
Model-Based Testing for the Second Generation of Integrated Modular Avionics

Christof Efkemann, Jan Peleska
Department of Computer Science and Mathematics

University of Bremen
Bremen, Germany

Email: {chref, jp}@tzi.de

Abstract—In this paper the authors present the current re-
search and development activities regarding automated testing
of Integrated Modular Avionics controllers in the European
research project SCARLETT. The authors describe the goals
of the SCARLETT project and explain its background of
Integrated Modular Avionics. Furthermore, they explain differ-
ent levels of testing of components required for certification.
A domain-specific modelling language designed for the IMA
platform is presented. This language is used to create models
from which tests of different levels can be generated automat-
ically. The authors expect significant improvements in terms
of effort to create and maintain test procedures compared to
conventional test creation.

Keywords-IMA; SCARLETT; TTCN-3; avionics; domain-
specific modelling; model-based testing;

I. INTRODUCTION

This section starts with an introduction to the Integrated
Modular Avionics platform, its use in modern aircraft and
its specific testing needs, followed by a short overview of
the European research project SCARLETT and its goals.
A detailed description of the authors’ contributions to this
project is given and we refer to related work in this field.

A. Integrated Modular Avionics

The traditional federated aircraft controller architec-
ture [1, p. 11] consists of a large number of different,
specialised electronics devices, many of them with cus-
tom interfaces. In the Integrated Modular Avionics (IMA)
architecture this multitude of device types is replaced by
a small number of modular, general-purpose component
variants whose instances are linked by a high-speed data
network. Due to high processing power each module can
host several avionics functions, each of which previously
required its own controller. The IMA approach has three
main advantages:

• Reduction of weight through a smaller number of phys-
ical components and reduced wiring, thereby increasing
fuel efficiency.

• Lower maintenance costs by reducing the number of
different types of replacement units needed to keep on
stock.

The work presented in this document has been produced with funding
received from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement no. ACP7-GA-2008-211439.

• Reduction of development costs by provision of a stan-
dardised operating system, together with standardised
drivers for the avionics interfaces most widely used.

An important aspect of module design is segregation: In
order to host applications of different safety assurance levels
on the same module, it must be ensured that those appli-
cations cannot interfere with each other. Therefore a mod-
ule must support resource partitioning via memory access
protection, strict deterministic scheduling and I/O access
permissions. Bandwidth limitations on the data network have
to be enforced as well. The interface between applications
and the operating system conforms to a standardised API
which is specified in the ARINC 653 standard [1]. This
standard also defines the scheduling properties ensuring
partitioning in the time domain.

Due to their modularity and flexibility IMA components
have a complex configuration. It covers many aspects like
partitioning, resource allocation, scheduling, I/O configura-
tion, network configuration and internal health monitoring.
This makes the configuration an integral part of the system,
and it must be taken into consideration during verification
and certification [2], [3]. As a result of these considerations,
different levels of testing for IMA modules have been
defined in a previous research project [4]:

• Bare Module Tests are designed to test the module and
its operating system at API level. The test cases check
for correct behaviour of API calls, while robustness test
cases try to violate segregation rules and check that
these violation efforts do not succeed. Bare module
tests are executed with specialised module configura-
tions designed for these application-independent test
objectives. The application layer is substituted by test
agents that perform the stimulations on the operating
system as required by the testing environment and relay
API output data to the testing environment for further
inspection.

• Configured Module Tests do not focus on the module
and its operating system, but are designed to test
application-specific configurations meant to be used in
the actual aircraft. The test cases check that configured
I/O interfaces are usable as defined. Again, the appli-
cation layer is replaced by test agents.

Figure 1. DME Architecture

• Functional Tests run with the “true” application layer
integrated in the module and check for the behavioural
correctness of applications as integrated in the IMA
module.

The standard aircraft documentation reference for IMA is
ATA chapter 42. The IMA architecture is currently in use
in the Airbus A380, A400M, the future A350 XWB, and
Boeing 787 Dreamliner aircraft.

B. SCARLETT

SCARLETT, meaning “SCAlable & ReconfigurabLe
elEctronics plaTforms and Tools”, is a European research
and technology project [5]. With 38 partner organisations
(airframers, large industrial companies, SMEs and univer-
sities) it is a large-scale integrating project funded under
the Seventh Framework Programme [6] of the European
Commission. SCARLETT is a successor to several earlier
European research projects in the field of avionics, like
PAMELA, NEVADA and VICTORIA. Its goal is the de-
velopment of a new generation of IMA with increased scal-
ability, adaptability and fault-tolerance, called Distributed
Modular Electronics (DME).

The DME concept aims at the separation of processing
power from sensor/actuator interfaces, thereby reducing the
number of different component types to a minimum. This
also makes DME suitable for a wider range of aircraft
types by giving system designers the possibility to scale
the platform according to required hardware interfaces and
computing power. Figure 1 shows an example of a network
of components: two Core Processing Modules (CPM), three
Remote Data Concentrators (RDC) and two Remote Power
Controllers (RPC) linked via two redundant AFDX1 net-
works. The CPM components provide the computing power
and host the avionics applications, while the RDC and RPC
components provide the required number of sensor/actuator
and bus interfaces.

The project also investigates ways of increasing fault
tolerance through different reconfiguration capabilities,

1The Avionics Full DupleX (AFDX) Switched Ethernet network is defined
in the ARINC 664 standard [7] and used as high-speed communication link
between aircraft controllers. It is the successor of the slower ARINC 429
networks [8] and used, for example, in Airbus A380 and A350XWB aircraft
as well as in the Boeing 787 Dreamliner.

e. g. transferring avionics functions from defective modules
to other operative modules. Finally, the design of a unified
tool chain and development environment will lead to im-
provements of the avionics software implementation process.

The project is currently in its implementation phase. It
will finish in October 2011. The authors are involved in
the tool development aspects of the project. Their goal
is to provide tools for automated model-based testing of
DME components and applications. The automation scope
covers test case, test data and test procedure generation from
domain-specific models as well as the test execution in a
hardware-in-the-loop testing environment.

C. Main Contributions

In section II the authors introduce a domain-specific
modelling language (DSL) for IMA configuration and IMA
behaviour. This language allows test designers to specify test
cases for bare and configured module tests in a very compact
manner, without explicitly referring to the availability and
distribution of resources2 in the IMA module under test. A
generator produces the concrete test procedure in TTCN-3
syntax. This procedure stimulates and controls distributed
interactions between test agents on different partitions and
modules. For this purpose, the generator evaluates both the
test case specification and the IMA configuration (which
is also generated automatically in the case of bare mod-
ule tests) and selects the concrete resources involved in
compliance with the configuration. For HW/SW integration
tests with the application layer present in each IMA module
which is part of the system under test (SUT), behavioural
test models based on timed state machines can be used, and
the generator derives test cases, test data and procedures
from these models by means of a constraint solver.

The effectiveness of our solution is assessed by comparing
the effort needed for test model development in the new
approach described here to the effort necessary to write
TTCN-3 procedures covering the same test objectives in a
manual way.

D. Related Work

The results related to bare and configured module tests
described in this paper are based on earlier work completed
within the VICTORIA project [4], [9]. In that project a
library consisting of formal Timed CSP [10], [11] specifica-
tion templates had been developed to facilitate the creation
of bare module tests. The amount of manual effort for test
procedure creation, however, was still substantial. Moreover,
domain experts without knowledge in the field of process
algebras were reluctant to analyse the resulting test proce-
dures. In contrast to that, the approach presented here uses
an intuitive graphic template formalism to describe patterns
from which concrete test cases and test data can be derived

2Examples for resources are partitions, threads, communication ports,
semaphores and blackboards for shared memory data exchange.

and which are automatically “wrapped” in executable test
procedures. Additionally, the VICTORIA results relied on
specific test engine hardware and test execution software.
In contrast to that, the SCARLETT project tries to achieve
independence from specific test hardware by deploying a
TTCN-3-based test environment [12]–[14]. The underlying
techniques for model-based functional testing are described
in more detail in [15], where also references to competing
approaches are given.

Domain-specific approaches to test automation are also
promising in other areas: In [16], for example, patterns
for automated test generation in the railway control system
domain are described.

II. DOMAIN-SPECIFIC MODELLING LANGUAGE ITML

In this section the authors present the domain-specific
language components for bare module, configured module
and functional HW/SW integration tests and illustrate how
concrete test cases and test data, as well as the test proce-
dures executing these test cases are generated automatically
from the DSL test case specification templates. Section IV
contains the conclusion and gives indications with respect
to future work.

A. Domain-specific Modelling in the IMA Testing Domain

In general, domain-specific modelling (DSM) makes use
of graphical domain-specific languages (DSL) consisting of
elements from a certain problem domain. These models
can easily be understood, validated and even created by
domain experts without requiring in-depth knowledge of
software engineering principles [17]. For the first generation
of IMA, test procedures were implemented manually. This
proved to be time-consuming and error-prone. Furthermore,
the domain experts could not write the test procedures by
themselves – only people with profound knowledge of the
test environment were able to do that. The authors’ intention
is to improve this situation for the second generation of IMA.
Therefore, they designed the IMA Test Modelling Language
(ITML), a language for the IMA testing domain.

As described in the introduction, testing of IMA mod-
ules is performed on different levels. This is reflected in
ITML through different variants of the language: ITML-B
is designed for bare module testing, while ITML-C is suited
for configured module testing. A third variant, ITML-A,
designed for application testing, will be introduced further
below.

The metamodels and models presented here have been
implemented using the DSM tool MetaEdit+ [18].

B. Bare Module Tests: ITML-B

The IMA Test Modelling Language variant B allows the
definition of bare module tests. Since there are no pre-
defined configurations for bare module testing, the language
allows the definition of suitable configurations, in addition

to API-oriented test actions. Therefore, ITML-B is split
into two parts: the configuration modelling part allows the
definition of a set of configurations for a test case, while
the behaviour modelling part allows the specification of the
dynamic test case behaviours.

1) Configuration: The goal of the configuration part is
not to provide a full-featured configuration editor (which
would be very tedious to use, due to the large number
of configuration parameters available), but to allow the
user to describe constraints on a set of configurations with
a minimum of effort. ITML-B allows the test designer
to specify the components relevant for his test case, like
partitions, processes and ports, in a “plug-and-play” manner.
However, for each attribute, the designer can specify a single
value, or a range of values. The latter results in not one, but a
set of configurations being generated from the specification.

In detail, the metamodel defines a three-level tree of ob-
jects: Its root is a CPM Config object. The next level consists
of Partition Config objects, followed by Process Config
objects. The metamodel provides a relationship that models
the edges of the tree. A Process Config object describes one
or more processes and is linked to a Partition Config object.
The Partition Config object describes one or more partitions,
and each of those partitions contains processes as described
by the linked Process Config object(s). The same holds for
CPM Config and Partition Config: The CPM described by
the CPM Config object contains partitions as specified by
the associated Partition Config objects.

Communication ports between partitions and to other
remote components are not specified one by one, but in-
stead as sets of ports of a specified type. This level of
abstraction helps test designers to quickly generate suitable
configurations for their test cases. For that purpose the
metamodel provides the objects AFDX Port Config and RAM
Port Config. A second type of relationship is used here to
link the port groups to partitions and to denote the direction
of the dataflow between partitions and ports.

A great advantage of modelling is the use of constraints
in the metamodel. The modelling tool always ensures the
compliance with those constraints, thereby guaranteeing that
the relations in configuration models are correct and that the
models are valid.

Figure 2 shows an example of a configuration model.
A generator written in MERL3 exports the configuration

models to files in an intermediate XML format. These files
are then converted into actual configurations that can be
processed by the module tool chain and loaded onto a CPM.
In this step the generator also takes care of handling ranges
of configuration values by generating multiple configura-
tions. The generator tries to keep the overall number of
generated configurations to a minimum by using different
values of each ranged attribute in each configuration instead

3MetaEdit+ Reporting Language

Figure 2. ITML-B Configuration example

Figure 3. Test Agent

of producing a Cartesian product.
2) Behaviour: In order to understand the ideas behind

the modelling of the behaviour part it is important to recall
that there is no real application loaded onto the module for
bare module and configured module testing. A generic test
agent (TA) is used instead. An instance of the TA is loaded
into each partition of the module (see Figure 3). The test
procedure uses pre-defined AFDX ports to communicate
with the TAs on the module and have them perform API
calls on its behalf. A remote procedure call protocol is used
to encode functions, parameters and return values.

An ITML-B behaviour part specifies a generic test case
that is to be executed with one or more configurations. The
behaviour part basically resembles a flowchart.

The metamodel describing valid behaviour models is more
complex than the configuration metamodel described before.
It contains objects of different categories: Partition and Pro-
cess objects serve as containers for other objects, defining
their context. Start, Pass and Fail are flow control objects
and specify where the flow starts end ends. Blackboard,
Buffer and Message are resource objects. They are used
in combination with API Call and Complement objects.
The For all object is another container, providing a loop
construct.

API Call objects are placed inside a container object,
thereby defining where the respective API call is to be
executed. The metamodel provides a Parameter relationship
which links resource objects to API Call objects. The For
all loop container provides a default argument to the API
calls contained in it. A second type of relationship provides
the edges of the flowchart, linking the flow control objects
with the API Call and Complement objects.

Complement objects (either “read complement” or “write
complement”) allow access to the other end of the resource
currently in use without having to know (and hard-code)
where (i. e. which module, partition) that is actually located.
The currently used AFDX port can be, for example, linked
to an AFDX port in another partition, or connected to a
remote component, depending on the configuration.

An example of a behaviour model is given in Fig-
ure 4. The basic DSL objects in the flowchart (Cre-
ate Sampling Port, Write Sampling Message) are API Call
objects representing ARINC 653 API calls which are con-
trolled remotely by the test procedure running on the test
bench and executed by the corresponding partition’s test
agent on reception of the remote procedure call. The se-
quence of API calls is controlled by the flowchart arrows
decorated with guard conditions. Parameters of API calls
are either defaults, e. g. derived from an API port currently
in use, or specified explicitly, e. g. in order to use invalid
values for robustness tests. Execution starts at the flow start
object and ends at one of the flow end objects, each of which
denotes a test case result (pass/fail).

Message objects specify message payloads, either as
concrete values or as sets of allowed values, e. g. regular
expressions. In Figure 4, the ∀ RAM Sampling Output Port
box is a loop object, binding communication ports to the API
calls inside the bounding box. The flowchart step objects are
enclosed in a container object (outer box in Figure 4). The
process frame specifies the partitions and processes on which
the steps shall be executed.

Following an XML export of the model, a generator
is employed here as well for the creation of TTCN-3
test procedures from the behaviour models. The generator
translates the control flow graph of the flowchart into TTCN-
3 statement blocks linked by if/else and goto statements.
The API calls are converted into remote procedure calls to
be executed by the test agent on the module. The remote
procedure calls are implemented using TTCN-3’s procedure-
based communication mechanism – as opposed to other I/O,
which is message-based. Thereby call statements can be used
to trigger remote procedure calls. Complement objects are
transformed into the appropriate operations depending on the
opposite end-point of the respective current communications
port.

The following code fragment4 shows an example of a

4A few comments have been added to make it easier to understand.

Figure 4. ITML-B behaviour example: RAM ports

generated TTCN-3 test procedure, corresponding to the
model from Figure 4, to be executed on the test bench:
// the port ID of the current port
var PORT_ID port_id;

// first RAM sampling output port of partition 1:
label l_port1;
// first step: Create_Sampling_Port API call
ta_pt1.call(CREATE_SAMPLING_PORT:{"RAM_SP1", 128, SOURCE, 500, -}) {

// return with NO_ERROR: save returned port ID in local variable
[] ta_pt1.getreply(CREATE_SAMPLING_PORT:{-,-,-,-,?}

value RETURN_CODE_TYPE:NO_ERROR) ->
param(-,-,-,-,port_id) {}

// other return value: FAIL and skip to next port
[] ta_pt1.getreply(CREATE_SAMPLING_PORT:{-,-,-,-,?}) {

setverdict(fail);
goto l_port2;

}
}

// second step: Write_Sampling_Message API call, use stored port ID
ta_pt1.call(WRITE_SAMPLING_MESSAGE:{port_id, msg_tmpl}) {

// return with NO_ERROR
[] ta_pt1.getreply(WRITE_SAMPLING_MESSAGE:{-,-}

value RETURN_CODE_TYPE:NO_ERROR) {}
// other return value: FAIL and skip to next port
[] ta_pt1.getreply(WRITE_SAMPLING_MESSAGE:{-,-}) {

setverdict(fail);
goto l_port2;

}
}

// third step: read_complement implemented as Read_Sampling_Message
// in partition 3, port ID determined from configuration
ta_pt3.call(READ_SAMPLING_MESSAGE:{ram_sp7_id, -, -}) {

// return with NO_ERROR, matching message and validity
[] ta_pt3.getreply(READ_SAMPLING_MESSAGE:{-, msg_tmpl, VALID}

value int:NO_ERROR) {}
// other return value, msg or validity: FAIL and skip to next port
[] ta_pt3.getreply(READ_SAMPLING_MESSAGE:{-, ?, ?}) {

steverdict(fail);
goto l_port2;

}
}
setverdict(pass);

label l_port2;
ta_pt1.call(CREATE_SAMPLING_PORT:{"RAM_SP2", 64, SOURCE, 1000, -}) {

[] ta_pt1.getreply(CREATE_SAMPLING_PORT:{-,-,-,-,?}
value RETURN_CODE_TYPE:NO_ERROR) ->
param(-,-,-,-,port_id) {}

[] ta_pt1.getreply(CREATE_SAMPLING_PORT:{-,-,-,-,?}) {
setverdict(fail);
goto l_end;

}
}

ta_pt1.call(WRITE_SAMPLING_MESSAGE:{port_id, msg_tmpl}) {
[] ta_pt1.getreply(WRITE_SAMPLING_MESSAGE:{-,-}

value RETURN_CODE_TYPE:NO_ERROR) {}
[] ta_pt1.getreply(WRITE_SAMPLING_MESSAGE:{-,-}) {

setverdict(fail);
goto l_end;

}

}

ta_pt2.call(READ_SAMPLING_MESSAGE:{ram_sp3_id, -, -}) {
[] ta_pt2.getreply(READ_SAMPLING_MESSAGE:{-, msg_tmpl, VALID}

value int:NO_ERROR) {}
[] ta_pt2.getreply(READ_SAMPLING_MESSAGE:{-, ?, ?}) {

steverdict(fail);
goto l_end;

}
}
setverdict(pass);

label l_end;

Note how a relatively simple and small model is used
to generate a much larger amount of code for the test
procedure. Even if more RAM ports were defined in the
configuration, the behaviour model would remain the same,
but the generator would automatically create additional
code in the test procedure. You can also see how the
read complement steps generate remote procedure calls into
other partitions (ta_pt1: command port to TA in partition
1, ta_pt2: command port to TA in partition 2, etc.)

C. Configured Module Tests: ITML-C

The IMA Test Modelling Language variant C allows the
definition of configured module tests. Since configurations
are pre-defined in this scenario, the language does not admit
the definition of configurations. Therefore, ITML-C consists
only of a behaviour part. Its metamodel is identical to
the ITML-B behaviour specification. This also means that
ITML-B test case models can be re-used as ITML-C test
cases.

The configurations (which are part of the SUT in config-
ured module testing) are used together with the behaviour
models as inputs in the generation process. The resulting
TTCN-3 test procedures are tailored to the specific con-
figuration. Whenever the module integrator releases a new
version of the configuration, the tester only has to re-
generate the test procedures to produce a new test suite
adapted to the new configuration.

D. Hardware/Software Integration Tests: ITML-A

The natural complementation of bare module and config-
ured module tests are functional HW/SW integration tests
with the integrated application layer, so ITML-B and C
are complemented by the third modelling language ITML-
A(pplication). As in ITML-C, functional tests work with
dedicated configurations, but the SUT boundaries applicable
in ITML-A differ from those of ITML-C: for functional
HW/SW integration testing IMA partitions run the target
applications so that no test agents are present. The SUT
boundaries consist of the hardware interfaces of the IMA
module, so the test equipment acts on HW interfaces –
such as AFDX, CAN, discrete and analogue – only. The
underlying test case generation strategy of ITML-A is to
evaluate a structural and functional model of the application
behaviour and derive both test stimulations and test oracles
(checkers for expected results) from this model.

To this end, the ITML-A metamodel provides a hierarchy
of graphs. The top level consists of a System Diagram which

SUT

id: int

t: timer

req: RequestMessage

SD_CTRL

msg: SD_StatusMessage

<<interface,TE2SUT>>

sd_status_interface

sd: Signal<SD_STATUS>

<<enumeration>>

SD_STATUS

standby = 0; alarm = 1; failure = 2

<<interface,SUT2TE>>

sd_polling_interface

poll: Signal<SD_STATUS>

<<interface,TE2SUT>>

cpt_interface

cpt: Signal<SD_STATUS>

id: int

t: timer

req: RequestMessage

TE

SD

CPT

sd_status_interface

sd_polling_interface

cpt_interface

Figure 5. ITML-A state machine: composite structure diagram

is a variant of UML2.0 composite structure diagrams. It
contains the SUT object and a TE (Test Environment) object;
both may be decomposed further into sub-components. The
system diagram also contains a list of the input and output
signals between the SUT and the TE. Behaviour is specified
in the leaves of the system decomposition by means of timed
state machines.

Figure 5 shows a system diagram modelling a simpli-
fied smoke detection function: The SUT consists of an
IMA computer hosting the smoke detection control function
SD CTRL. This function polls smoke detectors (SD) in 2-
second cycles and reports smoke alarms received from SDs
to the cockpit (CPT). If SDs report failures or stop answering
the polling requests in time their failure is also reported to
CPT.

Behaviour is modelled by timed state machines, as shown
in Fig. 6 for the SD control function. In addition to local
and shared variable manipulations these state machines
admit timers and communication events. Variable t is a
timer which acts like a stop watch. It can be set to zero
using the t.reset() operation and questioned whether a
time interval of length c has elapsed since the last reset,
using the t.elapsed(c) operation. Communications consist
of put(msg)-actions (send a message) and get(msg)-events
(wait for reception of message). They act on signals which
are automatically mapped to observable actions and events
on the interfaces shared between IMA and test equipment.
For SUT components, these state machines are deterministic:
in case of several guard conditions being simultaneously
enabled for transition emanating from a control state, the
one with the highest priority is taken (0 = best priority).
This can be seen in control state WAIT RESPONSE,
where the transition to state FAILURE take precedence over
a transition to EVALUATE, if both guard conditions are
true. Parallel components act synchronously, that is, they all
evaluate the same pre-state and perform their associated state
transitions with accompanying actions in a simultaneous way
in zero time. Time passes when all components are in a

stable state, and after such a positive delay new values may
be placed on the inputs to the SUT. Multiple instances of
components are specified using a tabular notation (not shown
here due to space limitations). In our example, separate
copies of SD CTRL run concurrently in the SUT, one for
each smoke detector connected to the SUT. Each instance
is identified by their unique id-value which is also used to
identify the signals to be used in communications with SDs
and CPT.

The specification of (a part of) the test environment is
optional. If no TE model is given, the test case generator
will derive test cases and associated test data from the
SUT model alone. To this end, the generator first identifies
symbolic test cases as reachability goals in the model,
taking into account the dependencies between concurrent
components. In the simple example presented here, no
dependencies between different instances of SD CTRL are
present, so the generator interleaves the goals associated
with each instance in a random manner. Different model
coverage goals can be configured and used in combination,
such as, for example MC/DC model coverage (see [19]
for a comprehensive discussion of model coverage metrics).
Consider, for example, the goal to cover the transition from
location WAIT RESPONSE to FAILURE. The generator
transforms this goal into a logical constraint which looks
like

WAIT RESPONSE ∧ (t̂ < t+ 0.5)

Here the first conjunct is a Boolean variable indicating
whether the SUT is in location WAIT RESPONSE, and
(t̂ < t+ 0.5) is an internal resolution of the t.elapsed(0.5)
condition: the generator handles timers as ordinary variables,
where the actual model execution time t̂ is assigned to
at every t.reset(). An elapsed condition can therefore be
expressed as an evaluation whether the current time is
greater or equal to the last time the timer was reset plus
the wait time specified in the elapsed parameter. The goal
constraint is combined with another constraint specifying the
SUT transition relation. This is used by an SMT constraint

WAIT

WAIT_RESPONSE FAILURE

EVALUATE

SD_CTRL

/ t.reset()

[msg == failure]

cpt[id].put(alarm)

[msg == alarm] /

[t.elapsed(2)]

poll[id].put(req[id]);

entry/ t.reset();

[msg == standby]
sd[id].get(msg)

entry/

 cpt[id].put(failure);

[t.elapsed(0.5)]

0

1

Figure 6. ITML-A state machine: component behaviour of smoke detection
control function.

solver [20] to calculate concrete input values and time
stamps at which these values are passed to the SUT, such that
the goal condition is fulfilled after a finite number of system
transitions. In the example, this would lead to a concrete test
case (1) Wait 2 time units, (2) check for polling message to
arrive, (3) Wait for a value of 0.5 + ε time units, (4) check
for failure message to arrive at CPT.

If TE model components are present, the test case genera-
tor calculates timed input sequences to the SUT as sketched
above, but now only sequences are produced which are
consistent with the specified TE components. Take, for
example, the TE simulation of a smoke detector as given
in Fig. 7. It is also modelled using timed state machines,
but for environment simulations we admit non-deterministic
behaviour: in control state RESPOND it may be non-
deterministically decided whether to respond to a polling
request with a standby, alarm or failure status, or whether
not to respond at all. Moreover, non-determinism is also
available in the time domain. Condition t.elapsed(0.1,1.0)
guarding the transition from DELAY to RESPOND be-
comes true after an arbitrary amount of time δ ∈ [0.01, 1.0]
has passed since the reset of t. Taking into account this
TE simulation, the generator will create the same timed
sequence of test steps as described above, but observe the
additional constraint in step (3) that 0.5+ε should not exceed
1.0, since this is the maximal delay δ for a response to be
given according to the SD simulation.

Observe that currently this non-determinism is resolved
by the test case generator during the generation process:
it chooses among several discrete transitions which are
simultaneously enabled or between different delay values
with the objective to (1) reach the SUT model coverage
goals which are still open and (2) maximise the coverage of
behaviours possible for the TE simulations.

III. ESTIMATION OF EFFICIENCY GAIN

The application of model-based testing is a completely
novel approach in the IMA domain. Compared to the manual

SD

REQUEST

WAIT_FOR_

RESPOND

SILENTLY

FAIL_

poll[id].get(req) DELAY

entry/ t.reset();

[t.elapsed(0.01,1.0)]

/ sd[id].put(standby)

/ sd[id].put(alarm)

/ sd[id].put(failure)

Figure 7. ITML-A state machine: TE simulation for SD behaviour

implementation of tests, however, the qualitative advantages
to be expected are obvious, since the complete test procedure
elaboration process is automated. Experiences gained from
the analysis of conventional test campaigns performed by
the authors in cooperation with Verified Systems Interna-
tional GmbH in Bremen and evaluation of model-based test
campaigns in other domains allow to estimate the increase of
efficiency when switching from conventional to model-based
testing as follows. Conventional HW/SW integration test
campaigns are performed along the following lines: (1) test
case and test data elaboration, (2) development of re-usable
test and simulation library extensions, (3) test procedure
programming, (4) test procedure trial and debugging, (5)
analysis of test execution results in the HW/SW integration
test environment, (6) analysis of results together with the
development team, (7) test documentation and test project
management. For conventional test campaigns 40% of the
overall effort is allocated to steps (1) — (4) and another
40% are allocated to steps (5) — (6).

Under ideal circumstances automated model-based testing
will reduce the effort for steps (1) — (4) to 0, and that
of steps (5) — (6) to half the effort, because model-based
testing offers the possibility to replay the test execution
observed against the model and to analyse discrepancies
between observed and expected behaviour on model level.
As a consequence, the overall effort for a HW/SW inte-
gration test campaign will be reduced in the best case to
40% of the effort required for a conventional test campaign
execution, if test models are already available. The initial
development of new test models requires an effort which is
less than that needed for steps (1) — (4). As a consequence,
a model-based test project where new models have to be
created is expected to require less than 80% of the effort for
conventional campaigns.

IV. CONCLUSION AND FUTURE WORK

In this article the authors have given an introduction
into the Integrated Modular Avionics architecture and have
shown its future development in the context of the SCAR-
LETT research project.

While employing TTCN-3 as an executable test speci-
fication language, the test cases of interest, however, are
specified on a higher level by means of domain-specific
models. The concrete test procedures, which can be executed
on heterogeneous test engine platforms, are generated from
these high-level models in an automated way. To this end,
the authors have introduced the domain-specific modelling
language ITML. For bare and configured module testing it
gives domain experts the ability to specify tests in a way that
completely abstracts from the actual test environment. For
Hardware/Software Integration testing an even higher level
of automation is reached because the test cases are derived
from behavioural models of the applications. This approach
is estimated to reduce the overall effort to 40% — 80% of
the effort required for conventional testing campaigns.

To demonstrate the usability of ITML-B in particular
the authors intend to model the ARINC 653 conformity
test specification [21] in ITML-B and show that it is
possible to derive platform-specific conformity tests in
an automatic way by means of first generating platform-
independent TTCN-3 conformity test procedures from the
ITML-B model and then running the test suite with platform-
specific adapters. The standard [21] suggests that conformity
test suites should be written as C programs, to be modified
each time with respect to the platform-specific parameters.
In contrast to that, the authors’ approach utilises re-usable
test agents executing API calls remotely controlled and
monitored by the test engine. The authors expect that this
concept will allow to perform the specified ARINC 653
conformity tests with considerably less effort and additional
error detection capabilities, since the test procedures are gen-
erated automatically from the ITML-B specification and may
therefore always test a range of configuration parameters and
API call parameter variants which is much wider than the
range possible for manually created test applications.

REFERENCES

[1] ARINC SPECIFICATION 653P1-2: Avionics Application
Software Standard Interface, Part 1 – Required Services,
Aeronautical Radio, Inc., Dec 2005.

[2] DO-178B: Software Considerations in Airbone Systems and
Equipment Certification, RTCA, Inc., Dec 1992.

[3] DO-297: Integrated Modular Avionics (IMA) Development
Guidance and Certification Considerations, RTCA, Inc., Nov
2005.

[4] A. Ott, “System testing in the avionics domain,” Ph.D.
dissertation, University of Bremen, Dec 2007.

[5] SCARLETT Consortium, “Project website,”
http://www.scarlettproject.eu/.

[6] Publications Office of the European Union, “Website of the
Seventh Framework Programme,” http://cordis.europa.eu/fp7/.

[7] ARINC SPECIFICATION 664P1-1: Aircraft Data Network,
Part 1, Systems Concepts and Overview, Aeronautical Radio,
Inc., Jun 2006.

[8] ARINC SPECIFICATION 429P1-17 Mark 33: Digital In-
formation Transfer System (DITS), Part 1, Functional De-
scription, Electrical Interface, Label Assignments and Word
Formats, Aeronautical Radio, Inc., May 2004.

[9] A. Ott and T. Hartmann, “Domain specific V&V strategies
for aircraft applications,” in 6th ICSTEST International Con-
ference on Software Testing, Düsseldorf, Apr 2005.

[10] S. Schneider, Concurrent and Real-time Systems – The CSP
Approach. Chichester: John Wiley & Sons, Ltd, 2000.

[11] J. Peleska, “Formal methods for test automation - hard real-
time testing of controllers for the airbus aircraft family,” in
Proc. of the Sixth Biennial World Conference on Integrated
Design & Process Technology (IDPT2002), Pasadena, Cali-
fornia, June 23-28, 2002. Society for Design and Process
Science, Jun. 2002, iSSN 1090-9389.

[12] Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core
Language, ETSI, Jun 2009, ETSI ES 201 873-1.

[13] Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime
Interface (TRI), ETSI, Jun 2009, ETSI ES 201 873-5.

[14] C. Wilcock, T. Deiß, S. Tobies, S. Keil, F. Engler, and
S. Schulz, An Introduction to TTCN-3. Chichester: John
Wiley & Sons, Ltd, Apr 2005, ch. 12.

[15] J. Peleska, E. Vorobev, and F. Lapschies, “Automated test case
generation with SMT-solving and abstract interpretation,”
in Proceedings of the Nasa Formal Methods Symposium
NFM2011, ser. LNCS, vol. 6617. Springer, 2011, to appear.

[16] K. Mewes, “Domain-specific modelling of railway control
systems with integrated verification and validation,” Ph.D.
dissertation, University of Bremen, Mar 2010.

[17] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: En-
abling Full Code Generation. Hoboken, NJ: John Wiley &
Sons, Inc., Apr 2008.

[18] MetaCase, “MetaEdit+ product website,”
http://www.metacase.com/products.html.

[19] S. Weißleder, “Test models and coverage criteria for auto-
matic model-based test generation with uml state machines,”
Ph.D. dissertation, Humboldt-Universität zu Berlin, 2010.

[20] S. Ranise and C. Tinelli, “Satisfiability modulo theories,”
TRENDS and CONTROVERSIES–IEEE Magazine on Intel-
ligent Systems, vol. 21, no. 6, pp. 71–81, 2006.

[21] ARINC SPECIFICATION 653P3: Avionics Application Soft-
ware Standard Interface, Part 3 – Conformity Test Specifica-
tion, Aeronautical Radio, Inc., Oct 2006.

