇠,D(S,m, I2))

Complete Test Strategy

F = (S,⇠,D(S,m, I2))

CSM model as Kripke Structure –

semantic representation of SysML model

Complete Test Strategy

F = (S,⇠,D(S,m, I2))

I/O-equivalence as

conformance relation

Complete Test Strategy

F = (S,⇠,D(S,m, I2))

Maximal number of

I/O-equivalence classes for

each member of the fault domain

Complete Test Strategy

F = (S,⇠,D(S,m, I2))

A refined IECP – satisfying

8X 2 I, X 0 2 I 0 :�
X \X 0 6= ?)

9X2 2 I2 : X2 ✓ X \X 0�

Complete Test Strategy

F = (S,⇠,D(S,m, I2))

A refined IECP – satisfying

8X 2 I, X 0 2 I 0 :�
X \X 0 6= ?)

9X2 2 I2 : X2 ✓ X \X 0�

IECP of reference model

Complete Test Strategy

F = (S,⇠,D(S,m, I2))

A refined IECP – satisfying

8X 2 I, X 0 2 I 0 :�
X \X 0 6= ?)

9X2 2 I2 : X2 ✓ X \X 0�

IECP of fault domain member

Complete Test Strategy

F = (S,⇠,D(S,m, I2))

A refined IECP – satisfying

8X 2 I, X 0 2 I 0 :�
X \X 0 6= ?)

9X2 2 I2 : X2 ✓ X \X 0�

Refined IECP

F = (S,⇠,D(S,m, I2))

8X 2 I, X 0 2 I 0 :�
X \X 0 6= ?)

9X2 2 I2 : X2 ✓ X \X 0�

If X triggers behaviour in reference model state s,

and X’ triggers non-conforming behaviour of

model representing SUT behaviour, then there exists

X2 in intersection of X, X’, and a member of X2 will

be used in the test

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1a mb10 mb13 t11:p;
t13:m

mb11;
mb12;
mb20

t10;
t11;
t12

1b;2a;2b;
3;4;5a;5b;6b;

7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;
3;5b;6a

Example. Railway network and interlocking tables

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1a mb10 mb13 t11:p;
t13:m

mb11;
mb12;
mb20

t10;
t11;
t12

1b;2a;2b;
3;4;5a;5b;6b;

7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;
3;5b;6a

Railway network and interlocking tables
Marker Board = Virtual signal

Direction = DOWN

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1a mb10 mb13 t11:p;
t13:m

mb11;
mb12;
mb20

t10;
t11;
t12

1b;2a;2b;
3;4;5a;5b;6b;

7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;
3;5b;6a

Railway network and interlocking tables

Point positions
p = PLUS (straight)

m = MINUS

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1a mb10 mb13 t11:p;
t13:m

mb11;
mb12;
mb20

t10;
t11;
t12

1b;2a;2b;
3;4;5a;5b;6b;

7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;
3;5b;6a

Railway network and interlocking tables

1a

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1a mb10 mb13 t11:p;
t13:m

mb11;
mb12;
mb20

t10;
t11;
t12

1b;2a;2b;
3;4;5a;5b;6b;

7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;
3;5b;6a

Railway network and interlocking tables

1a

7

Route Controller
Requirements

• All routes can be allocated

• Conflicting routes are never allocated at the same time, as long
as conflicting elements are still in use (sequential release
method)

• An element along a route is sequentially released, if

• all previous elements have been sequentially released

• the train has left the element under consideration

• Routes are marked as free, as soon as all elements have been
sequentially released

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

id Src Dest Points Signals Path Conflicts

1 mb10 mb13 t11:p;
t13:m

mb11;
mb12;
mb20

t10;
t11;
t12

2;3;4;5;6;7

… … … … … … …

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1;2;3;5;6

Sequential release method

1a

7

Sequentially
released

Route 7 can be allocated

Route 1 is allocated

No conflicts anymore
with Route 1

Example – Nondeterministic
Reference Models

• Even in a safety-critical context, nondeterministic
models may be used …

• … mostly to reduce model checking
complexity by means of over-approximation

• As a consequence, it is useful to have complete
model-based testing strategies at hand that can
cope with nondeterministic models …

• … though the SUT will usually be deterministic

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Railway network and interlocking tables

Route1

Route2

If no conflicting routes are allocated, route controller
model specifies nondeterministic decision whether to
allocate Route 1 or Route 2

Id Source Dest Conflicts
1 mb10 mb14 3,4,5,7
2 mb10 mb21 3,6,7,8
3 mb12 mb11 . . .
4 mb13 mb14 . . .

Id Source Dest Conflicts
5 mb15 mb12 . . .
6 mb15 mb20 . . .
7 mb20 mb11 . . .
8 mb21 mb14 . . .

Route Controller – Routes 1,2

Static Internal State:
interlocking tables

Dynamic Internal State:
route/element modes

Input
variables

Output
variables

p 2 Point : p.POS

e 2 Section : e.vacancy status

s 2 Signal : s.CMD

p 2 Point : p.CMD

r3, r3, . . . , r8 : RouteStatus

Examples for I/O-
Equivalence classes

• A1: No train at b10 and Routes 1,2 free and Routes
3,5,6,7 free and t12,t13,t20 empty

• A2: Train in direction UP at b10 and Route 1
allocated and Routes 2,3,5,6,7 free and t12,t13,t20
empty

• A3: Train in direction UP at b10 and Route 2
allocated and Routes 1,3,5,6,7 free and
t12,t13,t20 empty

Examples for Input Equivalence
Classes and FSM Transitions

• X1: Train at b10 in direction up and Routes 3,5,6,7
free and t12,t13,t20 empty

A1 A2

A2

X1

X1

Overview
• Model-based testing

• Standards for safety-critical transportation systems

• What standards require about model-based testing

• Complete test strategies …

• … and their relevance for model-based testing of
safety-critical systems

• Discussion

Relevance of Complete
Strategies

• Relevance from the certification viewpoint

• Justified strategy:

• e.g. selection of equivalence classes

• new test cases are guaranteed to increase the test
strength

• General relevance

• Superior test strength – also for SUT behaviours outside
the fault domain

Experimental results submitted to TAP 2015

Complete IECP strategy —
full requirements coverage —

boundary tests included —
random selection from each input

partition

Experimental results submitted to TAP 2015

Experimental results submitted to TAP 2015

Complete IECP strategy —
full requirements coverage —

random selection from each input
partition

Experimental results submitted to TAP 2015

Overview
• Model-based testing

• Standards for safety-critical transportation systems

• What standards require about model-based testing

• Complete test strategies …

• … and their relevance for model-based testing of
safety-critical systems

• Discussion

Discussion
• Conclusion

• We have motivated that complete test suites are
of practical value, because they exhibit
considerable test strength also outside the
specified fault domain

• We advocate the inclusion of complete test suites
into the catalogues of recommended methods in
standards for safety-critical standards

Discussion
• Open questions

• Is the strength of „conceptually complete“ test
suites still superior to other approaches, if only a
part of the test suite is executed?

• Is the strength of complete test suites still
superior to other approaches, if the true SUT
performs security attacks whose behaviour is
outside the fault domain ?

Further Reading
Jan Peleska and Wen-ling Huang: Complete model-based equivalence class testing. Int J Softw Tools Technol
Transfer. Published online: 21 November 2014. DOI 10.1007/s10009-014-0356-8.

Linh Hong Vu, Anne Elisabeth Haxthausen, and Jan Peleska: A Domain-Specific Language for Railway Interlocking
Systems. In: Eckehard Schnieder and Géza Tarnai (eds.): FORMS/FORMAT 2014 - Formal Methods for Automation
and Safety in Railway and Automotive Systems [10th Symposium on Formal Methods for Automation and Safety in
Railway and Automotive Systems, Braunschweig, Germany, Sep. 30 - Oct. 2, 2014.] Institute for Traffic Safety and
Automation Engineering, Technische Universität Braunschweig, ISBN 978-3-9816886-6-5, pp. 200-209, 2014. (Best
paper award)

Cécile Braunstein, Anne E. Haxthausen, Wen-ling Huang, Felix Hübner, Jan Peleska, Uwe Schulze, and Linh Vu
Hong: Complete Model-Based Equivalence Class Testing for the ETCS Ceiling Speed Monitor. In S. Merz and J. Pang
(eds.): Proceedings of the ICFEM 2014. Springer, LNCS 8829, pp. 380-395, 2014. DOI 10.1007/978-3-319-11737-9_25

Jörg Brauer, Jan Peleska and Uwe Schulze: Efficient and Trustworthy Tool Qualification for Model-based Testing
Tools. In Brian Nielsen and Carsten Weise (eds.): Testing Software and Systems. Proceedings of the 24th IFIP WG 6.1
International Conference, ICTSS 2012, Aalborg Denmark, November 2012, Springer LNCS 7641, pp. 8-23 (2012).

Jan Peleska: Industrial-Strength Model-Based Testing - State of the Art and Current Challenges. In Petrenko,
Alexander K. and Schlingloff, Holger (eds.): Proceedings Eighth Workshop on Model-Based Testing, Rome, Italy, 17th
March 2013, Electronic Proceedings in Theoretical Computer Science 111, pp. 3-28 (2013). DOI:10.4204/EPTCS.111.1

http://link.springer.com/article/10.1007/s10009-014-0356-8
http://link.springer.com/chapter/10.1007%2F978-3-319-11737-9_25
http://dx.doi.org/10.1007/978-3-319-11737-9_25
http://link.springer.com/chapter/10.1007/978-3-642-34691-0_3
http://www.springer.com/computer/swe/book/978-3-642-34690-3
http://arxiv.org/abs/1303.1006v1
http://arxiv.org/abs/1303.0379

Further Reading
Rob M. Hierons.Testing from a nondeterministic finite state machine using adaptive state counting. IEEE Transactions
on Computers, 53(10):1330–1342 (2004).

A. Petrenko, N. Yevtushenko, and G. V. Bochmann. Testing deterministic imple- mentations from nondeterministic
FSM specifications. In In Testing of Communicating Systems, IFIP TC6 9th International Workshop on Testing of
Communicating Systems, pages 125–141. Chapman and Hall.

Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)

Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108 (1973)

Many
thanks for listening!

