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Abstract. Recent progress in bounded model checking and inductive
reasoning has shown that the fully automated verification of route-based
interlocking system designs of realistic ”real-world” complexity is possi-
ble and ready for industrial application. In this paper, we present a new
model-based testing strategy for interlocking system controllers that ex-
ploits the fact that the design has already been verified, so that it can
be used as a reference model for test case and test oracle generation.
Our special interest lies in the field of complete testing strategies that
are able to uncover every implementation error, provided that the imple-
mentation behaviour is captured in a pre-specified fault domain. Despite
their guaranteed test strength, these strategies have two well-known dis-
advantages: (1) applied in a naive way, they often result in an infeasible
amount of test cases, and (2) the hypothesis that the real implementa-
tion behaviour is captured by a member of the fault domain can rarely
be justified in a convincing way. We describe a new combination of com-
positional reasoning and input equivalence class generation techniques
that removes problem (1). For coping with disadvantage (2), we sug-
gest a combination of equivalence class and random testing that - while
not being able to guarantee complete fault coverage for implementations
outside the fault domain - results in a test strength that is significantly
higher than heuristic test approaches for interlocking system controllers.
Estimates are presented that show how application of this novel strategy
reduces the effort for HW/SW integration testing, while simultaneously
increasing the fault coverage in comparison to more conventional testing
approaches.

? This technical report is an extended version of the invited talk to be pre-
sented by the first author at the International Conference on Reliability,
Safety and Security of Railway Systems, RSSR 2016, Paris, June 28-30, 2016
(http://conferences.ncl.ac.uk/rssrail/), to appear in Thierry Lecomte, Ralf
Pinger, Alexander Romanovsky (eds.). Reliability, Safety and Security of Railway
Systems: Modelling, Analysis, Verification and Certification. International Confer-
ence, Paris, France, June 28-30, 2016, Proceedings, Springer Lecture Notes in Com-
puter Science.
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1 Introduction

1.1 Objectives

In this paper we suggest a new approach to safety-related HW/SW integration
testing of controllers for route-based interlocking systems. This approach is based
on the fact that recent advances in design verification have shown that it is pos-
sible to completely verify the safety of complex railway networks in combination
with their interlocking tables and control algorithms on design level. Moreover,
given a network description and a specification of the interlocking tables, the
behavioural model of the associated safe route controller can be automatically
generated. The design verification technique is based on bounded model check-
ing in combination with inductive reasoning and can be fully automated [23, 25,
22, 24].

As a consequence, we can count on the availability of reference models for
safe route controller behaviours which are a priori known to be complete and
correct. This suggests a likewise automated model-based testing approach for
the route controller implementation. For such a test suite it is not necessary to
elaborate a set of test cases from the safety requirements induced by the design
and justify their completeness: instead, we can design a test suite that just shows
the behavioural equivalence1 of the system under test (SUT) and the reference
model. Since the model is known to be safe, the safety of the SUT follows.

When selecting an automated test case generation approach for this purpose
(see [20, 17, 14, 1] for an overview of model-based testing methods available to-
day), methods allowing full automation are of course the most attractive. At the
same time, we would like these methods to come with guaranteed error detection
capabilities, because this would reduce the effort to obtain certification credit for
the test suite in a considerable way: the applicable standard [18] does certainly
not require test suites to uncover every error. It demands, however, that the test
strength of test suites is assessed experimentally2 and that test case reduction
techniques like equivalence partitioning approaches are justified with respect to
trustworthiness of the reductions applied.

1.2 Complete Testing Strategies.

This additional objective suggests to investigate the usability of complete testing
strategies whose test suites are sound (SUT behaviours conforming to the refer-
ence model are never rejected) and exhaustive (non-conforming SUT behaviours
are always detected by at least one test case of the suite) [19]. Completeness is
usually asserted with respect to a fault model F = (S,≤,D) [16], expressing the

1 Since route controllers are deterministic and the SUT accepts all inputs in every
state, it is not necessary to investigate other conformance relations, where the SUT
only performs a subset of the behaviours allowed according to the reference model.

2 This is typically achieved by applying the suite against mutants of the implementa-
tion and checking how many of them are “killed”, i.e. how many injected errors are
uncovered.
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hypotheses under which completeness is asserted. Here S denotes the reference
model and ≤ the conformance relation – we only consider I/O-equivalence, that
is, behavioural equivalence on the visible input/output interface and denote this
by ∼. Set D denotes the fault domain which is a collection of models conforming
or non-conforming to S. Typically, black-box testing strategies can guarantee
completeness only under the hypothesis that the true behaviour of the SUT is
represented by a member of the fault domain.

Though complete testing strategies were always of high interest from a the-
oretical point of view, they were often not considered in practical testing cam-
paigns, because (1) they resulted in an intractable number of test cases, and
(2) the hypothesis that the true SUT behaviour is reflected by a member of the
fault domain is hard to justify in many cases. Recent results on complete input
equivalence class testing methods, however, have shown that problem (1) can be
overcome for certain classes of models by abstracting the – usually unmanageable
– number of concrete input vectors to the SUT to input equivalence classes [7].
To deal with problem (2), it has been shown that a randomisation of this input
equivalence class testing strategy, while preserving its completeness, results in
surprisingly high test strength when applied to the test of implementations out-
side the fault domain: instead of using a fixed collection of representatives from
input equivalence classes, one selects a random representative from the class
whenever it is needed [9].

1.3 Main Contribution.

The main contribution of this paper consists in the presentation of evidence
showing that this approach is effective for testing controllers of route-based in-
terlocking systems, when the integration test strategy is combined with composi-
tional reasoning. It should be emphasised however, that we do not claim that this
approach will always lead to the detection of every error in the SUT: interlock-
ing systems can have a highly complex architecture involving many cooperating
components; achieving 100% fault coverage just for the route controller would
not allow us to conclude that the complete interlocking system is free of any
errors. Instead, our objective is to show that

1. application of this strategy exhibits significant test strength which is prob-
ably better than what can be achieved with heuristic test case design,

2. the test case generation process, including the calculation of concrete test
data, can be fully automated, so that this test strength may even be reached
with less effort in comparison with manual test suite development methods,

3. the number of test cases to be performed is adequate for safety critical in-
terlocking system components and can be executed within reasonable time.

1.4 Overview

In Section 2 some essential facts about route-based interlocking systems are
described. In Section 3, the case studies performed are described, and a con-
crete behavioural model for a route controller is presented. Using the examples
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from the case study for illustration purposes, the underlying testing method is
described in Section 4. The experiments and their evaluation showing the effec-
tiveness of the advocated approach, as well as a discussion of threats to validity
are presented in Section 5. Section 6 contains the conclusions. References to
related work are given throughout the text at the appropriate places. For a com-
prehensive list of references related to the underlying testing strategy see [7,
Section 5].

2 Route-based Interlocking Systems

The material presented in this section is based on [23, 25, 24, 22]. We consider
modern route-based interlocking systems with sequential release, as they are
currently introduced, for example, for the new Danish high-speed train network
designed according to the European Train Control System (ETCS) specifica-
tion [5], Level 2.

2.1 Railway Networks, Routes, and Interlocking Systems

To illustrate the terms and concepts introduced in the subsequent paragraphs,
consider the small railway network in Fig. 1. It consists of linear sections (such as
b10, t10, t12, . . . ) and points (t11, t13). These are collectively called detection
sections, because the presence or absence of trains in these sections can be de-
termined. Marker boards (mb10, mb11, . . . ), represent virtualised signals.3 Each
network portion controlled by some interlocking system has two dedicated direc-
tions UP and DOWN which are defined in relation to a fixed point (e.g. a train
station at one end of the line) along the complete network. Each marker board is
associated with either the UP-direction (mb10, mb13, . . . ) or the DOWN-direction
(mb15, mb12, . . . ).

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Fig. 1. Simple railway network (taken from [24]).

The network is traversed on pre-defined routes that are controlled by the
interlocking system. Each route starts at a marker board pointing in train direc-
tion and ends at a neighbouring marker board pointing in the same direction: for

3 We omit here ETCS track-side elements that are only implicitly used in this paper,
such as balises or radio block centres.
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example, the sequence of track elements t10, t11, t12 guarded at the beginning
by mb10 and at the end by mb13 represents the route mb10 → mb13. The points
inside a route need to be in appropriate position: for the route mb10 → mb13,
point t11 has to be in PLUS-position (i.e. connecting t10 and t12); for the route
mb10 → mb21 the MINUS-position connecting t10 and t20 is required. Before a
train may enter the route, additional signals and points need to be switched into
specific states for offering additional safety, such as flank protection or head-on
collision protection. Using route mb10 → mb13, for example, requires that point
t13 shall be switched into MINUS-position, so that trains travelling in DOWN
direction cannot enter t12. Moreover, marker boards mb11, mb12, mb20 must be
switched to HALT.

The interlocking system allocates a route for a train (points and signals are
switched into the appropriate states), locks it (points are fixed in their position
and cannot be changed until the train has passed through), allows the train to
enter the route, and detects when the route is occupied. Detection sections along
the route are freed as soon as the train has passed them. The route is freed when
the train has left it and entered the next route. Routes possessing common track
elements – for example, routes mb10 → mb13 and mb20 → mb11 – are said to be
in conflict with each other, because they must not be used simultaneously in
order to avoid collisions. A route can only be allocated to a train if it is not in
conflict with other routes currently being allocated or already locked or occupied
by a train.

The sequential release principle allows for allocating a conflicting route, when
the train occupying the current route has already passed the critical track ele-
ments where a collision might take place. Similarly, points and signals outside
the route, offering protection to certain route portions may already be unlocked
as soon as the train has traversed these portions. For example, when a train
occupies route mb10 → mb13 but has already passed t10 and t11, so that it
completely resides in t12, route mb20 → mb11 may already be allocated.

The route descriptions and their associated protection requirements are spec-
ified in interlocking tables; an example for the network above is given in Table 1.

Table 1. Interlocking table for the network layout in Fig. 1 (Taken from [24]; p means
PLUS, m means MINUS.)

id src dst path points signals conflicts

1 mb10 mb13 t10;t11;t12 t11:p;t13:m mb11;mb12;mb20 2;3;4;5;6;7

2 mb10 mb21 t10;t11;t20 t11:m;t13:p mb11;mb12;mb20 1;3;6;7;8

3 mb12 mb11 t11;t10 t11:p mb10;mb20 1;2;5;6;7

4 mb13 mb14 t13;t14 t13:p mb15;mb21 1;5;6;8

5 mb15 mb12 t14;t13;t12 t11:m;t13:p mb13;mb14;mb21 1;3;4;6;8

6 mb15 mb20 t14;t13;t20 t13:m mb10;mb12;mb13;mb14;mb21 1;2;3;4;5;8

7 mb20 mb11 t11;t10 t11:m mb10;mb12 1;2;3

8 mb21 mb14 t13;t14 t13:m mb13;mb15 2;4;5;6
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2.2 Route Controllers

The central component of a route-based interlocking system is the route con-
troller. It is responsible for allocating requested routes to trains, for preventing
simultaneous allocation of conflicting routes, performing sequential release of
track elements, freeing routes after they are no longer occupied, and for reacting
to cancellation commands. Moreover, the route controller supervises the validity
of all safety conditions and triggers a transition to a safe state (all marker boards
on HALT, no state changes for points) if one of these conditions is violated. A
typical architecture for route controllers is shown in Fig. 2.

Route 
requests

Route 
cancellations

Vacancy 
status 
of track  
elements

Point 
Positions

Marker 
board status

Point 
position 
commands

Marker 
board 
commands

Indication 
of safety  
violations

Route Controller

Hardware abstraction layer 

Safety layer 

C(1) 
Controller 
Route 1

C(2) 
Controller 
Route 2 . . . 

C(n) 
Controller 
Route n

Data Pool

Interlocking tables (static) Route status Element Status 
(current)

Element Status 
(requested)

Safety 
Violation

Fig. 2. Route controller interface and internal structure.

The safety layer manages the routes. It reads interlocking tables, route and el-
ement states from the data pool, and writes route state updates as well as track el-
ement commands into the data pool. Typical implementations use one controller
sub-component C(id) per route id. If these are scheduled sequentially, route al-
locations can never interfere with each other. If, however, the sub-components
run concurrently, some locking mechanism (spin lock or semaphore) is needed
to avoid that allocations are started for conflicting routes: each sub-component
performs its evaluation whether an allocation request is in conflict with another
route and records the transition into the allocating state in a critical section.
For detection sections, the route controller distinguishes two Boolean attributes:
the locking status is 1 (= true), when the segment has been locked – that is,
specifically allocated – for a given route. The occupancy status is 1, if and only if
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a train resides (partially or completely) in the section. Safety conditions require
that a segment may be locked for at most one route, and that it may only be
occupied if it is also locked. Points have a third attribute denoting their posi-
tion: in the examples below, the PLUS position is denoted by 0, and the MINUS
position by 1. Marker boards only have status values (0 = HALT, 1 = GO). The
current status of all these values is stored in the data pool. Route controllers
send commands to points and marker boards for changing their position and
their HALT/GO aspect, respectively. These commands are written by the route
controller sub-components into the data pool.

The hardware abstraction layer (HAL) processes the hardware interfaces. On
its input interface, it receives requests for routes through the network portion
the route controller is responsible for. Before a route is occupied by a train, the
allocation and locking process can still be aborted by means of a cancellation
request. The HAL stores requests and cancellations in the data pool, to be pro-
cessed by the controller sub-components residing in the safety layer. Moreover,
the HAL receives status information from detection sections: the occupancy sta-
tus of linear segments and points, as well as the feedback information about
actual point positions and actual marker board states are also written into the
data pool.

The HAL reads the output interface changes requested by the controller
sub-components from the data pool. On its output interface, the HAL sends
position commands to points, requesting PLUS(0) or MINUS(1) positions. To
marker boards, GO(1) or HALT(0) requests are sent. Finally, safety violations
are indicated (1 denotes a violation).

3 Case Studies

3.1 First Route Controller Sub-component

As will be justified below in Section 4.9, we can test each route controller sub-
component C(id) separately. Therefore, as the first part of the case study, the
sub-component C(7) for route id 7 (mb20 → mb11, see Table 1) in the simple
railway network shown in Fig. 1 is tested. The complete route controller archi-
tecture shown in Fig. 2 induces the following component testing configuration
which is depicted in Fig. 3.

As inputs, C(7) gets the Boolean request and cancel command for this spe-
cific route. Moreover, the route status of the other routes (route(mbx → mby))
influences its behaviour. The relevant track elements are t10 and t11, and their
Boolean status information t10 occ and t11 occ (= 1 if occupied), t10, t11
(= 1 if locked by another route), t11 pos (= 1 if point position is MINUS), and
mb10 act, mb12 act, mb20 act (= 1 if signal aspect is GO) are further inputs
to the SUT. The states of all other track elements (which are also part of the
data pool and available for this sub-component test) should not influence C(7)’s
behaviour, so they are not shown in Fig. 3. This is expressed by the fact that the
input equivalence classes shown below always contain any possible value for these
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(for route mb20 ➝ mb11)
request,cancel

Safety layer 

Controller C(7) 
Route mb20 ➝ mb11

Data Pool

Interlocking tables (static) Route status Element Status 
(current)

Element Status 
(requested)

Safety 
Violation

route(mbx ➝ mby)

t10_occ,t11_occ,
t10,t11,t11_pos,
mb10_act,mb12_act,mb20_act

t11_out,t11_cmd,t10_out,
mb10_cmd,mb12_cmd,mb20_cmd

error

(for routes 1,2,3,4,5,6,8)

Fig. 3. Integration test configuration for C(7), controlling route mb20 → mb11.

other track element states. In the randomised version of the generated test suites,
however, these values are also changed at random whenever a representative of
an equivalence class is needed. This allows us to detect faulty implementations
outside the fault domain that erroneously depend on other element states than
the ones identified as inputs in Fig. 3.

The controller for route mb20 → mb11 writes locking commands t11 out,
t10 out for both track elements into the data pool. For C(7), this is an output
to the test environment. Moreover, requests for changing the point position are
written to t11 cmd (= 1 for requested position MINUS). Requests for marker
boards to change the signal aspect are written to mb10 cmd, mb12 cmd, mb20 cmd

(= 1 to request signal aspect GO). Finally, the controller raises the error flag if it
detects a safety violation related to its route. The outputs shown in Fig. 3 are the
ones where C(7) is expected to write to. The testing environment, however, also
monitors output commands to other track elements and their locking status, in
order to detect faulty writes of the SUT to these interfaces and status variables.

In Fig. 4, the behaviour of the route controller sub-component C(7) is mod-
elled as a state machine in SysML style. On receiving a request for this route,
C(7) transits into mode MARKED, where it remains until no conflicts with other
routes already in one of the modes ALLOCATING, LOCKED, or OCCUPIEDx
exist. The Boolean operation no conflicts()returns true if and only if

t11 == 0 // point t11 not locked and therefore empty
&& t10 == 0 // linear segment t10 not locked and therefore empty
&& route(10,13) != ALLOCATING

// route from mb10 to mb13 not in mode ALLOCATING
&& route(10,13) != LOCKED // route 1 not in mode LOCKED
&& route(10,21) != ALLOCATING // route 2 not ALLOCATING
&& route(10,21) != LOCKED // route 2 not LOCKED
&& route(12,11) != ALLOCATING // route 3 not ALLOCATING
&& route(12,11) != LOCKED // route 3 not LOCKED
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FREE

entry / t11_out=0; t10_out=0;

MARKED

OCCUPIED2

OCCUPIED1

ALLOCATING
entry / t11_out=1; t10_out=1;
      t11_cmd=1;
      mb10_cmd=0; mb12_cmd=0;

OCCUPIED3

entry / t11_out=0;

LOCKED
entry / mb20_cmd=1;
exit /     mb20_cmd=0;

ERROR_TM

entry / error=1;

[request]

[!request && cancel]

[!cancel && no_conflicts()]

[!request && cancel] [!cancel &&
 all_elements_locked()]

[!cancel &&
 safetyViolation0()]

[safetyViolation1()]

[safetyViolation2()]

[safetyViolation3()]

[!cancel &&
 t11_occ==1 &&
 t10_occ==0 &&
 !safetyViolation0()]

[t11_occ==1 &&
 t10_occ==1 &&
 !safetyViolation1()]

[t11_occ==0 &&
 t10_occ==1 &&
 !safetyViolation2()]

[t11_occ==0 &&
 t10_occ==0 &&
 !safetyViolation3()]

Fig. 4. Route controller state machine for route mb20 → mb11 from Fig. 1.

Note that these conditions can be directly generated from the interlocking
table shown in Table 1, row id 7, columns path and conflicts. Then the con-
troller transits into mode ALLOCATING, where elements t11, t10 are locked,
the point t11 is switched into MINUS position, and the protecting marker boards
mb10, mb12 are set to HALT. Note that these actions are directly generated from
Table 1, row id 7, columns path, points, signals.

The operation all elements locked() returns true, if and only if the re-
quested point position has been reached according to the feedback input t11 pos,
and the feedbacks mb10 act, mb12 act from the marker boards show the re-
quested HALT aspect. Then C(7) transits into mode LOCKED, setting mb20 to
GO, so that the train is free to enter the route. When the route’s first segment
t11 is occupied by the train, C(7) transits into mode OCCUPIED1, and mb20 is
switched back to HALT. The controller sub-component now traverses the modes
OCCUPIED2 and OCCUPIED3, whereafter the point t11 is unlocked accord-
ing to the sequential release principle. As soon the train has left the route, C(7)
reaches the mode FREE again.
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While residing in modes LOCKED, OCCUPIEDx, C(7) monitors the sys-
tem status with respect to safety violations concerning its route. Operation
safetyViolation0(), for example, returns true if and only if

(t11_occ == 0 && t10_occ==1) // train has not yet entered route 7, but segment t10 is
// occupied by an unexpected conflicting train

|| (t11_pos == 0) // Unexpected change of point position
|| (mb10_act == 1) // Unexpected change to aspect GO
|| (mb12_act == 1) // Unexpected change to aspect GO
|| t10 // t10 has been locked for another route
|| t11 // t11 has been locked for another route

3.2 Second Route Controller Component

The complexity of a route controller sub-component depends on the length of the
route (each track element along the route adds another OCCUPIEDx mode in
the state machine described above) and on the surrounding railway network: the
network layout in the vicinity of the route may induce additional flank protection
requirements and offer different variants for ensuring this protection by means of
points and marker boards. For this reason, a second route from a more complex
network (the Lyngby train station in Denmark, see [22] for more details) has
been selected as representative for the experimental evaluation of the testing
strategy described in this paper. In the description of the experiments performed
(Section 5), this sub-component reference model is denoted by C(Lyngby).

4 Model-based Equivalence Class Partition Testing

4.1 Semantic Domain

The equivalence class partition strategy and its associated complete testing the-
ory applied in this paper is based on the semantics of reactive I/O state tran-
sition systems (RIOSTS) S = (S, s,R) with state space S, initial state s and
transition relation R ⊆ S × S. The state space S consists of variable valuation
functions s : V → D associating variables v ∈ V with their concrete value s(v)
in the state s. The variable space V is partitioned into input variables (subset
I ⊆ V ), internal model variables (M ⊆ V ), and output variables (O ⊆ V ). It is
assumed that variables from M ∪ O only have finite domains, so that they can
be enumerated for test purposes, whereas the input variables from I can have
infinite domains. Any set AP with atomic propositions over free variables from
V induces a Kripke structure over S, where the labelling function L : S → 2AP

is defined by ∀s ∈ S : L(s) = {p ∈ AP | p[s(v)/v | v ∈ V ]}. This means that
L(s) contains exactly those atomic propositions p from AP that evaluate to true

when replacing every occurrence of free variables v ∈ V in p by their state val-
uations s(v). We require RIOSTS state spaces to be partitioned into quiescent
states (SQ ⊆ S) and transient states (ST ⊆ S, SQ ∩ ST = ∅). Transitions from
“stable” quiescent states can only change the values of input variables and may
end up in either quiescent or transient states. Transitions from transient states
must have quiescent post-states, and these transitions may affect internal model
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variables and outputs only. It is assumed that the SUT outputs can only be
observed when it resides in quiescent states.

The semantic domain of RIOSTSs captures a wide variety of control systems,
such as speed controllers in train protection systems [7, 2], airbag controllers [9],
thrust reversal controllers in aircrafts, and other systems performing discrete
control decisions based on inputs from conceptually infinite domains. Various
concrete modelling formalisms can be associated with RIOSTS semantics. As
shown in [8, 7, 2], the SysML semantics of models consisting of blocks and state
machines can be expressed by means of RIOSTS in a way that is consistent with
the semi-formal OMG semantics [13].

The conformance relation considered for this paper is I/O-equivalence: S ′ ∼
S if and only if the languages L(S ′) and L(S) are identical. In analogy to finite
state machines, the language L(S) of RIOSTS S is the set of all state traces of S,
restricted to their input/output pairs (s(x1), . . . , s(xp))/(s(y1), . . . , s(y`)) in the
sub-sequence of quiescent states (because I/O is assumed not to be observable
in transient states).

4.2 Construction of Input Equivalence Classes

Given an RIOSTS S = (S, s,R), its transition relation R can be represented by
specifying a proposition R with free variables from V ∪ V ′, V ′ = {v′ | v ∈ V },
such that

R = {(s, s′) ∈ S × S | R[s(v)/v, s′(v)/v′ | v ∈ V, v′ ∈ V ′]}

(see also [4, Section 2.1.1]): R is specified in such a way that (s, s′) ∈ R holds if
and only if R evaluates to true when replacing every unprimed version of v ∈ V
by its pre-state value s(v) and every primed variable symbol v′ by the post-state
value s′(v) of v.

In [7] an algorithm is presented that allows to transform an arbitrary repre-
sentation of R into a normalised one which is structured as

R ≡
∨

i∈IDX

(
gi,i ∧ (m,y) = (di, ei) ∧ (m′,y′) = (m,y)

)
∨∨

(i,j)∈J

(
gi,j ∧ (m,y) = (di, ei) ∧ (m′,y′) = (dj , ej) ∧ x′ = x

)
where (1) gi,i, gi,j are propositions with free variables from I only, (2) (m,y)
denotes the pair of internal state variable tuples and output variable tuples, that
is, M = {m1, . . .mk} and m = (m1, . . .mk), O = {y1, . . . y`} and y = (y1, . . . y`),
(3) x = (x1, . . . , xp) denotes the tuple of input variables, I = {x1, . . . , xp},
and (4) (di, ei), i ∈ IDX is the enumeration of reachable pairs of internal state
value tuples di and output value tuples ei. The proposition R has the following
properties.

1. The quiescent states of S are given exactly by those states s where one of
the gi,i, i ∈ IDX evaluates to true when replacing all input variables x ∈ I
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by their valuation s(x), the valuation of internal model variables in s results
in di, and the valuation of output variables in s results in ei.

2. When transiting from some quiescent state s fulfilling some gi,i ∧ (m,y) =
(di, ei), internal variables and outputs remain unchanged.

3. The transient states of S are those s where some gi,j , (i, j) ∈ J, i 6= j be-
comes true when replacing input variables x by s(x), and the internal model
variables and outputs evaluate to (di, ei) in s.

4. By changing input valuations only, a quiescent state s fulfilling gi,i∧(m,y) =
(di, ei) can transit to any quiescent state s′ that also fulfils gi,i ∧ (m,y) =
(di, ei).

5. A quiescent state s fulfilling gi,i ∧ (m,y) = (di, ei) can transit to any tran-
sient state fulfilling gi,j ∧ (m,y) = (di, ei), by changing input valuations
only.

6. A transient state s fulfilling gi,j ∧ (m,y) = (di, ei) transits to a quiescent
post state fulfilling gj,j ∧ (m,y) = (dj , ej).

7. The class of quiescent states s1, s2 fulfilling the same condition gi,i∧(m,y) =
(di, ei) contains I/O-equivalent states only: applying an arbitrary input se-
quence c1 . . . cp to s1 will result in the same I/O-trace as when applying this
input sequence to s2. This is trivial to see, because, s1 and s2 already have
the same valuations of internal model variables and output variables (both
states fulfil (m,y) = (di, ei)), and after applying the first input c1 to both
states, they also coincide in the inputs, that is, they are identical.

As we have seen in Item 7 above, each condition gi,i ∧ (m,y) = (di, ei)
induces a state class

Ai = {s ∈ S | (gi,i ∧ (m,y) = (di, ei))[s(v)/v | v ∈ V ]}

of I/O-equivalent quiescent states.

Example 1. For the route controller sub-component C(7) shown in Fig. 4, m just
denotes the actual control mode (one of FREE, MARKED, ALLOCATING, . . . ,
interpreted as integer values in range 0,. . . ,7), and y is the output vector

(t10 out, t11 out, t11 cmd, mb10 cmd, mb12 cmd, mb20 cmd, error).

The quiescent state class A2 associated with control mode ALLOCATING(2),
for example, is specified by

g2,2 ≡ (request ∨ !cancel) ∧ !all elements locked()

≡ (request ∨ !cancel) ∧ (t11 pos = 0 ∨ mb10 act = 1 ∨ mb12 act = 1)

(m,y) = (2, (1, 1, 1, 0, 0, 0, 0))

�

The normalised representation R now allows us to construct an input domain
partition I = {X1, . . . , Xq} containing input equivalence classes (IECs), so that
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for every i ∈ IDX and s1 ∈ Ai, the effect of applying a sequence c1 . . . cp of inputs
to s1, only depends on the sequence of Xi1 . . . Xip the c1 . . . cp reside in, but not
on the concrete representatives cj ∈ Xij . If I is such an input equivalence class
partitioning (IECP), applying c1 . . . cp to s1 ∈ Ai and c′1 . . . c

′
p to s2 ∈ Ai results

in the same sequence of outputs, whenever ∀j ∈ {1, . . . , p} : ∃X ∈ I : cj , c
′
j ∈ X

is fulfilled.
The IECP I is constructed by identifying all functions f : IDX → IDX for

which the proposition

Φf ≡
∧

i∈IDX

gi,f(i)

has at least one solution (this can be checked by means of an SMT solver; we
use SONOLAR [11, 15] for this purpose). Equivalence class Xf is then defined
as

Xf = {(c1, . . . , cn) ∈ Dx1
× · · · ×Dxp

| Φf [c1/x1, . . . , cp/xp]}.
The detailed proof that these Xf form an IECP with the properties described

above is given in [7]. It is easy to see that any refinement of the input equivalence
class partitioning I constructed according to these rules is again an IECP of the
underlying RIOSTS.

4.3 Complete Testing Theories for RIOSTS

With state equivalence classes Ai and input equivalence classes X ∈ I at hand,
the RIOSTS S can be abstracted to a deterministic, completely specified finite
state machine (DFSM) with input alphabet I, output alphabet DO, and state
space Q = {A1, A2, . . . }. The DFSM’s transition relation h ⊆ Q× I ×DO ×Q
is specified in such a way that

(Ai, X, ej , Aj) ∈ h if and only if there exist S-states s ∈ Ai, s
′ ∈ Aj and

an input c ∈ X, such that RIOSTS S transits with input change c from
s to s′, and s′ satisfies (s′(y1), . . . , s′(y`)) = ej

As shown in [7], this DFSM specification is well-defined, and two determin-
istic RIOSTSs are I/O-equivalent if and only if their DFSM abstractions are
I/O-equivalent. As a consequence, complete testing theories elaborated for DF-
SMs can be translated to complete theories for RIOSTSs: the input sequences
X1 . . . Xq, Xi ∈ I to be used as DFSM test cases according to such a complete
theory are translated to sequences c1 . . . cq of concrete RIOSTS input data sat-
isfying ci ∈ Xi for i = 1, . . . , q, that is, each ci is an arbitrary representative of
class Xi.

The associated fault models are of the form

F = (S,∼,D(m, I)),

where the fault domain D(m, I) contains all deterministic RIOSTSs S ′ whose
input equivalence partitionings coincide with the partitioning I of the reference
model S, and whose minimised DFSM abstractions do not have more than m
states.
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4.4 W-Method and Translation to RIOSTS Test Suites

The test suite calculation technique applied for this paper is based on the well-
known W-method [3, 21]. Given a deterministic, minimal FSM F = (Q, q, I, DO, h)
with n = |Q| states, the test suite

W = SCOV.
(m−n+1⋃

i=0

Ii
)
.W (1)

is known to be complete for all FSM implementations possessing at mostm states
in their minimised representation. The test suite W contains test cases that are
input traces from I∗. For sets X,Y ⊆ I∗, the “.”-operator used in Equation (1)
is defined by X.Y = {x.y | x ∈ X, y ∈ Y }, so X.Y contains all input traces x
of X concatenated with all input traces y of Y . Each test case is composed as
follows. The first part of each test case is an input sequence of the state cover
SCOV ⊆ I∗. This set contains input traces allowing to reach every state of F
when applying its transition relation h successively, starting in the initial state
q. The cardinality of SCOV is obviously n. The second part of each test case
consists of an arbitrary input sequence of length ` with 1 ≤ ` ≤ (m − n + 1).
There are |I|` input sequences with arbitrary values from I. The last section
of the test case is an input trace from the characterisation set W . This set is
constructed in such a way that each pair of states s1, s2 in F is distinguished by
at least one input trace tr from W , that is, applying tr to s1 leads to another
output sequence than tr’s application to s2. Asymptotically, the number of test
cases needed for test suites created by the W-method is O(n2|I|m−n+1).

Each test case X1 . . . Xp ∈ W can be translated to an RIOSTS test case by
selecting concrete input data representatives ci ∈ Xi, i = 1, . . . , p. The expected
results to be produced by the SUT is the output sequence to be generated by
the RIOSTS reference model S when applying c1 . . . cp to its initial state. If F
is the minimised FSM abstraction of S, this output sequence equals the output
sequence of F when applying input trace X1 . . . Xp to its initial state.

4.5 Wp-Method

It is well-known that a likewise complete testing theory for deterministic or
nondeterministic FSMs and I/O-equivalence as conformance relation exists; this
theory is usually called the Wp-method [6, 12]. This method is known to yield
fewer test cases than the W-method, so it is an interesting alternative to be
investigated. Following [12], Wp-test suites can be represented as

1. Wp = Wp1 ∪Wp2 with
2. Wp1 = SCOV.

(⋃m−n
i=0 Ii

)
.W

3. Wp2 = R.Im−n ⊕ {W0, . . . ,Wn−1}

The test cases from Wp1 represent the subset W −
(
SCOV.Im−n+1.W

)
of W-

method test cases.
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In the definition of Wp2, R is specified by R =
(
SCOV.({ε} ∪ I) \ SCOV

)
and denotes the input traces of the transition cover that are not contained in the
state cover as well. The state identification sets Wi, i = 0, . . . , (n − 1), contain
prefixes of input traces from W distinguishing FSM state qi from all other FSM
states. For any V ⊆ I∗, the ⊕-operator is defined by

V ⊕ {W0, . . . ,W|Q|−1} =⋃{
{x}.Wi | i ∈ {0, . . . , |Q| − 1} ∧ x ∈ V ∧ qi ∈ q-after-x

}
Intuitively speaking, Wp2 contains input sequences from R.Im−n that are ex-
tended by sequences from one or more Wi according to the following recipe:
Given an input sequence x in R.Im−n, consider all target states that are reach-
able from the initial state by applying x. These target states are specified by
the set q-after-x. Now x is extended by every trace from Wi, if and only if qi is
among these target states reachable under x.

4.6 Discussion of Fault Hypotheses

It will be very difficult in general to prove that the estimates of m and the
assumed IECP I are adequate for an SUT. One way to cope with this problem
is to increase m and to refine I. As can be seen from the complexity estimate
above, the test suite size is increased exponentially by increasing m. Moreover,
refining the IECP I – for example, by bi-partitioning the ranges of input variables
in each IEC X ∈ I – leads to exponential growth of I, and, consequently, again
to exponential growth of the test suite size.

As a consequence, it is desirable to investigate alternative methods that,
while keeping the test suite size at an acceptable level, still possess superior
test strength when applied against SUT whose behaviours are outside the fault
domain.

4.7 Randomisation

The completeness of RIOSTS input equivalence class testing theories translated
from DFSM theories as described above is preserved, if, instead of always choos-
ing the same representative from each IEC X ∈ I, a random value is selected
from X each time a test cases requires an X-input. A set of experiments has
been performed and published in [9], showing that the test strength of the re-
sulting suite is significantly higher for SUT behaviours outside D(m, I) than
the strength of naive random testing, where inputs are just selected at random
from the complete range of input data in each test step, instead of performing
random selections from IECs and generating the test cases by means of a com-
plete method as the W-method. Moreover, it has been demonstrated in these
experiments that the test strength is further increased if the random selection
from the IECs X ∈ I also covers the boundaries of each X.
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4.8 Boundary Value Tests

Given a proposition ϕ over free variables v ∈ V with primitive types float,
integer, Boolean, or enumeration, the solution set

S(ϕ) = {s : V → D | ϕ[s(v)/v | v ∈ V ]}

is the set of all variable valuations s, such that ϕ alway evaluates to true when
every free occurrence of every v ∈ V is replaced by its s-value s(v).

For the primitive types listed above, a smallest increment si or smallest
decrement sd (note that sometimes only one of the two exists) is defined as fol-
lows: for float-variables, the smallest change is defined by adding or subtracting
the unit in the last place specified according to the IEEE 754 standard for the
representation of floating point numbers. This is the distance to the next higher
or lower representable floating point number. For integers the smallest increment
and decrement of a number z are defined by adding or subtracting 1 to z. The
Boolean constants false and true are identified with 0 and 1, respectively, so
false only has a smallest increment, and true only a smallest decrement. Vari-
ables of enumeration type are identified with a finite set of integral numbers,
where the smallest increment is the successor inside the set, and the decrement
the predecessor inside the set (if they exist).

We will now introduce a general definition of boundary values that is appli-
cable to arbitrary solution sets for formulas over variables with primitive data
types float, integer, Boolean, and enumeration. This is done recursively over the
structure of the proposition, applying the following rules.

1. ∂S(a) = S(a) for atomic propositions consisting of a Boolean variable a only.
2. ∂S(¬a) = S(¬a) for negated atomic propositions consisting of a Boolean

variable a only.
3. For arithmetic expressions f(v1, . . . , vn),

(a) ∂S(f(v1, . . . , vn) = 0) = S(f(v1, . . . , vn) = 0)
(b) ∂S(f(v1, . . . , vn) < 0) = S(f(v1, . . . , vn) = sd(0))
(c) ∂S(f(v1, . . . , vn) ≤ 0) = S(f(v1, . . . , vn) = 0)
(d) ∂S(f(v1, . . . , vn) > 0) = S(f(v1, . . . , vn) = si(0))
(e) ∂S(f(v1, . . . , vn) ≥ 0) = S(f(v1, . . . , vn) = 0)
(f) ∂S(f(v1, . . . , vn) 6= 0) = ∂S(f(v1, . . . , vn) < 0 ∨ f(v1, . . . , vn) > 0)

4. ∂S(¬ϕ) = ∂S(NNF(¬ϕ)), where NNF(¬ϕ)) is the representation of ¬ϕ in
negation normal form.

5. ∂S(ϕ ∧ ψ) = (∂S(ϕ)) ∩ (∂S(ψ))
6. ∂S(ϕ ∨ ψ) =

(
∂S(ϕ) ∩ S(¬ψ)

)
∪
(
S(¬ϕ) ∩ ∂S(ψ)

)
The intuition of Rule 6 is as follows: we wish to support the intuition that a

small change of a valuation s ∈ ∂S(ϕ ∨ ψ) results in a valuation s′ outside the
solution set S(ϕ ∨ ψ). This is the case if s ∈

(
∂S(ϕ) ∩ S(¬ψ)

)
: Since ψ already

evaluates to false in s, a small change s′ in the valuation of ϕ-variables leads to
ϕ∨ψ evaluating to false. Conversely, if s ∈

(
S(¬ϕ)∩∂S(ψ)

)
, a small change in

the ψ-variable valuations leads to ψ evaluating to false, and therefore also ϕ∨ψ
evaluating to false.
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As a simple example, consider the proposition ϕ ≡ (a ∧ (b ∨ c)) with free
Boolean variables a, b, c. We have

S(ϕ) = {s : {a, b, c} → B | s(a) ∧ (s(b) ∨ s(c))}

Using the rules above, the boundary of S(ϕ) is calculated by

∂S(ϕ) = ∂S(a ∧ (b ∨ c))

= (∂S(a)) ∩ (∂S(b ∨ c)) [Rule 5]

= S(a) ∩ ∂S(b ∨ c) [Rule 1]

= S(a) ∩
(
(∂S(b) ∩ S(¬c)) ∪ (S(¬b) ∩ ∂S(c))

)
[Rule 6]

= S(a) ∩
(
(S(b) ∩ S(¬c)) ∪ (S(¬b) ∩ S(c))

)
[Rule 1]

= {s : {a, b, c} → B | s(a) ∧ ((s(b) ∧ ¬s(c)) ∨ (¬s(b) ∧ s(c)))}

Note that the boundary of this solution set is represented by exactly those
valuation functions fulfilling the MC/DC conditions defined for ϕ.

4.9 Compositional Reasoning

A system S consisting of components C1, . . . , Cn is called compositional, if the
specification fulfilled by S can be derived from the specifications fulfilled by each
of its components Ci and from the way these components interact (e.g. sequential
or concurrent composition). Compositionality depends on the underlying com-
munication and synchronisation mechanisms applied by the components, and on
the condition that components will not interfere with each others’ private data.

We observe that the route controllers in this paper are compositional, pro-
vided that the controller sub-components are scheduled either sequentially or
concurrently with proper protection of their critical sections. As a consequence,
we can test each controller sub-component separately and then conclude, that
their composition operates correctly as well.4 As a consequence, we can apply
the testing methods described above locally to the controller sub-component of
each route, verify the HAL, verify the synchronisation mechanism used to pro-
tect critical sections, and then conclude by compositional reasoning that these
local verification activities yield certification credit for the integrated HW/SW
system.

In practise, some HW/SW integration tests exercising all controller sub-
components and the HAL concurrently would be necessary, because it is not
allowed to verify communication and synchronisation mechanisms by deduction
only, ”without ever trying them out”. These tests, however, only need to cover
all interfaces and synchronisation mechanisms; there is no need to re-test for
functional correctness of each controller sub-component.

4 The hardware abstraction layer would also have to be verified locally, but this is
outside the scope of this paper.
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4.10 Resulting Test Strategies

In the following description of test strategies evaluated for testing route controller
sub-components, S always denotes the SysML reference model of the controller
sub-component, interpreted in RIOSTS semantics. I denotes the input equiva-
lence class partitioning constructed for S as specified in Section 4.2. F denotes
the minimal DFSM with input alphabet I created from S by means of the ab-
straction technique described in Section 4.3. It is assumed that F has n states.
By W we denote the DFSM test suite created from F using the W/Wp-method
with assumption n = m. This induces the fault domain D(n, I). A (possibly
erroneous) implementation S ′ is part of the fault domain if and only if I applies
also as IECP for S ′ and the DFSM abstraction F ′ of S ′ has at most n states.

As an alternative, we also use a refined IECP I that partitions each X ∈ I
into several boundary value segments and the “interior” part of X. The DFSM
test suite created from F using the W/Wp-method is denoted byW. The induced
fault domain is D(n, I). Obviously D(n, I) ⊂ D(n, I) holds.

With these prerequisites, the following test strategies have been applied and
compared with respect to their test strength.

STRAT 1(w) Input equivalence class partitioning I, fault domain D(n, I). For
w = W, the abstract DFSM test suite W is created by the W-method; for
w = Wp, W is created by the Wp-method. W is translated to an RIOSTS
test suite by using a fixed representative c ∈ X ∈ I, whenever X occurs in
an input sequence of W.

STRAT 2(w) Input equivalence class partitioning I, fault domain D(n, I). Pa-
rameter w is defined as in STRAT 1; W is translated to an RIOSTS test
suite by performing a random selection c ∈ X ∈ I, whenever X occurs in
an input sequence of W.

STRAT 3(w) Input equivalence class partitioning I, fault domain D(n, I). Pa-
rameter w is defined as in STRAT 1;W is translated to an RIOSTS test suite
by performing a random selection c ∈ X ∈ I, whenever X occurs in an in-
put sequence of W. 50% of these random selections are chosen from X ′ ⊂ X
(inner points of X), the other half is chosen from X ′′ ⊂ X (boundary values
of X).

STRAT 4(w) Refined input equivalence class partitioning I, fault domainD(n, I).
Parameter w is defined as in STRAT 1; W is translated to an RIOSTS test
suite by performing a random selection c ∈ X ∈ I, whenever X occurs in
an input sequence of W.

STRAT-RND For comparing the test strength of the other test strategies
under investigation, a naive random test strategy is used which does not
require a model, but only an interface specification: in each test step, the
input vector to the route controller is changed at random.
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5 Experiments and Evaluation

5.1 Experiment Setup

Reference models. As reference models, the two route controller sub-components
C(7) and C(Lyngby) described in Section 3 were used.

Reference implementations. For C(7), two reference implementations in Java
were programmed, using different programming paradigms: IMPL1 uses the state
machine paradigm to create a code structure that is directly traceable to the
reference model: for each control mode of the model, a separate Java method
evaluates control decisions, handles actions in the respective mode and sets the
new mode if state machine transitions are performed. As an alternative, imple-
mentation IMPL2 uses a generic interpreter programming paradigm, where the
executable evaluates conditions and performs actions according to the interlock-
ing table data specified for the route. IMPL2 is close to typical implementations
of route controllers used in practise. For C(Lyngby), only IMPL2 was re-used
with the Lyngby-interlocking table. Due to the considerable programming effort
that would have been required for creating an implementation in the style of
IMPL1, this has not been evaluated for C(Lyngby).

Mutations. From each reference implementation, mutations have been generated,
using the Major mutation framework [10]. For IMPL1, 277 non-equivalent mu-
tations were generated (non-equivalence has been verified by hand). For IMPL2,
246 non-equivalent mutations were generated for C(7), and 269 non-equivalent
mutations were generated for C(Lyngby). Note that the mutant generator is
unaware of fault domains. It simply injects syntactical changes to the reference
implementation in a systematic way. Thus, the resulting mutants are both from
inside and outside the pre-defined fault domains. This facilitates a fair assess-
ment of the test strength of different strategies, given that in realistic black-box
scenarios the validity of the testing hypotheses cannot be checked either.

Test Suites. For both reference models C(7) and C(Lyngby), test cases were
automatically generated according to the strategies STRAT 1,2,3,4 as described
above. Then for STRAT-RND test suites with the same number of test cases
with the same length as generated for STRAT1,2,3,4 were produced at random.

Test Execution. Each test suite has been executed against every mutant, and the
mutation score for each suite was recorded. Since strategies STRAT 2,3,4,RND
depend on the utilisation of random numbers, each of their test suites has been
executed 10 times against every mutant, and the standard deviation from the
mean number of mutants killed has been recorded.

5.2 Experimental Results

Table description. Tables 2, 3 below show the evaluation results for tests against
model C(7), and Tables 4 and 5 show the evaluation results for tests against
model C(Lyngby).
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Table 2. Evaluation Results for C(7) (route mb20 → mb11), W-method.

strategy no. test mutation score (IMPL1) mutation score (IMPL2)
cases avg. σ avg. σ

STRAT 1(W) 1355 236/277 (85.2 %) - 240/246 (97.6 %) -

STRAT 2(W) 1355 268.3/277 (96.9 %) 0.9 245/246 (99.6 %) 0

STRAT 3(W) 1355 273.7/277 (98.8 %) 1.7 245/246 (99.6 %) 0

STRAT 4(W) 9405 276/277 (99.6 %) 0 245/246 (99.6 %) 0

STRAT-RND 1355 149.5/277 (54.0 %) 8.0 108.7/246 (44.2 %) 15.2

STRAT-RND 9405 174.0/277 (62.8 %) 6.3 139.3/246 (56.6 %) 16.6

Table 3. Evaluation Results for C(7) (route mb20 → mb11), Wp-Method.

strategy no. test mutation score (IMPL1) mutation score (IMPL2)
cases avg. σ avg. σ

STRAT 1(Wp) 670 236/277 (85.2 %) - 240/246 (97.6 %) -

STRAT 2(Wp) 670 264.2/277 (95.4 %) 3.3 245/246 (99.6 %) 0

STRAT 3(Wp) 670 271.5/277 (98.0 %) 2.1 244.8/246 (99.5 %) 0.4

STRAT 4(Wp) 4822 277/277 (100 %) 0 245.7/246 (99.9 %) 0.5

STRAT-RND 670 136.5/277 (49.3 %) 14.5 98.7/246 (40.1 %) 18.1

STRAT-RND 4822 164.9/277 (59.5 %) 8.7 120.6/246 (49.0 %) 14.2

Table 4. Evaluation Results for C(Lyngby) (route mb30 → mb21), W-method.

strategy no. test mutation score (IMPL2)
cases avg. σ

STRAT 1(W) 4923 256/269 (95.2 %) -

STRAT 2(W) 4923 261/269 (97.0 %) 0

STRAT 3(W) 4923 265.2/269 (98.6 %) 1.0

STRAT 4(W) 188170 266/269 (98.9 %) -

STRAT-RND 4923 46.7/269 (17.4 %) 1.0

STRAT-RND 188170 49/269 (18.2 %) -

Table 5. Evaluation Results for C(Lyngby) (route mb30 → mb21), Wp-method.

strategy no. test mutation score (IMPL2)
cases avg. σ

STRAT 1(Wp) 2291 256/269 (95.2 %) -

STRAT 2(Wp) 2291 259.9/269 (96.6 %) 0.7

STRAT 3(Wp) 2291 264.7/269 (98.4 %) 1.2

STRAT-RND 2291 46.4/269 (17.2 %) 1.3
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In each table, the second column shows the number of test cases that have
been generated with the respective strategy, using either the W-method (Ta-
bles 2,4) or the Wp-method (Tables 3, 5) for STRAT 1,2,3,4, or naive random
generation in the rows marked by STRAT-RND. Since STRAT 4(W/Wp) uses a
refined input equivalence partitioning, the number of test cases is significantly
higher.

The double columns with heading ‘mutation score’ show the test strength
achieved with the respective strategy. The first sub-column documents this in
format k/m (p%), where m denotes the number of generated non-equivalent
mutants, k the mean value of killed mutants, and p the mean percentage of killed
mutants. Column σ records the standard deviation of k. For reference model
C(7), the mutation score is documented for mutants created from both reference
implementations IMPL1 and IMPL2; for controller sub-component C(Lyngby),
only mutants generated from IMPL2 have been documented.

Interpretation of results. At first glance, the number of test cases generated us-
ing the Wp-method is significantly smaller than the numbers generated using the
W-method. This confirms the statements in [6, 12]: achieving completeness with
less test cases than needed for the W-method was a prime objective when design-
ing the Wp-method. Further analysis shows that despite using fewer test cases,
the strategies STRAT 1,2,3 perform just as well as with the larger test suites
generated using the W-method. This result is not self-evident, because shorter
test suites imply that fewer representatives from input equivalence classes are
exercised, and this might have an impact on detecting errors in implementations
outside the fault domain.

Unsurprisingly, naive random testing (strategy STRAT-RND) is unaccept-
able as a candidate for testing route controllers, since it does not exhibit suffi-
cient test strength: only less than 60% of the mutants are killed for the simpler
C(7) controller; for C(Lyngby), where the detection of errors depends on pass-
ing longer sequences of guards, the test strength even drops to less than 20%.
Further note that the test strength of STRAT-RND is only marginally improved
when increasing the number of test cases: for C(Lyngby), increasing the test
cases numbers from 4923 to 188170 increases the number of killed mutants by
one percent only.

The next interesting observation is that refining the input equivalence class
partitioning in STRAT 4 – while leading to many more test cases – increases the
the test strength only by 2% or even less. This does not justify the considerable
increase of test effort, in particular, since the applicable standards never require
100% fault coverage for the test suites performed, but only a very high test
strength that can be demonstrated.

Finally, all verification results show that STRAT 3 (random selection from
input equivalence classes with even distribution of input data selected from the
boundary and from the interior of each class) exhibits the best test strength
among strategies STRAT 1,2,3 and STRAT-RND. Since it does not require
higher test generation effort nor leads to longer test suites, STRAT 3 in combi-
nation with the Wp-method is therefore the preferred testing strategy.
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5.3 Threats to Validity

The selection of models might have an impact on the experimental results. To
reduce this threat, we used two models with different characteristics. While the
first model is of low complexity and appropriate for illustration purposes, the
second model is of higher complexity and it is taken from an existing station.
In our experiments the results of both models were comparable regarding the
mutation score. In earlier experiments [9] with our test strategy we achieved
comparable results for models with completely different characteristics.

In [9] different mutation generators were used. The observed impact of the
choice of a mutation generation tool was quite low and therefore, in this work
we only used the Major mutation framework [10].

The mutants generated from source code are highly dependent on the con-
crete implementation, the used design principles, and the implementation style.
To counter threats resulting from this fact, we used two different implementations
for the first model. The first implementation is a straightforward translation of
the state machine model to Java-Code. The second implementation is a generic
implementation which is able to cope with an arbitrary route, taken from the
interlocking table. We suppose that this is a more realistic approach, since every
route controller uses the same code base in this scenario and only differs in the
configuration data, i.e. the concrete route from the interlocking table.

All experiments for strategies including random selection of input values were
executed ten times with different start seeds for the used pseudo-random number
generators.

The described scenario assumes that our strategy is applied for HW/SW in-
tegration testing. In this paper, however, our results rely on SW-code mutations
only. In contrast to that, fault injection on an HW/SW integration level needs a
formal model of the integrated HW/SW system, a formal fault model and tool
support for the test strength assessment. This costly evaluation was out of the
scope of this work. Therefore some threats to validity remain open, since our
experiments with SW-code mutations might have missed some typical HW/SW
integration faults.

6 Conclusion

In this paper, a novel testing strategy with guaranteed error detection capabili-
ties has been presented for the purpose of HW/SW integration testing in route-
based railway interlocking systems. This strategy is based on a complete input
equivalence testing method, but performs random selections whenever a repre-
sentative from an input equivalence class is needed. The selection is performed
in such a way that an even distribution of input data selected from the bound-
ary and from the interior of each class is achieved. It has been demonstrated
that this strategy can be practically applied with fully automated model-based
testing support. The strategy guarantees the detection of every possible error for
implementations whose behaviours are captured by models inside a well-defined
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fault domain. Moreover, the experiments performed suggest that this strategy
is superior to heuristic test case development approaches, because it exhibits
significant test strength even for erroneous implementations outside the fault
domain.

Our observation of the current state of practise in industrial V&V of safety-
critical systems indicates that, while test execution and test evaluation is cer-
tainly automated, the elaboration of test cases is often done in a manual way,
without utilising formal test models as advocated in this paper. It should be
emphasised, however, that test case generation for the strategy described in this
paper can only be performed with tool support, because the underlying test
case and test data generation algorithms are quite complex. This suggests that
a change of paradigm is still required in industry before the advantages of the
approach presented here can be fully exploited.
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