
Property-oriented Model-Based Testing
With Fuzzing

– Technical Report 09/2020 –

Wen-ling Huang, Niklas Krafczyk?, Hoang M. Le??, and Jan Peleska

Department of Mathematics and Computer Science, University of Bremen, Bremen,
Germany

huang@uni-bremen.de

niklas@uni-bremen.de

hle@uni-bremen.de

peleska@uni-bremen.de

Abstract. Fuzzing is a popular method for automated test generation in
the context of coverage-driven software testing. In this paper, we show its
applicability to a completely different testing domain: property-oriented
(also called requirements-driven) model-based testing (MBT). In MBT,
a reference model of the required behaviour of the system under test
(SUT) is elaborated. Based on this model, relevant test cases are identi-
fied, either to verify some conformance relation between reference model
and SUT, or to check whether the SUT satisfies requirements reflected
by the model. By transforming SysML models into simulation code and
test cases specified in Linear Temporal Logic (LTL) into observer code,
a property-based testing task is mapped to a coverage-driven testing
task. This can again be handled by fuzzing. The approach is illustrated
by an example of an automotive control system. We present two main
results: first, it is shown how combined MBT and property-oriented test-
ing can be performed with automated property generation, so that users
do not have to specify requirements or test cases using some temporal
logic. Second, and somewhat surprising, we demonstrate that for mod-
els of medium complexity, automated test case generation for property-
oriented MBT can be performed using only a fuzzer, without the help of
SMT solvers, as used, for example, in concolic testing.

Keywords: Property-oriented testing, requirements-driven testing, fuzzing, SysML

1 Introduction

1.1 Motivation

Classical model-based testing (MBT) is based on a reference model specifying the
expected behaviour of the system under test (SUT). Test cases are derived from

? Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 407708394.

?? Funded by CRDF, University of Bremen.

the model with the objective to create test suites with high test strength for de-
tecting conformance violations of the SUT behaviour in comparison to the model
behaviour. Conformance is usually specified by I/O-language equivalence [7,27],
reduction (I/O-language containment) [8], or by some other sort of refinement
property [24]. Testing for model conformance is quite popular and effective in
certain areas, for example, in the domain of protocol testing [16].

In other domains, such as the avionic, automotive, and railway domains,
the applicable standards [30,9,6] do not have a notion of model conformance. In-
stead, both development artefacts (design documents, code, . . .) and verification
artefacts (reviews, analyses, test, . . .) need to be traced back to requirements.
This is denoted by the requirements-driven approach to system development and
verification. Certification credit for test suites is not given for establishing some
sort of model conformance, but for showing that every requirement is adequately
covered by test cases, and that the test suite execution with the SUT shows that
no uncovered code remains after having tested all requirements. Requirements
can be formally regarded as properties, that is, sets of (usually infinite) computa-
tions. In classical property-oriented testing, test engineers abstain from creating
models, but they create property specifications instead. Formal approaches to
property-oriented testing specify both requirements and test cases by means of
some temporal logic, typically a variant of LTL. In [13], an overview of this re-
search field is given. As stated there, the main motivation for property-oriented
testing is the possibility to reduce test suite size in comparison to a complete
model-based conformance test suite: while the latter requires test cases to verify
all possible behaviours in relation to a reference model, the former only requires
to investigate the subset of possible behaviours which are relevant to verify a
certain set or properties (i.e. requirements).

In this paper, a combined approach of MBT and property-oriented testing
is advocated, with the objective to obtain certification credit for requirements-
driven test suites with an automation degree as high as possible. For automated
calculation of concrete test data, fuzzing is used.

1.2 Main Contributions

This paper has two main contributions.

1. Fully automated test case generation. We show that the availability of
a model allows for automated generation of temporal logic formulas representing
symbolic test cases1 for a given requirement. As a consequence, the combined
MBT and property-oriented approach described here reduces the manual effort
for creating requirements-based test suites to creating the SysML model and
tracing the requirements to structural or behavioural model elements. We con-
sider this to be an essential achievement for property-oriented testing, since tem-

1 These test cases are called symbolic because they are specified by formulas still
possessing free variables, to be “instantiated” with concrete test data in order to
obtain a concrete test case.

poral logic has not become an accepted specification technique in industry until
today, whereas model development is considered to be a state-of-the-art tech-
nique. As proof of concept, we present a SysML model of a controller from the
automotive domain, and exploit the SysML-specific approach to requirements
tracing. We illustrate how modelling and requirements tracing in the SysML
model is enough to produce test suites and test executions in a fully automated
way.

2. Concrete test generation by fuzzing. Creating concrete test cases from
symbolic ones requires some variant of constraint solving. In Concolic testing [10]
and test generation techniques based on behavioural model semantics [22], con-
crete test data is usually derived from code or from a model and a test case
specification in temporal logic. To obtain these solutions SMT solvers are fre-
quently used.

In this paper, we explore a novel application of fuzzing to generate test
cases in MBT. We leverage fuzzing as a coverage-maximising test generation
engine to generate valid test cases demonstrating required behaviour. This is in
stark contrast to previous applications that employ fuzzing as a form of negative
testing by mostly generating syntactically or semantically malformed input data.
To enable the application of fuzzing techniques, we transform the reference model
into a semantically valid model simulation coded in C++. The temporal logic
formulas representing test cases are transformed into observer methods, such
that covering certain code portions of the observer indicates fulfilment of the
original formula with the concrete inputs and time stamps selected by the fuzzer.

It should be emphasised that the objective of this contribution is not to
present new testing methods, but to show how combinations of existing meth-
ods and tools can be used to solve requirements-driven testing tasks in a more
effective way, by increasing automation.

1.3 Overview

In Section 2, an overview over the complete tool chain for property-oriented MBT
with fuzzing is presented. In Section 3, a controller from the automtive domain
is presented as a SysML model. In Section 4, we present an LTL specification
of the required controller behaviour. These specifications will not be used in the
remainder of the paper: they have been elaborated to illustrate that the “pure”
property-based approach to testing is too hard to be applied by practitioners
from industry. In Section 5, the functionality of the automated test case generator
is described, using the example from Section 3. In Section 6, an evaluation of
the fuzzer performance is presented for different symbolic test cases created for
the automotive controller. Section 7 contains the conclusion. A definition of LTL
semantics is provided in Appendix A.

We refer to related work throughout this paper, whenever appropriate.

2 Testing Tool Chain and Underlying Methods

Modelling Tool. The tool chain used for property-oriented MBT is shown in
Fig. 1. A SysML modelling tool is used for specifying the design and the ex-
pected behaviour of the SUT (an example is shown in Section 3). For the results
elaborated in this paper, the Papyrus SysML 1.6 tool [29] has been used2. The
tool stores models in XMI-format (XML Meta Data Interchange3, a specialisa-
tion of XML), as defined by the Object Management Group OMG responsible
for UML/SysML standardisation.

SysML Modelling Tool

XMI Model File

Code Generator

C++ Code – Model
Simulation

Fuzzer

Test Case Generator

Test Cases

Ltl3ba

pLTL Formula Refinement
Spec

Observer Generator

HOA Spec

C++ Code – Observer

Fig. 1. Tool chain.

Code Generator. For parsing XMI files, we use the well-established library
Libxml24. Based on this parser, real-time capable C++ simulation code can be
generated for SysML models. The code generator is outside the scope of this
paper, but a detailed description can be found in the lecture notes [21].

Test Case Generator. The XMI file encoding the model in textual form is
also parsed by the test case generator. The generator explores the SysML satisfy-
relationship linking requirements to structural and behavioural model elements,

2 https://marketplace.eclipse.org/content/papyrus-sysml-16
3 https://www.omg.org/spec/XMI/About-XMI/
4 http://xmlsoft.org

https://marketplace.eclipse.org/content/papyrus-sysml-16
https://www.omg.org/spec/XMI/About-XMI/
http://xmlsoft.org

in particular, to state machine states and transitions. As a result of this explo-
ration, symbolic test cases are created as temporal logic formulas written in LTL
(see Appendix A). The term ‘symbolic’ means that the test cases are represented
by formulas still containing free variables from VI , VO, VM , so that the concrete
test data is not yet completely determined. The LTL formula is delivered in
two components: the first is a propositional LTL (pLTL) formula, containing
names of atomic propositions only. The second is the refinement specification
which associates concrete unquantified first-order expressions with each atomic
proposition.

The functions of the test case generator are described in more detail in Sec-
tion 5.

ltl3ba. Given the pLTL formula part of a symbolic test case, the Büchi au-
tomaton accepting the LTL formula is then generated using ltl3ba [3] which
can present its results in the machine-readable Hanoi Omega Automata (HOA)
format [2].

Observer Generator. The observer generator produces C++ code which checks
whether the Büchi automaton associated with a pLTL formula has entered an
accepting state. To this end, observer code is generated which abstracts concrete
interface data and model variable valuations to the atomic propositions used in
the pLTL formula in every evaluation cycle. The test case formulas we use (see
examples in Section 5) are of the kind where an accepting state just has to be
reached once, so that every infinite continuation of the trace performed so far
results in an infinite trace fulfilling the test case formula.

To produce the observer code for identifying accepting states of the Büchi
automaton associated with the test case formula, the HOA-format is parsed
using the cpphoafparser [2] which can call methods of a class for the elements
of an omega automaton in the fashion of the producer consumer pattern. We
leverage this by implementing a consumer generating C++ code describing the
aforementioned observer as follows: Whenever the parser accepts an expression
as a state or edge of the omega automaton to be parsed, our consumer is notified,
including the acceptance sets they are part of and, in the case of automata edges,
the label of the edge. We then create a boolean state vector which has one element
per automaton state and initialise it such that the initial state is marked. The
observer is then generated, containing this state vector, a set of transitions to
be covered for each accepting set. Additionally, the observer contains a function
evaluating the state vector and current program execution state, determining the
enabled state transitions and updating the accepting sets and the state vector.
Afterwards, the evaluation of the acceptance condition is returned, allowing to
detect formula satisfaction.

Fuzzing with LibFuzzer Fuzzing, or fuzz testing, is an automated software
testing technique that repeatedly executes a program with random inputs until

an error condition can be triggered. Since its inception in the early 1990s [15],
fuzzing has evolved to one of the most widely used techniques in security testing.
The main focus of fuzzing is to detect security-related bugs that can lead to
vulnerabilities. Its sweet spot is memory-unsafe languages such as C/C++, where
low-level bugs such as buffer overflows, use-after-free situations, etc. can easily
creep into programs.

In the last few years, coverage-guided greybox fuzzing (CGF) has risen to
prominence. Many CGF tools, also referred to as fuzzers in this paper, such
as AFL [31] or LibFuzzer [1], have been used to find thousands of serious bugs
in widely-used critical open-source projects [26]. The key efficiency of CGF lies
in its ability to discover different execution paths at nearly native speed. The
basic idea behind this efficiency is surprisingly simple. CGF adds lightweight
instrumentation to the software unter test to measure code coverage of each
executed input. This coverage information is then used to guide the process of
creating new inputs by (randomly) mutating existing ones (e.g. by favouring
mutation of inputs whose execution discovered new coverage). Since its first
academic treatment [5], CGF has attracted significant research attention and
been improved in many ways, we refer to the excellent survey [14] for more
details.

The fuzzer acts as a concrete test data generator for the symbolic test cases
specified by LTL formulas. To this end, it executes the model simulation code,
where the observer is called at the end of every main loop cycle, and the fuzzer’s
input data generator is called at the beginning of each cycle, to assign new (ran-
domised) data to the SUT input interfaces, and to advance the model execution
time by an adequate amount. The fuzzing goal is to create a sequence of in-
put vectors and associated model execution time stamps, such that the observer
covers the code indicating acceptance of the formula. Since the first-order LTL
formula representing the test case typically refers to internal model variables
and output variables, as well as input variables, the model simulation needs to
be executed together with the observer: otherwise, the changes triggered by in-
put changes and by advancement of the time would not lead to the expected
changes in model outputs and internal model variables. In contrast to that, an
LTL formula for a test case referring to input variables from VI only, would not
need a model simulation. It would suffice to execute the observer alone until
the code indicating that the accepting state has been reached. This, however,
would require that the users specify every input explicitly, so that practically all
automation benefits are lost.

If the fuzzer covers the observer code indicating that an accepting state of
the Büchi automaton has been reached, the test data generation is stopped, and
the concrete test case consists of the sequence of input vectors with associated
time stamps from simulation start until the accepting state has been reached.

The witness traces of these formulas are suitable for exploring whether the
associated requirement has been adequately implemented. This is illustrated
below in Section 5 using the sample model introduced in Section 3.

We use in-process coverage-guided fuzzing offered by LLVM LibFuzzer [1].
This form of fuzzing is much faster than traditional out-of-process fuzzing, which
forks a new process for each execution of the main function, but requires the
global state of the SUT to remain largely unchanged or to be reset between exe-
cutions. Since the SUT is automatically generated and does not involve external
calls, capturing and restoring the initial global state can also be fully automated.
Essentially, we follow the transformation steps outlined in [12].

1 int LLVMFuzzerTestOneInput(uint8_t *data , size_t size) {
2 FuzzerRestoreGlobalState ();
3 MakeGlobalCopy(data , size);
4 used = 0;
5 ExecuteModelAndObserver ();
6 }

Fig. 2. Conceptual implementation of a fuzz target

1 int receiveModelInput(LeverPosition& lvr , Boolean& emer , Boolean& ign ,
BatteryVoltage& batvol , int& timeToNextInput) {

2 if (used + 2 > size) // not enough bytes , end of input sequence
3 return 0;
4 if (data[used] & 2) lvr = NEUTRAL;
5 else if (data[used] & 1) lvr = LEFT;
6 else lvr = RIGHT;
7 emer = data[used] & 4;
8 ign = data[used] & 8;
9 batvol = data[used + 1] % 21;

10 timeToNextInput = data[used + 2];
11 timeToNextInput += 1;
12 used += 3; // consumed 3 bytes
13 return 1;
14 }

Fig. 3. Translation of random bytes into input data for the model

Furthermore, LibFuzzer requires the definition of a fuzzing target, i.e. an
implementation of the LLVMFuzzerTestOneInput function. The main function
provided by LibFuzzer will repeatedly call this function with fuzz inputs in a loop
to perform fuzzing. Each fuzz input consists of an array of random bytes and its
size. Figure 2 shows a conceptual implementation of LLVMFuzzerTestOneInput.
First, the initial global state is restored. Then, the given fuzz bytes are copied
into a global array and the number of bytes already consumed for fuzzing is
set to zero. The translation of the fuzz bytes into a sequence of input vectors
(with corresponding timestamps) is then carried out on-the-fly together with the
execution of the SUT and the observer. Figure 3 shows the implementation for
our example. Please note that input constraints must be considered in this step

to avoid generating invalid input. Since the input constraints are known, this
step also can be fully automated.

An optimisation worth mentioning is the deeper integration of the observer
semantics into the fuzzing loop. In many cases, the whole boolean state vector
of the observer becomes unmarked during an execution. Without at least one
marked state, it is impossible to eventually reach an acceptance state. Thus,
this execution can be terminated early before all fuzz bytes are consumed. This
simple optimisation boosts the fuzzing performance significantly as shown in the
evaluation later.

Test Execution Environment. The test execution environment is not shown
in Fig. 1, but is also available: a variant of the code generator creates test ora-
cles fom the SysML model, as described in [19]. The oracle runs in back-to-back
fashion with the SUT during the test execution and checks whether the concrete
outputs produced by the SUT conform to the expected output calculated by the
oracle. To this end, the concrete test sequence sent step by step to the SUT is
provided simultaneously to the oracle. The oracle, however, never produces out-
puts but reads the SUT outputs and compares them to the internally calculated
expected values.

3 Example: Turn Indication Controller

3.1 Function Description

As a running example, we study a turn indication and emergency flashing system
as used in modern cars. We have simplified the example for the purposes of this
paper; a real-world system description and associated model derived from the
original specifications of a car manufacturer has been presented in [23], but would
be too large for the context of this paper.

The turn indication function processes inputs from the turn indication lever
which has three positions NEUTRAL, LEFT, and RIGHT. In the left and right position
of the lever, the turn indication lights on the left-hand side (LHS) or right-
hand side (RHS), respectively, are flashing with a frequency of approx. 1.5 Hz.
More precisely, flashing has a period of 660ms. In each period, the signs stay
on for 340ms, followed by an off-phase of 320ms. Turn indication flashing is
only operable if the ignition is switched on. Moreover, turn indication provides
a tip flashing function: if the turn indication lever is switched from NEUTRAL
to LEFT or RIGHT, but then back to NEUTRAL before 440ms has passed,
flashing is continued until the end of a tip flashing phase consisting of three
flashing periods (1980ms).

The emergency flashing function activates the LHS and RHS indication lights
in synchrony. A dashboard button can be pressed to start this function. When
the button is released, emergency flashing is switched off immediately. Just as
turn indication, emergency flashing has a flashing period of 660ms with on and
off phases of 340ms and 320ms, respectively, if the ignition is switched on. In

contrast to the turn indication function, however, emergency flashing is also
operable when the ignition is switched off: in this case, the duration of the
on/off phases is reversed, in order to save battery power.

Turn indication and emergency flashing provide an override functionality: if
left/right turn indication flashing is active when the emergency flashing button
is pressed, emergency flashing starts immediately with a new ON flashing period
on all indication lights. If then the emergency button is released, turn indication
flashing is resumed if the turn indication lever is still in the previous position.
If the turn indication lever is put into NEUTRAL while emergency flashing
is active, all lights are switched off when emergency flashing is switched off.
Conversely, if the turn indication lever position changes to a new non-neutral
position while emergency flashing is active, emergency flashing is suspended in
favour of turn indication flashing according to the new lever position. After the
turn indication lever has been put back into neutral position, emergency flashing
is resumed if the emergency button is still pressed.

RearController

CANOut

CurrentLOut CurrentROut

LeverPositionIN EmerSwitchPressedIN BatVolIN IgnitionOnIN

Fig. 4. Interfaces of the rear controller.

Regardless of the indication function, the lamp current is switched off im-
mediately if the battery voltage is outside its admissible range [10V, 15V]. The
control logic keeps its state (emergency flashing or turn indication flashing left-
/right, or off), but no lamp current is provided until the battery voltage is back
in range (if ever).

In the remainder of this section, a SysML model is presented, describing the
structure and the behaviour of the rear controller.

3.2 Interface

In modern vehicles, the whole turn indication control function is distributed
onto several controllers connected by an automotive bus system, such as CAN.

For the purpose of this paper, we focus on the rear controller with interfaces as
depicted in the SysML [18] block diagram in Fig. 4. This controller inputs the
turn indication lever status LeverPositionIN, the emergency switch status Emer-
SwitchPressedIN, the actual battery voltage BatVolIN, and the ignition status
IgnitionOnIN. The control logic activates the turn indication lights left and right
by providing a suitable positive current on interfaces CurrentLout and Curren-
tRout, respectively, for switching the rear indication lights on, and cuts of the
current for switching them off. The on/off-phases are controlled by the com-
puter. Finally, the rear controller distributes the on/off commands on CAN bus
interface CANout to sub-ordinate controllers switching the front indication lights
and mirror indication lights. The on message contains the information, whether
flashing on the left-hand side or/and the right-hand side is required, and it pro-
vides the on-duration of the next period. Each controller switches its lights off
on its own account, when the on-duration has expired. Each new flashing pe-
riod, however, is activated by a new message from the rear controller, so that all
controllers are kept in synchrony.

3.3 Structure

The internal rear controller structure is shown in the block diagram in Fig. 5.
Part controllogic monitors the inputs LeverPositionIN, EmerSwitchPressedIN, and
IgnitionOnIN and decides whether LHS/RHS turn indication, or emergency flash-
ing should be activated. The control decision is passed on port flashCmdOut to
part candriver which produces cyclic messages to remote controllers and loop-
back messages to local parts lampCtrlSlaveLeft and lampCtrlSlaveRight. Each mes-
sage signifies the beginning of a flashing period and contains the length of the
ON-duration, depending on the ignition status. Parts lampCtrlSlaveLeft/Right
supervise the length of the ON-phases and send switchIn commands to the LHS
and RHS power control parts pwrLeftLamp and pwrRightLamp, respectively. Af-
ter the end of an ON-phase, lampCtrlSlaveLeft/Right send ¬switchIn commands
to the power control parts. These two parts switch the lamps on and off by pro-
viding and cutting off the required current to the lamps on port CurrentLOut and
CurrentROut, respectively. They always cut off the current if the battery voltage
is out of range.

3.4 Behaviour

The behaviour of the parts is modelled by means of state machines. Part con-
trollogic has the state machine shown in Fig. 6 as classifier behaviour. This
state machine uses three states, depending on whether emergency flashing, LH-
S/RHS turn indication flashing, or no flashing should be performed. Additional
pseudo states are used to control the branching behaviour. On initialisation,
state EmergencyFlashing is entered, if the emergency switch is pressed. This hap-
pens regardless of the state of the turn indication lever, since emergency flashing
has priority over LHS/RHS-flashing.

RearController

CANOut

CurrentLOut CurrentROut

LeverPositionIN EmerSwitchPressedIN

BatVolIN

IgnitionOnIN

pwrLeftLamp

switchIn

pwrRightLamp

switchIn

pinProgramLeft pinProgramRight

lampCtrlSlaveLeft

switchOut

pinProgram

lampCtrlSlaveRight

switchOut

pinProgram

controllogic

flashCmdOut

candriver

Fig. 5. Rear controller block diagram.

Turn indication is performed in composite state LRFlashing which can only
be entered if the ignition is on. The sub-machine in Fig. 7 determines in state
UNSTABLE, whether LHS or RHS flashing should be performed. Tip flashing is
controlled by introducing a state transition into state STABLE, if the turn indi-
cation lever has not been switched back to NEUTRAL within 440ms. From then
on, turn indication can be immediately switched off by putting the lever into
position NEUTRAL. If the neutral position is taken while still in state UNSTA-
BLE, the state machine remains in this state until three flashing periods have
passed, whereafter turn indication is switched off. If the turn indication lever is
put into another non-neutral position, a corresponding self loop is performed on
composite state LRFlashing, so that a fresh tip flashing period is started.

The different override situations are controlled by direct transitions between
states EmergencyFlashing and LRFlashing. Whenever the control logic changes
the functional status, a StatusChange signal is sent which alerts the candriver
that updated messages need to be distributed.

When describing the functionality of the test case generator, the state ma-
chine associated with parts pwrLeftLamp and pwrRightLamp will be discussed.
It is shown in Fig. 8; state BATTERY VOLTAGE OK is composite with a sub-
machine shown in Fig. 9.

4 Behavioural Specifications in LTL

In this section, formal requirements specifications of the rear controller behaviour
are presented in quantified first-order LTL. This is meant as an “intellectual
exercise”, with the objective to demonstrate that model-free specifications in
temporal logic are quite difficult to construct, whereas the model-based approach
is closer to “imperative programming on a higher level”, and therefore easier to
introduce in an industrial context.

ControlLogicSM

NoFlashing

/entry FlashCmdOut.cmd = OFF;
FlashCmdOut.applyLeft = false;
FlashCmdOut.applyRight = false;
send(StatusChange);

LRFlashing

EmergencyFlashing

/entry FlashCmdOut.cmd = ON;
FlashCmdOut.applyLeft = true;
FlashCmdOut.applyRight = true;
send(StatusChange);

[!EmerSwitchPressedINSW]

[!IgnitionOnINSW]

when(IgnitionOnINSW)

when(LeverPositionINSW == LEFT)

when(LeverPositionINSW == RIGHT)

[IgnitionOnINSW]

[LeverPositionINSW == NEUTRAL]

[LeverPositionINSW != NEUTRAL]

when(!IgnitionOnINSW)

when(LeverPositionINSW == LEFT) [IgnitionOnINSW]

when(LeverPositionINSW == RIGHT) [IgnitionOnINSW]

when(IgnitionOnINSW) [LeverPositionINSW == NEUTRAL]

when(EmerSwitchPressedINSW)

when(EmerSwitchPressedINSW)

when(LeverPositionINSW == RIGHT) [IgnitionOnINSW]

when(LeverPositionINSW == LEFT) [IgnitionOnINSW]

[EmerSwitchPressedINSW]

when(!EmerSwitchPressedINSW)

Fig. 6. Control Logic state machine.

For setting up the more complex formulas, it is useful to first define some
abbreviations for first-order expressions in Table 1. The abbreviated formulas
refer to the interface names introduced in Fig. 4.

Since we need to refer to concrete durations, variable t̂ is used to denote the
current execution time since system start. Moreover, several Boolean auxiliary
variables are introduced to facilitate the expression of certain causal connections
reflected in the temporal logic formulas to be specified below: i carries a copy of
the ignition status observed in certain states along a path, oe is true if emergency
flashing has been overridden by turn indication left or right, and oturn indicates
whether turn indication left/right has been overridden by emergency flashing.
Boolean variable tf is true as long as a tip flashing phase (up to 1980ms) applies.
The utilisation of these auxiliary variables is explained below in the context of
the requirements where they occur.

Requirement 1. Off conditions. The following formulas specify off conditions
for both turn indication and emergency flashing. In these situations, the lamp
current is cut off. It states that indications lights must be off as long as

– the turn indication lever is in neutral position and previous tip flashing
phases have terminated (if any), or the ignition is switched off (so that turn
indication is inoperative), and

– the emergency switch is in off position.

In this situation, all override conditions are cancelled, and no tip flashing phase
can start.

LRFlashing

UNSTABLE

/entry FlashCmdOut.cmd = ON;
FlashCmdOut.applyLeft =
(LeverPositionINSW == LEFT);
FlashCmdOut.applyRight =
(LeverPositionINSW == RIGHT);
send(StatusChange);

STABLE

after(440) [LeverPositionINSW != NEUTRAL]

after(1980)

when(LeverPositionINSW == NEUTRAL)

Fig. 7. Sub-machine LRFlashing.

OFFCND ≡ G
(
((n ∧ ¬tf) ∨ ¬ig) ∧ ¬e⇒ (1)

X(off`r ∧ ¬oe ∧ ¬oturn ∧ ¬tf)
)

(2)

Requirement 2. Turn indication left. Formula TLEFT below specifies the
trigger condition and the behaviour of turn indication flashing on the LHS. The
trigger condition A becomes true when the turn indication lever is switched from
any position other than LEFT (i.e. from NEUTRAL or RIGHT) to LEFT. This
is expressed by ¬` ∧X`. Turn indication, however, is only activated if the igni-
tion is on, so ig must also hold together with `. Formula A also specifies that
turn indication may be “implicitly” switched on by the ignition being switched
on, if the turn indication lever has been put into a non-neutral position before.
Emergency flashing has priority over turn indication flashing. Therefore, A also
requires that emergency flashing must not be simultaneously activate. Otherwise
turn indication is immediately overridden, as explained below. LHS turn indica-
tion is resumed as soon as the override condition no longer applies (¬oturn) and
the turn indication lever is in position LEFT.

The formula specifying the LHS-flashing behaviour is decomposed into a con-
junction B ∧ T , where the second operand deals with the flag tf indicating a
tip flashing phase. To explain the behaviour B triggered by condition A, quan-
tified first-order LTL is needed, because we need to refer to the point in time
LHS flashing was activated. Rigid variable t0 stores the value of the model ex-
ecution time when X(ig ∧ `) became true. The indication behaviour is encoded
in the weak until sub-formula of B, where sub-formulas C,D specify the indi-
cation behaviour, while E specifies the condition when C,D no longer apply

PowerSourceSM

BATTERY VOLTAGE NOT OK

/entry currentOut = 0;

BATTERY VOLTAGE OK

Requirement 1.1
Off when voltage out of range

oorTrans1:[!isVoltageInRange()] [isVoltageInRange()]

oorTrans2:when(!isVoltageInRange())

when(isVoltageInRange())

� satisfy�

� satisfy�

Fig. 8. PowerSource state machine, top-level.

(i.e. LHS flashing is terminated). The weak until operator W is used because it
is not mandatory that the LHS flashing behaviour should terminate. Predicate
C states that the LHS lamp is provided with current (on`) while the flashing
period is in its on-phase (% denotes the modulo operator), provided that the
battery voltage is in range (recall the definition of on` in Table 1). Formula
D states that the LHS lamp current is cut off during the off phase (340, 660).
The RHS-lamp never gets current during LHS-flashing (¬cr-conjunct in on` and
off`r).

TLEFT ≡ G
(
A⇒ X(B ∧ T)

)
(3)

A ≡ (¬ig ∨ ¬` ∨ oturn) ∧X(ig ∧ ` ∧ ¬oturn) (4)

B ≡ ∃t0.
(
t0 = t̂ ∧ ((C ∧D) W E)

)
(5)

C ≡ (t̂− t0)%660 ≤ 340⇒ on`) (6)

D ≡ (t̂− t0)%660 > 340⇒ off`r) (7)

E ≡ ¬ig ∨ r ∨ (n ∧ ¬tf) ∨ oturn (8)

T ≡ ∃t0.
(
t0 = t̂ ∧ (T1 ∧ T2 ∧ T3 ∧ T4 W ¬ig ∨ r ∨ oturn)

)
(9)

T1 ≡ t̂− t0 < 440⇒ tf (10)

T2 ≡ t̂− t0 = 440 ∧ ¬n⇒ (¬tf W ¬`) (11)

T3 ≡ t̂− t0 ≤ 440 ∧ n⇒ (12)

(tf U (t̂− t0 = 1980 ∨ ¬ig ∨ oturn ∨ ¬n)

T4 ≡ t̂− t0 > 1980⇒ ¬tf (13)

BATTERY VOLTAGE OK

LAMP CURRENT OFF

/entry currentOut = 0;

LAMP CURRENT ON

/entry currentOut = 2;

[!switchIn] [switchIn]

when(switchIn == true)

when(switchIn == false)

Fig. 9. PowerSourceSM sub-machine, BATTERY VOLTAGE OK.

The LHS flashing behavior C ∧D no longer applies as soon as the termination
condition E becomes true: this happens as soon as one of the following conditions
hold:

– The ignition is off (turn indication is only operable when the ignition is on).
– The turn indication lever has been switched into position RIGHT.
– The turn indication lever has been put back into neutral position and a

potential tip flashing phase no longer applies (¬tf).
– Turn LHS indication has been overridden by emergency flashing (oturn).

The effect of E becoming true is specified in other formulas below; TLEFT only
specifies that LHS-flashing is no longer assured when E applies.

The setting of the tip flashing phase flag tf in case of LHS flashing is con-
trolled by formula T . Just as in B, the start time of LHS flashing is recorded in
t0. The sub-rules T1, . . . , T4 state that

– tf is always true before 440ms have passed since the LHS-flashing activation
(Formula T1).

– tf switches to false if the turn indication lever is still in the non-neutral
position at the end of the 440ms phase (Formula T2).

– If the turn indication lever is put into neutral position before 440ms have
passed (Formula T3), the tf -flag remains true for 1980ms (i.e. three flashing
periods) since start of LHS-flashing or until

• the ignition has been switched off, or
• turn indication has been overridden, or
• the turn indication lever is no longer in neutral position.

When at least one of these three conditions applies, the value of the tf -flag
is specified by other formulas.

– The tf -flag is always reset to false after 1980ms have passed (Formula T4).

Table 1. Abbreviations for first-order expressions

v ≡ BatVolIN ∈ [10, 15] battery voltage is in range

e ≡ EmerSwitchPressedIN emergency switch is pressed (=active)

n ≡ LeverPositionIN = NEUTRAL turn indication lever in neutral position

` ≡ LeverPositionIN = LEFT turn indication lever in left position

r ≡ LeverPositionIN = RIGHT turn indication lever in right position

cl ≡ CurrentLOut > 0 LHS lamp current is on

cr ≡ CurrentROut > 0 RHS lamp current is on

on` ≡ (c` ⇔ v) ∧ ¬cr LHS lamp current is on iff voltage ok

onr ≡ ¬c` ∧ (cr ⇔ v) RHS lamp current is on iff voltage ok

on`r ≡ (c` ⇔ v) ∧ (cr ⇔ v) both sides on iff voltage ok

off`r ≡ ¬c` ∧ ¬cr lamp current off, both sides

ig ≡ IgnitionOnIn ignition is on

The rules for setting tf in case of LHS tip flashing no longer apply as soon
as the ignition is switched off, RHS-flashing is activated, or turn indication is
overridden by emergency flashing. This is specified in the right operand of the
weak until operator in T .

Requirement 3. Start and continue turn indication right. RHS-flashing
is specified in analogy to LHS-flashing.

TRIGHT ≡ G
(
Ar ⇒ X(Br ∧ Tr)

)
(14)

Ar ≡ (¬ig ∨ ¬r ∨ oturn) ∧X(ig ∧ r ∧ ¬oturn) (15)

Br ≡ ∃t0.
(
t0 = t̂ ∧ ((Cr ∧D) W Er)

)
(16)

Cr ≡ (t̂− t0)%660 ≤ 340⇒ onr) (17)

D ≡ (t̂− t0)%660 > 340⇒ off`r) (18)

Er ≡ ¬ig ∨ ` ∨ (n ∧ ¬tf) ∨ oturn (19)

Tr ≡ ∃t0.
(
t0 = t̂ ∧ (T1 ∧ T r2 ∧ T3 ∧ T4 W ¬ig ∨ ` ∨ oturn)

)
(20)

T1 ≡ t̂− t0 < 440⇒ tf (21)

T r2 ≡ t̂− t0 = 440 ∧ ¬n⇒ (¬tf W ¬r) (22)

T3 ≡ t̂− t0 ≤ 440 ∧ n⇒ (23)

(tf U (t̂− t0 = 1980 ∨ ¬ig ∨ oturn ∨ ¬n)

T4 ≡ t̂− t0 > 1980⇒ ¬tf (24)

Requirement 4. Emergency flashing. Formula EMR specifies emergency
flashing. The condition K enabling emergency flashing requires a state change

of the switch from ‘not pressed’ to ‘pressed’. Alternatively, emergency flashing
is re-activated after having been overridden. This is specified by the second
conjunct of K. There are no dependencies on the ignition switch.

The emergency flashing behaviour is specified in formula L with its sub-
formulas. As in turn indication flashing, we store the activation time in t0. Since
the duration of the on/off phases now depend on the ignition status, separate
specifications are made: M3,M4 specify the on/off phases for the ignition-on
case, and M5,M6 for the ignition-off case. A change of the ignition status does
not affect the current on/off flashing period. This is taken into account by means
for formulas M1,M2: the ignition status at the beginning of a period (i.e. when
(t̂−t0)%660 = 0) is recorded in auxiliary variable i and kept constant throughout
the following period.

The emergency flashing rules cease to apply when the emergency switch is
no longer pressed, or emergency flashing is overridden by turn indication. This
is specified in formula N .

EMR ≡ G
(
K ⇒ XL

)
(25)

K ≡ (¬e ∨ oe) ∧X(e ∧ ¬oe) (26)

L ≡ ∃t0.(t0 = t̂ ∧ (M1 ∧M2 ∧M3 ∧M4 ∧M5 ∧M6 WN)) (27)

M1 ≡ (t̂− t0)%660 = 0 ∧ ¬ig ⇒
(
∃u.(u = t̂ ∧ (¬i U t̂− t0 = 660))

)
(28)

M2 ≡ (t̂− t0)%660 = 0 ∧ ig ⇒
(
∃u.(u = t̂ ∧ (i U t̂− t0 = 660))

)
(29)

M3 ≡ (t̂− t0)%660 ≤ 340 ∧ i⇒ on`r (30)

M4 ≡ (t̂− t0)%660 > 340 ∧ i⇒ off`r (31)

M5 ≡ (t̂− t0)%660 ≤ 320 ∧ ¬i⇒ on`r (32)

M6 ≡ (t̂− t0)%660 > 320 ∧ ¬i⇒ off`r (33)

N ≡ ¬e ∨ oe (34)

Requirement 5. Override conditions. The emergency flashing override con-
dition becomes true or stays true according to the specifications EOVRi, i =
1, . . . , 5. In each of these situations, the emergency flashing switch stays pressed
with the ignition being turned on, and

– the turn indiction lever is moved into a new non-neutral position, or
– the turn indiction lever is moved into the neutral position during the tip

flashing period, or
– the turn indiction lever stays in a non-neutral position, and the ignition

changes from off to on.

EOVR1 ≡ G
(
e ∧ n ∧X(ig ∧ e ∧ ¬n)⇒ Xoe

)
(35)

EOVR2 ≡ G
(
e ∧ ` ∧X(ig ∧ e ∧ r)⇒ Xoe

)
(36)

EOVR3 ≡ G
(
e ∧ r ∧X(ig ∧ e ∧ `)⇒ Xoe

)
(37)

EOVR4 ≡ G
(
e ∧ ¬n ∧ tf ∧X(ig ∧ e ∧ n ∧ tf)⇒ Xoe

)
(38)

EOVR5 ≡ G
(
¬ig ∧ ¬n ∧ e ∧X(ig ∧ ¬n ∧ e)⇒ Xoe

)
(39)

The emergency flashing override condition is switched off and stays off, as
long as the emergency switch is not pressed or turn indication is inactive or has
been overridden.

EOVROFF ≡ G
(
¬e ∨ ¬ig ∨ (n ∧ ¬tf) ∨ oturn ⇒ ¬oe

)
(40)

The turn indication override condition is activated as soon as the emergency
switch is pressed while the ignition is already on or simultaneously activated5,
so that the turn indication lever is in a non-neutral position.

TOVR ≡ G
(
¬e ∧X(ig ∧ ¬n ∧ e)⇒ Xoturn

)
(41)

The turn indication override condition remains off, as long as turn indica-
tion is inactive, the emergency switch is not pressed, or an emergency override
condition is true.

TOVROFF ≡ G
(
¬ig ∨ n ∨ ¬e ∨ oe ⇒ ¬oturn

)
(42)

5 Requirements Tracing and Atomated Test Case
Generation

In the previous section, it has been shown how the required behaviour of the
target system can be specified using quantified first-order LTL alone – without
referring to a model. This, however, is hardly ever used in industrial practice6,
due to the fact that developing these formulas is quite hard and requires more
than just programming skills.

Therefore, we advocate to specify the required target system structure and
its expected behaviour by means of a SysML model. Then the requirements,
which now don’t have to be formalised in temporal logic, can be traced back
to structural and behavioural model elements. To this end, SysML provides the
so-called satisfy relationship which takes a structural or behavioural model ele-
ment as client (the source end of the directed relationship) and a requirement
as a supplier (the target end of the relationship) [18, 16.3.2.7]. The interpreta-
tion of this relation is that the client element contributes to the realisation of
the requirement. The requirements themselves are usually not formalised. The
formalisation is encoded in the structural and behavioural parts of the model
which have a well-defined semantics, and in the satisfy relationship: every model
computation7 covering a model element linked via satisfy-relationship to the
requirement is a witness for the requirement.

5 This override variant specifies that emergency flashing has priority over turn indica-
tion, when both are simultaneously activated.

6 We collaborate with Verified Systems International, Airbus, and Siemens Mobility
in the field of HW/SW integration testing.

7 A computation is a sequence of state valuations for all inputs, outputs, internal vari-
ables, and state machine states that can be performed according to the behavioural
model semantics. See also [19,22,20].

Just creating links between requirements and model elements may seem like
an over-simplification at first glance. Since the model, however, encodes all re-
quirements, only simple links are needed to “mark” which model elements have
been created for each requirement. The following example, where symbolic test
cases are created for a natural-language requirement, illustrates this insight. It
is explained how the test case generator introduced in Section 2 can perform
test case identification as well as the elaboration of symbolic test cases in an
automated way, using static model analysis techniques. The approach described
here is based on previous work published in [19,22,20].

Requirement 1.1 Off when voltage out of range. When the battery voltage
is out of range, all lights are switched off immediately.

This requirement is a natural-language specialisation of the formal Require-
ment 1 specified in (1), but we will see in the subsequent paragraphs that this
fact ist not relevant for elaborating test cases: no formal requirements speci-
fication is needed. When analysing the rear controller design (Fig. 5), we see
that switching lamps off due to inadequate battery voltage is performed in
parts pwrLeftLamp and pwrRightLamp. The switch-off is realised by the tran-
sitions labelled with oorTrans1 and oorTrans2 (“out-of-range transition 1,2) in
state machine PowerSourceSM shown in Fig 8. Transition oorTrans1 applies to
the situation where battery voltage is out of range at system initialisation,
while transition oorTrans2 is taken when battery voltage fails after a normal
operation period, which is represented by state BATTERY VOLTAGE OK. State
BATTERY VOLTAGE NOT OK applies to the voltage-out-of-range situation and,
therefore, sets the lamp current to zero, independent of any switchIn commands
the parts receive from parts lampCtrlSlaveL and lampCtrlSlaveR, respectively (see
Fig. 5). As a consequence, transitions oorTrans1 and oorTrans2 are linked to the
requirement by the satisfy-relationship, as shown in Fig. 8.8

Using this requirement as an example, the functionality of the test case gen-
erator (see Fig.1) is now explained. Observe that every step described here can
be performed by means of static model analysis, performed on the XMI-model
representation.

Step 1. Test Case Identification. One requirement – even if specified by just
one “atomic” statement in natural language – usually needs more than one test
case to perform thorough tests. The different test cases needed are identified by
the test case generator by static analysis of the model. The identification begins
by associating separate test case groups with each satisfy relationship pointing
to the same supplier requirement. In our example, it is obvious that we need

8 The graphical notation for the satisfy-relationship is one of several options provided
by the SysML syntax. For large models implementing many requirements, a tabular
notation is usually preferred, where requirements in one column are associated with
a list of model elements in another column.

at least one test case exercising transition oorTrans1 and at least one exercising
oorTrans2.

For transition oorTrans1, the guard condition shows that it only depends on
the input BatVolIN. The block PowerSource which has this state machine as clas-
sifier behaviour, has yet another Boolean interface specified by port switchIn. To
detect unwanted hidden dependencies in the SUT, two test cases would therefore
be produced for oorTrans1, one with switchIn = true and one with switchIn =
false.

For transition oorTrans2, the source state contains a sub-machine implement-
ing a do-action. This sub-machine is shown in Fig. 9. It is evident that the correct
effect of transition oorTrans2 has to be tested for each of the sub-machine states:
battery voltage out-of-range should occur in one test case when the sub-machine
is in state LAMP CURRENT OFF, and in another test case when the sub-machine
is in state LAMP CURRENT ON.

Further static analysis for the oorTrans2-group shows that we have two con-
current parts, namely pwrLeftLamp and pwrRightLamp, exercising two instances
of the state machine, and each instance is controlled by separate interfaces pwr-
LeftLamp.switchIn, pwrRightLamp.switchIn, written to by different suppliers (lam-
pCtrlSlaveL, lampCtrlSlaveR). (Interfaces pwrLeftLamp.BatVolIN and pwrRight-
Lamp.BatVolIN are not independent: they receive data from the same source
RearController.BatVolIN.) The independent sources for switchIn suggest that test
cases covering different pairs of concurrent states need to be exercised; these
pairs are

– (lampCtrlSlaveL.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT OFF,
lampCtrlSlaveR.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT OFF),

– (lampCtrlSlaveL.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT OFF,
lampCtrlSlaveR.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT ON),

– (lampCtrlSlaveL.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT ON,
lampCtrlSlaveR.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT OFF),

– (lampCtrlSlaveL.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT ON,
lampCtrlSlaveR.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT ON).

Summarising, the test cases shown in Fig. 10 are needed, and all of them could
be identified by means of static model analysis, evaluating the interfaces and data
flows on block diagrams, state machine transitions and guard conditions.

At a first glance, test case identification step described here looks similar
to the well-known classification tree technique applied with Statecharts [11].
There are, however, significat differences: first, the authors of [11] aim at syn-
thesising state machines from classification trees. The tree has to be constructed
in a manual way and augmented by additional constraints. Second, the need
for requirements tracing is not considered in [11]. Our approach is requirements-
driven and uses state machines as a fundamental means for specifying behaviour,
so there is no intention to synthesise them from some other representation. We
use trees like the one depicted in Fig. 10 only internally, for the purpose of test
case identification performed automatically by the test case generator.

Fig. 10. Test case identification for Requirement 1.1.

Step 2. Test Case Formula Initialisation. For each identified test case,
the test case generator initialises an unquantified first-order LTL formula, to be
refined in the subsequent steps 3 and 4. We illustrate these steps using TC 1.1.4
from Fig. 10. For all test cases, the transition which is client to the supplied
requirement needs to be covered. For TC 1.1.4, this is transition oorTrans2. The
trigger is a change event9 with condition ! isVoltageInRange() (see Fig 8). With
the abbreviations introduced in Table 1, ! isVoltageInRange() is the same as ¬v.
Therefore, our test case needs v to be true in one cycle and ¬v in the following
one, which is expressed by v ∧X¬v.

For the transition to fire, the state machine needs to be in one of the sub-
ordinate states LAMP CURRENT ON or LAMP CURRENT OFF. For test case
TC 1.1.4, however, this has already been refined in Step 1. Part lampCtrlSlaveL
needs to be in the ON-state, and part lampCtrlSlaveR in the OFF-state, when
the change event occurs. Further static analysis shows that the ON-state of
lampCtrlSlaveL is active if and only if CurrentLout = 2. Furthermore, the OFF-
state of lampCtrlSlaveR is active if and only if CurrentRout = 0. Using further
abbreviations from Table 1, this can be written as c` ∧ ¬cr.

Summarising, we need a computation which finally fulfils v ∧X¬v, and the
initial condition v is strengthened by c` ∧¬cr. This results in a preliminary test
case formula

F
(
(v ∧ c` ∧ ¬cr) ∧X¬v

)
(43)

Formula (43) has many witnesses that turn out to be inadequate test cases, since

1. input changes appear too quickly, so that they are difficult to observe in a
HW/SW integration test, and/or

2. input changes trigger different behaviours concurrently, so that their inter-
ference makes it hard or even impossible to determine whether the functional
aspect to be tested has really been exercised.

9 A change event occurs when the condition changes from false to true [17, 13.3.3.3].

As an example of the first problem, consider the test input sequence shown in
Table 2. At time t̂ = 0, the turn indication lever ist put into position LEFT, while
the emergency switch is not pressed and the ignition is on. As a consequence, the
LHS-turn indication lights are switched on. One millisecond later, the voltage
is out of range, and the lights are switched off. This computation is certainly a
witness for Formula (43), but, due to hardware interface latency, it will be very
difficult to observe that the LHS-lights really received a non-zero current before
the battery voltage dropped out of range.

Table 2. Test sequence for Formula (43) which is not adequately observable.

t̂ LeverPositionIN EmerSwitchPressedIN IgnitionOnIN BatVolIN

0 LEFT false true 12
1 LEFT false true 8

This example shows that states before and after a relevant test step need
to remain stable for a sufficient time interval, so that the resulting outputs can
be adequately observed. The necessary changes of Formula (43) to achieve this
stability are described in Step 3.

As an example of the second problem, consider the test input sequence shown
in Table 3. As in the previous example, it is easy to see that the computation
stimulated by this short timed input sequence is a witness of Formula (43).

Table 3. Test sequence for Formula (43) where different functionalities interfere.

t̂ LeverPositionIN EmerSwitchPressedIN IgnitionOnIN BatVolIN

0 LEFT false true 12
300 LEFT false false 8

Also, the activation of the LHS-turn indication lights stays stable for 300ms
which suffices for adequate observability. However, at t̂ = 300, two inputs change
simultaneously: the voltage drops out of range, and the ignition is switched off.
As a consequence, both requirements “ignition off switches turn indication lights
off” and “voltage out of range switches all lights off” are applicable in this
step. Therefore, it will remain unclear in a black-box test, whether the lights-off
reaction was due to the change in the battery voltage or due to the state in the
ignition status. This problem is removed by a further static analysis performed
by the test case generator, described in Step 4 below.

Step 3. Test Case Refinement – Stability. Stability is achieved by forcing
the test data generator (in this paper, the fuzzer) to set inputs and delays be-

tween input changes in such a way, that the model simulation “lingers” in certain
states for an appropriate amount in time. This can be specified in a practical
way using the auxiliary timer variable which is associated with every state and
stores the point in time when the state has been entered. This variable is denoted
by

1 <state -name >.t

and is used to determine the point in time when a relative time event after x (x a
duration in milliseconds) should be triggered: using the actual model execution
time t̂, expression

t̂−<state-name>.t

specifies how long the state machine resides in the state since it had last been
entered. Transitions triggered by time events are shown in Fig. 7.

The test case generator implements two rules to ensure sufficient stability:

1. The simple state10 the model resides in when the critical transition is fired
must have been entered for an observable amount of time11 before the tran-
sition is fired.

2. The simple target state of the critical transition must be kept for an observ-
able amount of time.

For our critical transition oorTrans2, these rules are applied as follows. Part
pwrLeftLamp needs to linger in state LAMP CURRENT ON for at least 100ms
before the critical transition is triggered. This is expressed by12

φ0 ≡ pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT ON ∧
(t̂− pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT ON.t) >= 100

After the target state has been reached by the critical transition, we have to stay
there as well for an observable amount of time. This is expressed by formula

φ1 ≡ pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE NOT OK ∧
(pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE NOT OK U

(t̂− pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE NOT OK.t) >= 100)

With these refining propositions, Formula (43) is strengthened to

F
(
(v ∧ c` ∧ ¬cr ∧ φ0) ∧X(¬v ∧ φ1)

)
(44)

10 A simple state is one without internal vertices (i.e. sub-ordinate states) or transi-
tions [17, 14.2.3.4.1].

11 Depending on the hardware-in-the-loop testing environment and on the type of appli-
cation, “observable” means some duration between 500µs and a multiple of 100ms.
In any case, the amount needs to be smaller than the shortest time event associated
with any transition emanating from the state under consideration.

12 State machines are used like Boolean expressions: state symbol
pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE OK.LAMP CURRENT ON
evaluates to true if and only if the model simulation resides in this state.

Step 4. Test Case Refinement – Non-Interference. For test case TC-
1.1.4, all possible interference from other functional aspects are reflected by the
only additional input switchIn changing its value. Avoiding interference with the
battery voltage out-of-range reaction is ensured by avoiding a status change of
switchIn for both parts pwrLeftLamp and pwrRightLamp, until the desired transi-
tion oorTrans2 has fired, and a bit longer to ensure stability. This can be specified
by sub-formulas

φ2 ≡ pwrLeftLamp.switchIn ∧
(pwrLeftLamp.switchIn U

(pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE NOT OK ∧
(t̂− pwrLeftLamp.PowerSourceSM.BATTERY VOLTAGE NOT OK.t ≥ 100))))

φ3 ≡ ¬pwrRightLamp.switchIn ∧
(¬pwrRightLamp.switchIn U

(pwrRightLamp.PowerSourceSM.BATTERY VOLTAGE NOT OK ∧
(t̂− pwrRightLamp.PowerSourceSM.BATTERY VOLTAGE NOT OK.t ≥ 100)))

Summarising, the resulting formula for test case TC-1.1.4 refines Formula (44)
to

F
(
(v ∧ c` ∧ ¬cr ∧ φ0) ∧X(¬v ∧ φ1 ∧ φ2 ∧ φ3)

)
(45)

Step 5. Boundary value tests. With the LTL formulas generated in steps
1 — 4 at hand, symbolic boundary value tests can be constructed by replacing
comparison operators and associated constants in a suitable way.

6 Evaluation

The performance of the fuzzer for generating concrete test data from symbolic
test cases specified in LTL has been evaluated using several test cases created
according to the test case generation concept presented in Section 5. For each
test case, we show the generated data which consists of input vectors to the
SUT, together with time stamps specifying when the next input vector should
be written.

The performance is summarised in Table 4. For each symbolic test case,
20 test data generations with the fuzzer were tried out, since the fuzzer relies
on random input data creation, so that generations differ in time. A test data
generation run is aborted as soon as the observer indicates that the formula
can no longer be solved with data created so far. The table shows the number of
succesful generation runs within these 20 tries (note that each try was successful),
the average, minimal, and maximal time needed to find this witness.

TC-TIPFL – Tip flashing. The following formula specifies a symbolic test
case related to the tip flashing function. The formula states that we wish to
start with the turn indication lever in neutral position (n). Throughout the test
execution, battery voltage should stay in range, the ignition should stay on,
and no interference by emergency flashing should occur. The test generation
should end after approx. 10 seconds. This is expressed by X((v ∧ ig ∧¬e) U t̂ ≥

Table 4. Performance summary. #Tests denotes the number of successful generation
runs within the 20 runs used to find the witness trace. Avg, Min, Max denote average,
minimal, and maximal generation time in seconds.

Test Case #Tests Avg Min Max

TC-TIPFL 20 3.26 1.42 6.86

TC-LRFL 20 127.88 9.7 394.06

TC-EMRFL 20 25.88 1.02 176.79

TC-IGOFF 20 49.97 14.44 196.58

TC-VOOR 20 7.64 3.48 26.55

10000). The generated trace should lead to state UNSTABLE (see state ma-
chine in Fig. 7), such that the model simulation stays there for at least 1970ms
(F

(
UNSTABLE∧ t̂−UNSTABLE.t > 1970

)
). Analysis of the state machine and

the one specified in Fig. 6 shows that this exactly reflects a tip flashing situation.
This slightly indirect specification of the test objective is due to the fact that the
transition from UNSTABLE triggered by the after(1980) time event is linked to
the tip flashing requirement by means of the satisfy relationship. Moreover, it is
simpler to specify than explicitly stating when the turn indication lever should
be set to a specific position.

The generated test data with associated time stamps (also determined by the
fuzzer) is shown in Table 5. The turn indication lever is put into position LEFT
and then back to NEUTRAL after 260ms. This triggers the tip flashing reaction,
that three flashing cycles are performed. Recall that the expected results need
not to be elaborated by the test data generator, since we are using a test oracle
version of the model simulation, running back-to-back with the SUT during test
executions.

TC-TIPFL ≡ n ∧X
(
(v ∧ ig ∧ ¬e) U t̂ ≥ 10000

)
∧

F
(
UNSTABLE ∧ t̂−UNSTABLE.t > 1970

)
Table 5. Generated test sequence for symbolic test case TC-TIPFL.

t̂ LeverPositionIN EmerSwitchPressedIN IgnitionOnIN BatVolIN

0 NEUTRAL false true 5
10 LEFT false true 11

270 NEUTRAL false true 11

TC-LRFL – LHS/RHS flashing with emergency override. This symbolic
test case specifies that emergency flashing should be active, but overridded by left

or right turn indication after 5000ms. The generated test data with associated
time stamps is shown in Table 6.

TC-LRFL ≡ X((v ∧ ig ∧ e) U t̂ ≥ 10000) ∧
X
(
EMERGENCY FLASHING U (t̂ = 5000 ∧
(LRFlashing ∧ (LRFlashing U t̂ ≥ 10000)))

)

Table 6. Generated test sequence for symbolic test case TC-LRFL.

t̂ LeverPositionIN EmerSwitchPressedIN IgnitionOnIN BatVolIN

0 NEUTRAL true true 10
2560 NEUTRAL true true 10
4980 NEUTRAL true true 10
4990 RIGHT true true 10
7360 RIGHT true true 12
9730 RIGHT true true 12

TC-EMRFL – Emergency flashing after turn indication. This test case
specifies to first exercise LHS or RHS turn indication and then emergency flash-
ing. The generated test data with associated time stamps is shown in Table 7.

TC-EMRFL ≡ X(v U t̂ ≥ 10000) ∧
X
(
LRFlashing U (t̂ = 5000 ∧
(EMERGENCY FLASHING ∧
(EMERGENCY FLASHING U t̂ ≥ 10000)))

)

Table 7. Generated test sequence for symbolic test case TC-EMRFL.

t̂ LeverPositionIN EmerSwitchPressedIN IgnitionOnIN BatVolIN

0 LEFT false true 15
2400 LEFT false true 15
4950 LEFT false true 15
4990 NEUTRAL true true 14
7550 NEUTRAL true true 10

TC-IGOFF – Ignition off while emergency flashing. This test case spec-
ifies to turn off the ignition during emergency flashing. The generated test data
with associated time stamps is shown in Table 8.

TC-IGOFF ≡ X(v U t̂ ≥ 10000) ∧
X
(
EMERGENCY FLASHING U

t̂− EMERGENCY FLASHING.t ≥ 10000
)
∧

X
(
ig U (t̂ ∈ [5400, 5530] ∧
LAMPS ON ∧ t̂− LAMPS ON.t ∈ [100, 250] ∧ ¬ig ∧
(¬ig U t̂ ≥ 10000))

Table 8. Generated test sequence for symbolic test case TC-IGOFF.

t̂ LeverPositionIN EmerSwitchPressedIN IgnitionOnIN BatVolIN

0 NEUTRAL true true 13
2560 NEUTRAL true true 10
5120 NEUTRAL true true 10
5510 NEUTRAL true false 10
8070 NEUTRAL true false 10

TC-VOOR – Battery voltage out of range while turn indication flash-
ing. This test case is intended to check the SUT reaction when batter voltage
drops out of range while LHS turn indication performs an ON-phase. The gen-
erated test data with associated time stamps is shown in Table 9.

TC-VOOR ≡ X
(
ig U t̂ ≥ 10000

)
∧

X
(
v U (CurrentLout > 0 ∧ CurrentRout = 0 ∧
t̂− pwrLeftLamp.BATERRY VOLTAGE OK.LAMP CURRENT ON.t = 150) ∧
X(¬v ∧ (¬v U t̂ ≥ 10000))

)

7 Conclusion

We have presented an approach to property-oriented model-based testing which
is suitable for requirements-driven testing as needed for certifiable systems in the
avionic, automotive, and railway domains. The utilisation of models represented
in SysML allows for simple tracing mechanisms linking structural or behavioural

Table 9. Generated test sequence for symbolic test case TC-VOOR.

t̂ LeverPositionIN EmerSwitchPressedIN IgnitionOnIN BatVolIN

0 LEFT false true 11
2130 NEUTRAL false true 3
2750 NEUTRAL false true 5
5260 NEUTRAL false true 5
7770 NEUTRAL false true 5

model elements to requirements. These links can be exploited to generate sym-
bolic test case formulas in LTL in a fully automated way. As a consequence,
the whole process of property specification in temporal logic can be hidden from
users, who only have to provide the model and its traceability information.

For generating concrete test cases from the symbolic ones represented in
LTL, we use fuzzing as a coverage-maximising test generation engine. The fuzzer
operates on a C++ model simulation extended by observers indicating when a
witness for a symbolic test case has been found. Evaluation data shows that
this is a very effective light-weight alternative to test data generation by SMT
solvers.

References

1. LibFuzzer - a library for coverage-guided fuzz testing, available at https://llvm.

org/docs/LibFuzzer.html

2. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kret́ınský, J., Müller,
D., Parker, D., Strejcek, J.: The hanoi omega-automata format. In: Kroen-
ing, D., Pasareanu, C.S. (eds.) Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 479–
486. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4 31, https://

doi.org/10.1007/978-3-319-21690-4_31

3. Babiak, T., Kret́ınský, M., Rehák, V., Strejcek, J.: LTL to büchi automata trans-
lation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 18th Interna-
tional Conference, TACAS 2012, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7214,
pp. 95–109. Springer (2012). https://doi.org/10.1007/978-3-642-28756-5 8, https:
//doi.org/10.1007/978-3-642-28756-5_8

4. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
5. Böhme, M., Pham, V., Roychoudhury, A.: Coverage-based greybox fuzzing as

markov chain. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. pp. 1032–
1043. ACM (2016). https://doi.org/10.1145/2976749.2978428, https://doi.org/
10.1145/2976749.2978428

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428

6. CENELEC: EN 50128:2011 Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (2011)

7. Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An improved conformance testing
method. In: Wang, F. (ed.) Formal Techniques for Networked and Distributed
Systems - FORTE 2005, 25th IFIP WG 6.1 International Conference, Taipei,
Taiwan, October 2-5, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3731, pp. 204–218. Springer (2005). https://doi.org/10.1007/11562436 16,
https://doi.org/10.1007/11562436_16

8. Hierons, R.M.: Testing from a nondeterministic finite state machine us-
ing adaptive state counting. IEEE Trans. Computers 53(10), 1330–1342
(2004). https://doi.org/10.1109/TC.2004.85, http://doi.ieeecomputersociety.
org/10.1109/TC.2004.85

9. ISO/DIS 26262-4: Road vehicles – functional safety – part 4: Product development:
system level. Tech. rep., International Organization for Standardization (2009)

10. Kim, Y., Lee, D., Baek, J., Kim, M.: Concolic testing for high test coverage and
reduced human effort in automotive industry. In: Sharp, H., Whalen, M. (eds.)
Proceedings of the 41st International Conference on Software Engineering: Soft-
ware Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May
25-31, 2019. pp. 151–160. IEEE / ACM (2019). https://doi.org/10.1109/ICSE-
SEIP.2019.00024, https://doi.org/10.1109/ICSE-SEIP.2019.00024

11. Kruse, P.M., Wegener, J.: Test sequence generation from classification trees.
In: Antoniol, G., Bertolino, A., Labiche, Y. (eds.) Fifth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2012, Mon-
treal, QC, Canada, April 17-21, 2012. pp. 539–548. IEEE Computer Soci-
ety (2012). https://doi.org/10.1109/ICST.2012.139, https://doi.org/10.1109/

ICST.2012.139

12. Le, H.M.: Llvm-based hybrid fuzzing with libkluzzer (competition contribution).
In: Wehrheim, H., Cabot, J. (eds.) Fundamental Approaches to Software Engi-
neering - 23rd International Conference, FASE 2020, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12076, pp. 535–539. Springer (2020). https://doi.org/10.1007/978-3-030-
45234-6 29, https://doi.org/10.1007/978-3-030-45234-6_29

13. Machado, P.D.L., Silva, D.A., Mota, A.C.: Towards Property Oriented Testing.
Electronic Notes in Theoretical Computer Science 184(Supplement C), 3–19 (Jul
2007). https://doi.org/10.1016/j.entcs.2007.06.001, http://www.sciencedirect.

com/science/article/pii/S157106610700432X

14. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo,
M.: The art, science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering (2019). https://doi.org/10.1109/TSE.2019.2946563

15. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the re-
liability of UNIX utilities. Commun. ACM 33(12), 32–44 (1990).
https://doi.org/10.1145/96267.96279, https://doi.org/10.1145/96267.96279

16. Mizuno, T., Higashino, T., Shiratori, N. (eds.): Protocol Test Systems, 7th work-
shop 7th IFIP WG 6.1 international workshop on protocol text systems. IFIP Ad-
vances in Information and Communication Technology, Springer Science+Business
Media Dordrecht (1995)

17. Object Management Group: OMG Unified Modeling Language (OMG UML), ver-
sion 2.5.1 (2017)

https://doi.org/10.1007/11562436_16
https://doi.org/10.1007/11562436_16
https://doi.org/10.1109/TC.2004.85
http://doi.ieeecomputersociety.org/10.1109/TC.2004.85
http://doi.ieeecomputersociety.org/10.1109/TC.2004.85
https://doi.org/10.1109/ICSE-SEIP.2019.00024
https://doi.org/10.1109/ICSE-SEIP.2019.00024
https://doi.org/10.1109/ICSE-SEIP.2019.00024
https://doi.org/10.1109/ICST.2012.139
https://doi.org/10.1109/ICST.2012.139
https://doi.org/10.1109/ICST.2012.139
https://doi.org/10.1007/978-3-030-45234-6_29
https://doi.org/10.1007/978-3-030-45234-6_29
https://doi.org/10.1007/978-3-030-45234-6_29
https://doi.org/10.1016/j.entcs.2007.06.001
http://www.sciencedirect.com/science/article/pii/S157106610700432X
http://www.sciencedirect.com/science/article/pii/S157106610700432X
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279

18. Object Management Group: OMG Systems Modeling Language (OMG
SysML), Version 1.6. Tech. rep., Object Management Group (2019),
http://www.omg.org/spec/SysML/1.4

19. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings Eighth Workshop
on Model-Based Testing, Rome, Italy, 17th March 2013. Electronic Proceedings
in Theoretical Computer Science, vol. 111, pp. 3–28. Open Publishing Association
(2013). https://doi.org/10.4204/EPTCS.111.1

20. Peleska, J.: Model-based avionic systems testing for the airbus family. In: 23rd
IEEE European Test Symposium, ETS 2018, Bremen, Germany, May 28 - June 1,
2018. pp. 1–10. IEEE (2018). https://doi.org/10.1109/ETS.2018.8400703, https:
//doi.org/10.1109/ETS.2018.8400703

21. Peleska, J.: Specification of Embedded Systems, Session 7 – Automated
Model-based Code Generation. University of Bremen (August 2020),
http://www.informatik.uni-bremen.de/agbs/jp/papers/ses/Session-7-

Automated-Code-Generation.pdf, lecture notes
22. Peleska, J., Brauer, J., Huang, W.: Model-based testing for avionic systems proven

benefits and further challenges. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation. Industrial Practice
- 8th International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9,
2018, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 11247, pp.
82–103. Springer (2018). https://doi.org/10.1007/978-3-030-03427-6 11, https://
doi.org/10.1007/978-3-030-03427-6_11

23. Peleska, J., Honisch, A., Lapschies, F., Löding, H., Schmid, H., Smuda, P., Vorobev,
E., Zahlten, C.: A real-world benchmark model for testing concurrent real-time sys-
tems in the automotive domain. In: Wolff, B., Zaidi, F. (eds.) Testing Software and
Systems. Proceedings of the 23rd IFIP WG 6.1 International Conference, ICTSS
2011. LNCS, vol. 7019, pp. 146–161. IFIP WG 6.1, Springer, Heidelberg Dordrecht
London New York (November 2011)

24. Peleska, J., ling Huang, W., Cavalcanti, A.: Finite complete suites for
csp refinement testing. Science of Computer Programming 179, 1 – 23
(2019). https://doi.org/https://doi.org/10.1016/j.scico.2019.04.004, http://www.

sciencedirect.com/science/article/pii/S0167642319300620

25. van de Pol, J., Meijer, J.: Synchronous or Alternating? In: Margaria, T., Graf,
S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the
Why Not? Essays Dedicated to Bernhard Steffen on the Occasion of His 60th
Birthday, pp. 417–430. Lecture Notes in Computer Science, Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-22348-9 24

26. Ruhstaller, M., Chang, O.: A new chapter for OSS-Fuzz, available at https://

security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

27. Simão, A., Petrenko, A., Yevtushenko, N.: On reducing test length for FSMs
with extra states. Software Testing, Verification and Reliability 22(6), 435–454
(Sep 2012). https://doi.org/10.1002/stvr.452, https://onlinelibrary.wiley.

com/doi/abs/10.1002/stvr.452

28. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing 6(5), 495–511 (Sep 1994). https://doi.org/10.1007/BF01211865, http:
//link.springer.com/article/10.1007/BF01211865

29. Theobald, M., Tatibouet, J.: Using fuml combined with a DSML: an im-
plementation using papyrus uml/sysml modeler. In: Hammoudi, S., Pires,
L.F., Selic, B. (eds.) Proceedings of the 7th International Conference on

https://doi.org/10.4204/EPTCS.111.1
https://doi.org/10.1109/ETS.2018.8400703
https://doi.org/10.1109/ETS.2018.8400703
https://doi.org/10.1109/ETS.2018.8400703
http://www.informatik.uni-bremen.de/agbs/jp/papers/ses/Session-7-Automated-Code-Generation.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/ses/Session-7-Automated-Code-Generation.pdf
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/https://doi.org/10.1016/j.scico.2019.04.004
http://www.sciencedirect.com/science/article/pii/S0167642319300620
http://www.sciencedirect.com/science/article/pii/S0167642319300620
https://doi.org/10.1007/978-3-030-22348-9_24
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://doi.org/10.1002/stvr.452
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.452
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.452
https://doi.org/10.1007/BF01211865
http://link.springer.com/article/10.1007/BF01211865
http://link.springer.com/article/10.1007/BF01211865

Model-Driven Engineering and Software Development, MODELSWARD 2019,
Prague, Czech Republic, February 20-22, 2019. pp. 248–255. SciTePress
(2019). https://doi.org/10.5220/0007310702500257, https://doi.org/10.5220/

0007310702500257

30. WG-71, R.S.E.: Software Considerations in Airborne Systems and Equipment Cer-
tification. Tech. Rep. RTCA/DO-178C, RTCA Inc, 1140 Connecticut Avenue,
N.W., Suite 1020, Washington, D.C. 20036 (December 2011)

31. Zalewski, M.: American fuzzy lop (AFL) white paper, available at http://

lcamtuf.coredump.cx/afl/technical_details.txt

A Semantics of LTL

The code generator used here for creating embedded systems code from SysML
models operates according to the Mealy machine paradigm. The main program
operates single-threaded and performs a non-terminating main loop, where first
new inputs are received (if any), then the state machines are scheduled sequen-
tially until a run-to-completion (RTC) has been finished. After that, the outputs
are written. Conceptually, the state machines operate in zero-time until the RTC
is completed. Time passes while inputs remain stable, until the next input change
occurs or the next timer elapses.

To specify requirements and test cases for systems of this type, unquantified
first-order Linear Temporal Logic (LTL) formulas are suitable. Their syntax is
specified as follows.

– Every unquantified first-order formula f over symbols from V = VI∪VO∪VM
and constants from D as specified below is an unquantified first-order LTL
formula.

– If φ, ψ are unquantified first-order LTL formulae, then ¬φ, φ∧ψ, Xφ (Next),
φUψ (Until) are also unquantified first-order LTL formulae.

Operators X, U are called path operators. Further Boolean and path operators
are specified as syntactic abbreviations by φ∨ψ ≡ ¬(¬φ∧¬ψ), Fφ ≡ (true U φ)
(Finally), Gφ ≡ ¬F¬φ (Globally), φWψ ≡ (Gφ) ∨ (φUψ) (Weak Until) .

The Mealy execution paradigm suggests to use the synchronous interpre-
tation of LTL formulas described in [25]. In this context, the models of LTL
formulas are infinite traces

π = (x0/y0).(x1/y1) · · · ∈ (I ×O)ω,

where I denotes the set of all valuation functions x : VI −→ D mapping input
symbols of the (SysML) model interface to their current value in the unionD over
all variable domains. Set O contains all valuation functions y : VO ∪ VM −→ D
over output symbols from VO and internal model variable symbols from VM .
Note that though this paper is about black-box testing, the reference model
specifying the expected SUT behaviour is interpreted in white-box fashion, so
that LTL formulas may refer to inputs, outputs, and to internal model variables.
Input valuations xi are interpreted at the beginning of a processing cycle, after

https://doi.org/10.5220/0007310702500257
https://doi.org/10.5220/0007310702500257
https://doi.org/10.5220/0007310702500257
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

the actual state of the input interface has been updated. The valuations yi are
interpreted at the end of the cycle, after all state machines have performed their
runs to completion, when the outputs become visible to the environment.

As usual for a temporal logic, the model traces are infinite. In the context
of testing, however, we are only interested in requirements expressed by safety
properties, because their violation can be detected on a finite trace prefix [28]
(we do not consider tests of infinite length). Furthermore, safety properties ϕ can
be regarded as limit sets (so-called closures) of finite traces that do not violate
ϕ [4, 3.3.2, Lemma 3.27].

For Mealy machines, input alphabet I and output alphabet O are expected
to be finite. Indeed, though the sets of valuation functions used here may be very
large, they are really finite, if we consider concrete data types like int or float
represented in an embedded control systems. Even the model execution time t̂
which is considered as an element of VI has a finite domain, because the internal
representation (usually by 64-bit integer variables) only allows for a finite range.

A first-order expression f is evaluated on a given valuation pair x/y by
replacing every symbol v ∈ VI occurring in f by x(v), and every symbol z ∈
VO ∪ VM by y(z). This results in Boolean expression e containing arithmetic
expressions and comparison operators and Boolean sub-expressions, where all
variable symbols have been replaced by constant values. We write x/y |= f if
and only if e evaluates to true.

The semantics of LTL formulas is then specified in Table 10. Given a trace
π and an index i ≥ 0, expression πi denotes the path suffix of π starting with
the ith element π(i). In Table 10, f denotes an unquantified first-order formula
and φ, ψ arbitrary LTL formulas.

Table 10. Semantics of LTL formulas.

πi |= true for all i ≥ 0

πi 6|= false for all i ≥ 0

πi |= f iff π(i) |= f as specified above for first-order formulas f

πi |= ¬φ iff πi 6|= φ

πi |= φ ∧ ψ iff πi |= φ and πi |= ψ

πi |= Xφ iff πi+1 |= φ

πi |= φUψ iff there exists j ≥ 0 such that πi+j |= ψ and

πi+k |= φ for all 0 ≤ k < j

	Property-oriented Model-Based Testing With Fuzzing – Technical Report 09/2020 –

