
Semantic Families for 
Cyber-physical Systems

Jan Peleska 
University of Bremen 

Verified Systems International GmbH 
jp@cs.uni-bremen.de 

2015-12-07

BCS FACS - Annual Peter Landin Semantics 
Seminar 2015

mailto:jp@cs.uni-bremen.de


Overview
• Semantics for CPS – time for a change of 

paradigm? 

• Multiple formalisms in CPS modelling  

Example 1. Testing theories and collaborative tool 
environments 

Example 2. Verification of emergent properties 

• Conclusions and future work



Semantics for CPS – time 
for a change of paradigm ?

• Semantics for CPS – time for a change 
of paradigm?

• Multiple formalisms in CPS modelling  

• Example 1. Testing theories and 
collaborative tool environments 

• Example 2. Verification of emergent 
properties 

• Conclusions and future work



Recall
• The investigation of concurrent systems semantics 

started somewhere in the seventies of the last 
century

C. A. R. Hoare: 
Communicating Sequential Processes. Commun. ACM 21(8): 666-677 (1978)

http://dblp.uni-trier.de/db/journals/cacm/cacm21.html#Hoare78


Recall
• Since then, a multitude of formalisms has been 

developed and successfully applied to

• Development 

• modelling 

• code generation 

• Verification & Validation 

• theorem proving 

• model checking 

• simulation 

• testing



Cyber-physical systems
• Systems of collaborating computational elements 

controlling physical entities
https://en.wikipedia.org/wiki/Cyber-physical_system

Image courtesy of Daimler AG

https://en.wikipedia.org/wiki/Cyber-physical_system


Some CPS-characteristics 
affecting semantic modelling

Characteristic Semantics

Distribution, time-discrete and time-
continuous control Hybrid systems semantics

Modeling using multiple formalisms Model, sentence, and theory 
translation

Emergent properties Temporal logic, trace logic – how to verify 
in presence of multiple formalisms?

Dynamic re-configuration Semantics for object-oriented systems 
– or can we find something simpler?

Evolution of asserted component 
behaviours

New paradigms for behavioural 
assertions?

Large numbers of replicated 
components

Can the knowledge about replication 
lead to optimised V&V methods?



Multiple formalisms in CPS 
modelling – Example 1. 

Testing theories and collaborative 
tool environments

• Semantics for CPS – time for a change of 
paradigm? 

• Multiple formalisms in CPS modelling 

• Example 1. Testing theories and 
collaborative tool environments

• Example 2. Verification of emergent 
properties 

• Conclusions and future work



Application scenario

• CPS consists of several components 

• Some components are modelled by finite state 
machines (FSMs) 

• Other components are modelled by SysML state 
machines with Kripke structure semantics



Application scenario – train onboard 
speed control

Current 
speed

Current 
maximum 

speed

Emergency 
brake

Automated braking command

Onboard main controller

PLC brake controller

auto_on, auto_off

man_on, man_off

trigger, release

Train engine driver 
brake command



Application scenario – train onboard speed control

Current 
speed

Current 
maximum 

speed

Emergency 
brake

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off/trigger

auto_on/trigger

auto_off/release

man_off,man_on/trigger

man_on, man_off

auto_on,  
auto_off

trigger, release

Train engine driver 
brake command



RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off/trigger

auto_on/trigger

auto_off/release

man_off,man_on/trigger

• Discrete inputs  

• Discrete internal state 

• Discrete outputs 

Apply complete FSM 
testing strategy

Brake controller



Complete test suites
• Defined with respect to fault model (M, ≤, Dom), that is, 

a reference model M 

a conformance relation ≤ 

a fault domain Dom 

• Complete = sound + exhaustive 

• Sound = every M’ in Dom satisfying M’ ≤ M passes 

• Exhaustive = every M’ in Dom violating M’ ≤ M fails



Complete FSM test suites
• For FSMs, many complete testing strategies exist 

for deterministic or nondeterministic FSMs 

for completely defined or incomplete FSMs

Alexandre Petrenko, Nina Yevtushenko: 
Adaptive Testing of Nondeterministic Systems with FSM. HASE 2014: 224-228

Robert M. Hierons: 
Testing from a Nondeterministic Finite State Machine 
Using Adaptive State Counting.
IEEE Trans. Computers 53(10): 1330-1342 (2004)

http://dblp.uni-trier.de/pers/hd/p/Petrenko:Alexandre
http://dblp.uni-trier.de/pers/hd/y/Yevtushenko:Nina
http://dblp.uni-trier.de/db/conf/hase/hase2014.html#PetrenkoY14
http://dblp.uni-trier.de/db/journals/tc/tc53.html#Hierons04


• Large input 
domains  – 
speed  

• Discrete internal 
state 

• Discrete outputs 

Apply input 
equivalence 
class testing 

Can we also 
apply a complete 
strategy? 

TTT = Testing 
Theory 
Translation

Onboard main controller



TTT
• Consider different semantic domains with their 

conformance relations 

Finite state machines – language equivalence, 
language containment 

Kripke structures – I/O-equivalence, I/O-refinement 

• Fix a signature in each domain 

Sig1  – Kripke structures over fixed I/O variables 

Sig2  – FSMs over fixed I/O-alphabet



TTT
• Create a model map T from 

sub-domain of Sig1 to Sig2 

• Create a test case map T* 
from test cases of Sig2 to test 
cases of Sig1 

• Prove the satisfaction 
condition

T : Dom1 ! Sig2;

Dom1 ✓ Sig1

T ⇤ : TC(Sig2) ! TC(Sig1)



Satisfaction condition
Condition 1. The model map is compatible with  
the conformance relations 

Condition 2. Model map and test case map  
preserve the pass relationship

8S,S 0 2 Dom1 : S 0 1 S , T (S 0) 2 T (S)

8S 2 Dom1, U 2 TC(Sig2) : T (S) pass2 U , S pass1 T

⇤(U)



Dom1 Dom1 Dom1

T T T T ⇤

1

2

pass
1

pass
2

T ;2 = 1;T pass
1

= T ; pass
2
;T ⇤

T (Dom1) T (Dom1) T (Dom1)

T ⇤(TC(Sig2))

TC(Sig2)

Satisfaction condition, 
reflected by commuting diagrams 
and relational composition

Condition 1 Condition 2



Dom1 Dom1 Dom1

T T T T ⇤

1

2

pass
1

pass
2

T ;2 = 1;T pass
1

= T ; pass
2
;T ⇤

T (Dom1) T (Dom1) T (Dom1)

T ⇤(TC(Sig2))

TC(Sig2)

Recall. Relational composition

Condition 1 Condition 2

f ✓ X ⇥ Y, g ✓ Y ⇥ Z

f ; g = g � f = {(x, z) | 9y : (x, y) 2 f ^ (y, z) 2 g}



General theorem for 
translation of testing theories

Theorem 1. Suppose (T,T*) exist and fulfil the 
satisfaction condition. Then every complete 
(sound, exhaustive) testing theory established 
in Sig2 induces a likewise complete (sound, 
exhaustive) testing theory on Sig1

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing 
for Nondeterministic Systems. 
Submitted to Formal Aspects of Computing, 2015

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan


Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing

All reference models M2 
occurring in combination with 

fault domain Dom2



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing

Maps each reference 
model M2 of same fault model 
(M2,≤2,Dom2) to its associated 

test suite



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing

All reference models M1 occurring in combination 
with fault model (M1,≤1,Dom1), such that T(M1) ∈ F2(Dom2) 

Dom1 is fixed: T(Dom1) ⊆ Dom2 holds



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing

Fulfils ≤1;T = T;≤2 
[Satisfaction condition, part 1]



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing

Fulfils pass1 = T;pass2;T* 
[Satisfaction condition, part 2]



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing

Fulfils  pass2 = (≤2;TS2,Dom2)   iff theory is complete 
Fulfils  (≤2;TS2,Dom2)  ⊆ pass2  iff theory is sound 
Fulfils  pass2 ⊆ (≤2;TS2,Dom2)   iff theory is exhaustive



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

T ⇤
1

2

3

4

pass
1

pass
2

TS2,Dom2

TS1,Dom1 = T ; TS2,Dom2 ;T
⇤

Proof of Theorem 1 
by diagram chasing

Fulfils  pass1 = (≤1;TS1,Dom1)   iff is pass2 = (≤2;TS2,Dom2)  [completeness] 
Fulfils  (≤1;TS1,Dom1)  ⊆ pass1  iff is (≤2;TS2)  ⊆ pass2                   [soundness] 
Fulfils  pass1 ⊆ (≤1;TS1,Dom1)   iff pass2 ⊆ (≤2;TS2,Dom2)   [exhaustiveness]



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

TS2

T ⇤

TS1 = T ; TS2;T
⇤

1

2

3

4

pass
1

pass
2

Proof of Theorem 1 
by diagram chasing



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

TS2

T ⇤

TS1 = T ; TS2;T
⇤

1

2

3

4

pass
1

pass
2

Proof of Theorem 1 
by diagram chasing



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

TS2

T ⇤

TS1 = T ; TS2;T
⇤

1

2

3

4

pass
1

pass
2

Proof of Theorem 1 
by diagram chasing



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

TS2

T ⇤

TS1 = T ; TS2;T
⇤

1

2

3

4

pass
1

pass
2

Proof of Theorem 1 
by diagram chasing



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

TS2

T ⇤

TS1 = T ; TS2;T
⇤

1

2

3

4

pass
1

pass
2

Proof of Theorem 1 
by diagram chasing



Dom2

Dom1

F1(Dom1)

F2(Dom2)

1

2

T T

TS1(Dom1)

TS2(Dom2)

TS2

T ⇤

TS1 = T ; TS2;T
⇤

1

2

3

4

pass
1

pass
2

Side remark. This shows how model-based testing 
tools for domains Dom1 and Dom2 should interact in 
a collaborative verification environment



TTT application
• Theorem 2. Every complete (sound, 

exhaustive) FSM testing theory for  

language equivalence or  

language containment  

induces a complete (sound, 
exhaustive) equivalence class 
partition testing theory with 
analogous conformance relations for 
Kripke structures with infinite input 
domains, bounded nondeterminism, 
and finite internal state and finite 
outputs 

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing. 
Int J Softw Tools Techno Transfer, 
DOI 10.1007/s10009-014-0356-8., 2014

Wen-ling Huang, Jan Peleska: 
Complete Model-Based Equivalence Class Testing 
for Nondeterministic Systems. 
Submitted to Formal Aspects of Computing, 2015

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan
http://link.springer.com/article/10.1007/s10009-014-0356-8
http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan


TTT-application
• Step 1. Transform the transition relation 

Create a transition relation of the model 

Separate input variables, internal model 
variables, and output variables, by enumerating 
the latter 

Aggregate sequences of transitions between 
transient states into a single transition leading to a 
quiescent post-state



TTT-application
• Step 1. Transform the transition relation 

• This leads to transition relation of the form

R ⌘
_

i2IDX

�
↵i ^ (m,y) = (di, ei) ^ (m0,y0) = (di, ei)

�

_
_

(i,j)2J

�
gi,j ^ (m,y) = (di, ei) ^ (m0,y0) = (dj , ej)

�

with 

• Stability conditions 

• Jump conditions 

• Only input variables occur free in ↵i, gi,j

gi,j

↵i



TTT-application
• Step 2. Calculation of input equivalence classes 

• Each satisfiable solution of

specifies one input equivalence class

�f ⌘
^

i2IDX

gi,f(i) with f : IDX ! IDX permutation



TTT-application
• Step 3. Creation of the model map 

• Map Kripke model to minimal, observable FSM with 

Input alphabet ⌃I = {�f | �f is feasible}
Output alphabet ⌃O = finite output domain of Kripke model

Internal states Q = {qi | i 2 IDX}
Transition relation h = {(qi,�f , ej , qj) | f(i) = j}



TTT-application
• Step 4. Creation of the test case map 

FSM test cases are acyclic, terminating, single-
input, output-complete FSMs 

FSM test cases interact with the FSM to be tested 
via language intersection as „parallel operator“ 

FSM test inputs state-dependent value to SUT 

FSM test accepts SUT output and transits into 
next state with new input or into fail state



�

�

�����

����

����� ����� ����� �����

��

�����

��

�����

����� ����� �����

����� ����� ����� �����

����

���������� ����� ����� ����� �����

FSM test case



TTT-application
• Step 4. Creation of the 

test case map 

Kripke structure test 
cases interact (this is one 
option) synchronously 
with the SUT 

In contrast to FSM test 
cases, inputs to the SUT 
are strictly separated 
from monitoring of 
outputs

S W

xw

x

y

ywt

r

m z



TTT-application
• Step 4. Creation of 

the test case map 

• Consequently, 
one FSM test 
step leads to a 
more complex 
Kripke test step 
involving several 
transitions w(t) = w(z) ^ w(r) = fail ^ w(xw) = ?

w(t) = w(z) ^ w(r) = 3 ^ w(xw) = ?

W0

W1

W2

W3

W4

W5
W6

W7

W8W9

W10

W11

w(xw) = 0 ^ w(t) = w(z) ^ w(r) = 0

w(xw) = max^w(t) = w(z) ^ w(r) = 1

w(xw) = max+0.1 ^
w(t) = w(z) ^ w(r) = 2

w(t) = 1 = 1� w(z)

W12

w(t) = 1 = 1� w(z)w(t) = 0 = 1� w(z)

w(t) = 0 = 1� w(z) ^ w(yw) = ALARM

w(t) = 0 = 1� w(z) ^ w(yw) = OK

w(t) = 0 = 1� w(z) ^
w(yw) = OK

w(t) = 1 = 1� w(z)

w(t) = 0 = 1� w(z) ^ w(yw) = ALARM



TTT-application
• Step 5. Proof of the satisfaction condition 

The proof is independent on the selection of 
representatives from each equivalence class, 
whenever this class occurs as an input in an FSM 
test case 

Consequently, the test strategy for Kripke 
structures can be combined with random 
selection of input data from each class



Theory translation –      
model-theoretic underpinning
• Alternative A. Theory of Institutions

      Joseph A. Goguen, Rod M. Burstall: 
Institutions: Abstract Model Theory for Specification and 
Programming. J. ACM 39(1): 95-146 (1992)

Test case map above  
corresponds to sentence 
translation map in theory 
of institutions –  
Need Grothendiek 
Institutions 

      Razvan Diaconescu: 
Institution-independent Model-Theory. Birkhäuser Verlag, 
Basel, Boston, Berlin, 2008

http://dblp.uni-trier.de/pers/hd/b/Burstall:Rod_M=
http://dblp.uni-trier.de/db/journals/jacm/jacm39.html#GoguenB92


Multiple formalisms in CPS 
modelling – Example 2. 

Verification of emergent properties

• Semantics for CPS – time for a change 
of paradigm? 

• Multiple formalisms in CPS modelling  

• Example 1. Testing theories and 
collaborative tool environments 

• Example 2. Verification of 
emergent properties

• Conclusions and future work



Current 
speed

Current 
maximum 

speed

Emergency 
brake

Automated braking command

Onboard main controller

PLC brake controller

auto_on, auto_off

man_on, man_off

trigger, release

Recall – train onboard speed control
Train engine driver 
brake command



Verification of emergent 
properties

• Application scenario 

Onboard controller has been verified and tested using SysML 
models with Kripke semantics 

PLC has been verified and tested using FSM models 

Verification objective. System satisfies emergent property  

EP. „As long as the speed is above emergency threshold, 
the emergency brakes stay active and cannot be manually 
released“ 

Technical side condition. EP shall be specified in CSP trace 
logic



Verification of emergent 
properties

• Problems to be solved 

• EP can only be specified by referring to properties of both the 
onboard main controller and the brake controller  

• Properties related to brake controller are specified by FSM I/O 
sequences x/y – e.g. via intersection with testing automaton

• Properties related to Onboard speed controller are specified 
by, e.g. LTL formulas with shared I/O variables as free 
symbols 

• CSP trace logic formulas are specified over traces of events 
and refusal sets



Verification of emergent 
properties

• Observations

• FSM I/O-events x/y can be mapped to CSP channel events x.y 

• FSM parallel composition by intersection is similar to synchronous 
channel communication of CSP processes

• CSP failures models can be represented by normalised transition 
graphs

A.W. Roscoe: 
Model-Checking CSP. In A Classical Mind: Essays in Honour of C.A.R. Hoare. 
Prentice Hall International (UK), 1994



Alternative approach
• Alternative B. Approach based on Unifying  

Theories of Programming UTP 

• „Programs are predicates“ – no distinction 
between models and sentences 

• Theories are made up from alphabets, 
signatures, and healthiness conditions 

• Conformance is expressed by implication                                               
[P ⇒ Q] („P refines Q“) 

• Model, sentence, and theory translation is 
enabled by the existence of Galois 
connections

Jifeng He, C. A. R. Hoare:
Unifying theories of programming. 
RelMiCS 1998: 97-99

http://dblp.uni-trier.de/pers/hd/h/He:Jifeng
http://dblp.uni-trier.de/db/conf/RelMiCS/RelMiCS1998.html#JifengH98


Verification of emergent 
properties

• Procedure 

• Create UTP theories for  

Sub-class of Kripke structures (sequential nondeterministic 
programs) with LTL safety formulas for property specifications,  

FSMs with property specification by testing automata 

CSP failures model with failures (= trace/refusal) specifications 
P sat S(tr,ref)  

CSP transition graphs with CSP-like specifications                  
G sat S(tr,ref)



Verification of emergent 
properties

• Procedure 

• Create Galois connections 

CSP failures models ⇄ CSP transition graphs 

Sequential nondeterministic programs ⇄ CSP transition graphs 

FSMs ⇄ CSP transition graphs 

• This allows us to  

lift the local properties of FSM and Kripke structure to local CSP assertions 

deduce the required satisfaction relation on CSP level by means of 
compositional reasoning 



Theory translation –      
model-theoretic underpinning

Application example  

• Some of these Galois  
connections have already 
been established

Ana Cavalcanti, Wen-ling Huang, Jan Peleska, Jim Woodcock: 
CSP and Kripke Structures. ICTAC 2015: 505-523

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan
http://dblp.uni-trier.de/pers/hd/w/Woodcock:Jim
http://dblp.uni-trier.de/db/conf/ictac/ictac2015.html#CavalcantiHPW15


Conclusions and 
future work

• Semantics for CPS – time for a change 
of paradigm? 

• Multiple formalisms in CPS modelling  

• Example 1. Testing theories and 
collaborative tool environments 

• Example 2. Verification of emergent 
properties 

• Conclusions and future work



Conclusions
• We have identified characteristics of CPS challenging 

the existing semantic approaches to concurrent 
systems 

• Potential solutions to the problems of  

theory translation 

verification of emergent properties in presence of 
multiple formalisms 

have been proposed



Future work
• Evolution of asserted behaviour 

Inspiration from AI. Belief systems and belief revision – CPS components 
should act optimally in relation to the current status of belief – belief revision 
should only be necessary within specified boundaries 

• Semantic navigation 

A network of semantics offering different degrees of abstraction 

Network nodes are connected by theory translation mappings – Galois 
Connections? 

• Dynamic re-configuration 

Simpler methods are available for bounded-length model investigation, as 
used in bounded model checking and model-based testing



Acknowledgements
I would like to express my gratitude to this audience, its 
organisers, and to my friends and collaborators who 
inspired and contributed to the ideas presented in this 
talk. 

Ana Cavalcanti, Anne E. Haxthausen, Wen-ling Huang, 
Christoph Hilken, Felix Hübner, John Fitzgerald, Peter 
Gorm Larsen, Till Mossakowski, Mohammad Reza 
Mousavi, Alexandre Petrenko, Markus Roggenbach, Uwe 
Schulze, Linh Hong Vu, Jim Woodcock, Cornelia Zahlten

The work presented here has been performed in the context of project 
Implementable Testing Theories for Cyber-physical systems (ITTCPS) 
http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html 


