
Model-based testing in the automotive
industry – challenges and solutions

Jan Peleska (University of Bremen), Peer Smuda (Daimler AG)
Artur Honisch, Hermann Schmid (Daimler AG)

Daniel Tille, Hristina Fidanoska, Helge Löding (Verified Systems
International GmbH)

2

Motivation

Model-based testing has „migrated“ with remarkable success
from theory to practice in the past few years

In this presentation
• Model-based testing for system tests of vehicle control

systems
• Description of problems and their respective solutions,

which have not been adequately researched
• Described solution approaches were developed jointly by

the authors

3

Overview

1. Model-based system integration testing

2. Integrating external models in the HW-in-the-loop
testbench

3. Requirements – test model – test case

4. Contributing test expertise in the automation process

5. Summary

4

Hardware-in-the-loop system integration
testing

• Growing number of functions

• Growing functional complexity

• Increasing cost pressure

• High demands on quality

5

System integration testing – today

Requirements Test executionTest scriptsTest specification

System integration testing – model-based

Test executionTest model

Documentation...

Requirements

6

System integration testing – model-based

Test case-/Test data
generator

Test procedures

Formal description of the
System Under Test (SUT) and the
environment‘s behaviour,
to the extent required

Derivation of relevant test cases
with respective test data and
expected results from the model

Instructions (“Scripts”) for the
automatic execution of tests
on the HW-in-the-loop testbench

Interface mapping on
HW

Logical model interfaces
will be assigned concrete
observable HW-interfaces

Functional model of the
system‘s structure and

behaviour

7

System integration testing – model-based

Test execution

Replay

Test result

Automatic test execution on the
HW-in-the-loop testbench and
measurement of SUT signals

Comparison between modelled
(target) and observable (actual)
behaviour

Pass or fail

8

The test engine triggers
and checks in hard
real-time

Stimulation of
sensors and busses

Observation of
actors and busses

()x t

()x t

()y t

()y t

Test procedures

System integration testing – model-based

SUT

Sensors/busses
Input interfaces

Actors/busses
Output interfaces

9

Overview

1. Model-based system integration testing

2. Integrating external models in the HW-in-the-loop test
bench

3. Requirements – test model – test case

4. Contributing test expertise in the automation process

5. Summary

10

Integrating external simulation models in the HiL test bench

Power window lifts – vehicle

Engine control

Engine speed

Operation request - upper & lower
end positions

- mass inertia
- etc.

Power window lifts – HiL

Simulation model

Test script

Engine control

Operation request
Engine speed

11

Problem :

Past research has always been based on a comprehensive test model, which describes
the complete behaviour of the environment.

+ Test case-/Test data
generator

 It is too expensive and too complex to include all simulation models in the test model!
 Simulation models are not in the testing focus

?

Can we generate reasonable test cases and test scripts without integrating HiL
simulation models, such that these scripts will operate properly on the HIL-test bench
with its available simulations?

Integrating external simulation models in the HiL test bench

12

Example: fictional power window control

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]

13

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]Explanation of variables:

Cmd: Operation of the
power window lift on one
window , up – down – 0

windrive: Control of the
power window lift motor,
up – down – stop

H: Current window height
percentage,
0 = open – 100 = closed

t: Timer

Example: fictional power window control

14

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100 / t = 0]

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]

On the command ‚up‘, the
upward movement of the
window is initiated

Example: fictional power window control

15

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]

If the window has not
reached 95% of the height
and a blockage occurs,
complete opening is
enforced

Example: fictional power window control

16

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]If the window reaches
95% of the height, the
blocking signal has no
effect

Example: fictional power window control

17

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]

If the complete height is
reached, the power
window lift should run for
another 200 ms, then the
engine will stop

Example: fictional power window control

18

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]

The upward movement can
be switched to downward
movement at any point of
time

Example: fictional power window control

19

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]

Downward movement, which has not
been triggered by some dangerous
blocking, can be switched to upward
movement at any point of time

Example: fictional power window control

20

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] / t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]Test case: “Initiate downward
movement, while the test object is in
state UP100“.

Problem:
• The generator cannot set H at will,
since H is given by the HiL-simulation
during test execution
• The exact time when the test object
reaches UP100 cannot be
predetermined, since the
environment‘s model during test case
generation is incomplete

Example: fictional power window control

21

A solution approach is based on

abstraction and nondeterminism

• Abstraction of the environment‘s simulations in the test model

 Simulation will be simple, but nondeterministic

• Symbolic test case generation

• Introduction of observer-components (Observers), which signal the
occurrence of the expected logical property during test run-time

Integrating external simulation models on the HiL test bench

22

Power window lift – abstracted environment simulation

S0
entry/ H0 = 1; Hgt0 = 0;
Hge95 = 0; H100=0;

S1
entry/ H0 = 0; Hgt0 = 1;
inv/ t < 2500ms

[windrive == up]/ t = 0

S2
entry/ Hge95 = 1;
inv/ t < 500ms

[t >= 500ms]/ t = 0

S3
entry/ H100 = 1

[t >= 100ms]

S4

S5
entry/
Hge95 = 0; t = 0;
inv/ t < 2500ms

[blocked or
windrive != up]

[windrive
== down]

[t >= 5ms]

[windrive == up]/
t = 495

S6
S7

entry/ t = 0;
inv/ t < 500ms

[blocked or
windrive != up] [windrive

== down]

[windrive == up]/
t = 95

[t >= 5ms]

[windrive == down]

[windrive
!= down]

[windrive
!= down]

[windrive
!= down]

23

S0
entry/ H0 = 1; Hgt0 = 0;
Hge95 = 0; H100=0;

S1
entry/ H0 = 0; Hgt0 = 1;
inv/ t < 2500ms

[windrive == up]/ t = 0

S2
entry/ Hge95 = 1;
inv/ t < 500ms

[t >= 500ms]/ t = 0

S3
entry/ H100 = 1

[t >= 100ms]

S4

S5
entry/
Hge95 = 0; t = 0;
inv/ t < 2500ms

[blocked or
windrive != up]

[windrive
== down]

[t >= 5ms]

[windrive == up]/
t = 495

S6
S7

entry/ t = 0;
inv/ t < 500ms

[blocked or
windrive != up] [windrive

== down]
[windrive == up]/
t = 95

[t >= 5ms]

[windrive == down]

Abstracted constraints:
H0: (H == 0)
Hgt0: (H > 0)
Hge95: (H >= 95)
H100: (H == 100)

Nondeterministic time
constraints :
„the earliest after 500ms and
the latest after 2500ms“

Power window lift – abstracted environment simulation

[windrive
!= down]

24

Power window lift: modified SUT-model

DOWN
entry/ windrive = stop

v
v

UPWARDS DOWNWARDS

UP0

UP95

UP100

UP

entry/ windrive = up

[H >= 95]

[H == 100] [H100]/ t = 0

[t >= 200ms]/
windrive = stop

DOWN0

DOWN1

entry/ windrive = down

[Cmd == down]

[Cmd == up]

[Cmd == up]

[blocked]

[H == 0]

[Hge95]

[H0]

25

Power window lift: generating stimulation

Test case-/test data generator identifies:

• Cmd, blocked can be set at will
• Upon occurrence of H0, Hgt0, Hge95, H100 delay is needed, since the

occurrence‘s point in time is non-determinstic
• Cmd = up causes H100 == 1 to be reached eventually
• The resulting script produced by the generator:

Reset SUT with H == 0;

Cmd = up;

WaitUntil(Hge95);

WaitUntil(H100);

Wait(100ms);

Cmd = down;

After the entry of H100
remain max. 200ms before
the test object changes to UP

26

Power window lift: test execution

Power window lift – HiL

Simulation model

Test script

Engine control

Engine speed +
Operation request

Observer
Thread

Reads simulation values
H = 0, 1, …, 100

Sets abstract values
H0, Hgt0, Hge95, H100
for usage in the test script

27

Overview

1. Model-based system integration testíng

2. Integrating external models in the HW-in-the-loop test
bench

3. Requirements – test model – test case

4. Contributing test expertise in the automation process

5. Summary

28

Requirements, test model and test case
Problem:
Past research has been focused only on appropriate coverage criteria for test

models.

 Norms (e.g. ISO26262) require traceablity from the requirement until the test

?

How to realise traceability from the requirements to the test model, test cases down to
the test results?

?

?

C
o

m
p

o
n

en
ts

Fu
lly

 a
ss

em
b

le
d

ve

h
ic

le

Sy
st

em

Component-RS Components-HiLs

Integration-HiL

Vehicle tests

Test result: pass/fail

Test model

Test scripts

System requirements
specification

Conceptual
requirements

29

Solution approach:

• Establish a relationship between requirements and computations of
the test model

• Test cases identify sets of computations

• Concrete test data are witnesses for test cases

• Using new techniques for building equivalence classes, the set of
witnesses is reduced to an acceptable level

Requirements – test model – test case

30

Requirements – test model – test case: Computations

• Computations are sequences of model states

• A model state consists of a vector

= (inputs, internal state, outputs, time stamp)

ˆ(, , ,)x s y t

31

Example: Direction flashing and tip flashing
IDLE

Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)][til > 0 and til != last]

32

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)]

Explanation of variables:

til: status of the turn
indication lever
0 = no flashing,
1 = left flashing,
2 = right flashing

last: last value of til

left: control variable
Left turn indicator

right: control variable
Right turn indicator

t: timer

[til > 0 and til != last]

Example: Direction flashing and tip flashing

33

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)]

If the turn
indication lever
was stable for 440
ms, change to
state STABLE

[til > 0 and til != last]

34

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)]
If flashing was switched
from right to left or vice
versa, again time
monitoring takes place in
order to check whether the
new value remains stable

[til > 0 and til != last]

Example: Direction flashing and tip flashing

35

[til > 0 and til != last]

IDLE
Entry/ left = 0;
right = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)]

Resetting the turn
indication lever to 0
leads to switching off
the flashing lights

Example: Direction flashing and tip flashing

36

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)]

If the turn
indication lever is
reset to 0 before
440ms have
elapsed, then
change to state
TIP_FLASHING

[til > 0 and til != last]

Example: Direction flashing and tip flashing

37

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)]

If the flashing is switched from right
to left or vice versa, again time
monitoring takes place in order to
check whether the new value
remains stable[til > 0 and til != last]

Example: Direction flashing and tip flashing

38

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)][til > 0 and til != last]
If the turn indication lever remains
in position 0, the flashing will be
switched off again after 1980 ms

Example: Direction flashing and tip flashing

39

Consider for example the requirement

REQ-TIP-001 (Tip flashing 1): If the turn indication lever is moved back
from a left or right position to a neutral position before 440ms have
elapsed, then the flashing will continue for 3 flash-periods (total
duration = 1980ms)

Example: Direction flashing and tip flashing

40

• Question: Which computations in the model represent the requirement
REQ-TIP-001?

• Answer: All computations, which ultimately reach the state

• TIP_FLASHING and go from there to IDLE without first

• visiting other states, e.g.

til Ctrl-State last left right Time-
Stamp

0IDLE 0 0 0 0

1IDLE 0 0 0 1000

1ACTIVE 1 1 0 1000

0ACTIVE 1 1 0 1100

0TIP_FLASHING 1 1 0 1100

0TIP_FLASHING 1 1 0 2980

0IDLE 0 0 0 2980

Example: Direction flashing and tip flashing

41

• Observation: Obviously there are infinitely many computations for a given
requirement

• Question: How can all suitable computations be described logically, since
it is not possible to enumerate them all?

• Answer from research: using temporal logic, for example Linear-Time
Logic LTL

• All computations, which implement the requirement REQ-TIP-001 can be
expressed in LTL as follows:

F (TIP_FLASHING and til == 0 and t.elapsed(1980))

Example: Direction flashing and tip flashing

42

• All computations that fulfill the requirement REQ-TIP-001
can be expressed in LTL as:

F (TIP_FLASHING and til == 0 and t.elapsed(1980))

Example: Direction flashing and tip flashing

Finally run the computation ...

43

• All computations that fulfill the requirement REQ-TIP-001
can be expressed in LTL as :

F (TIP_FLASHING and til == 0 and t.elapsed(1980))

Example: Direction flashing and tip flashing

... in the model state
(TIP_FLASHING,til,t), so that …

44

• All computations that fulfill the requirement REQ-TIP-001
can be expressed in LTL as:

F (TIP_FLASHING and til == 0 and t.elapsed(1980))

… the turn indication lever is in a neutral position and
1980ms have elapsed

This logical formula has an intuitive relationship
to a model transition:

Example: Direction flashing and tip flashing

45

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)][til > 0 and til != last]

F (TIP_FLASHING and til == 0
and t.elapsed(1980))

Example: Direction flashing and tip flashing

46

Consider other requirements

• REQ-TIP-002 (Tip flashing 2): Repeated operation of the turn
indication lever within the tip flashing period of 1980ms does not
lead to an extension of this period

• Here no 1-1-relationship to a model transition is possible, because ...
• … all computations that fulfill requirement REQ-TIP-002 can be

expressed in LTL as:

F (TIP_FLASHING and til == 0 and
(X (til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U
(t.elapsed(1980) and X IDLE))))))

Example: Direction flashing and tip flashing

47

F (TIP_FLASHING and til == 0 and

(X (til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U

(t.elapsed(1980) and X IDLE))))))

Finally visit the computation control state

TIP_FLASHING (the turn indicator lever is in a neutral position) and …

Example: Direction flashing and tip flashing

48

F (TIP_FLASHING and til == 0 and

(X (til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U

(t.elapsed(1980) and X IDLE))))))

… then neXt, the turn indicator lever will be returned in its
previous position (left or right) and …

Example: Direction flashing and tip flashing

49

F (TIP_FLASHING and til == 0 and

(X (til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U

(t.elapsed(1980) and X IDLE))))))

… the system remains in TIP_FLASHING
Until …

Example: Direction flashing and tip flashing

50

F (TIP_FLASHING and til == 0 and

(X (til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U

(t.elapsed(1980) and X IDLE))))))

… the turn indicator lever drops back to 0
(while the system is still in
TIP_FLASHING), Until …

Example: Direction flashing and tip flashing

51

F (TIP_FLASHING and til == 0 and

(X (til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U

(t.elapsed(1980) and X IDLE))))))

… 1980ms have elapsed and the state IDLE
is assumed

Example: Direction flashing and tip flashing

52

In any case, a requirement would be completely tested, if all computations
that fulfill the respective LTL-formula were checked

 Not feasible, because
• Control systems have infinitely long computations („never

terminate“)
• in real-time systems, there are infinitely many partial computations of

finite length, because infinitely many different points in time can be
selected for a new event (e.g. input to the SUT) to be triggered

From requirements to test cases

53

Application of the principle of equivalent classes:

• Two computations, which visit the same sequence of control states
(although possibly excercise cycles different numbers of times), and
for which all control flow decisions evaluate identically, are
equivalent, because the same model operations are executed within
these computations

From requirements to test cases

54

Two equivalent computations B1 and B2

til Ctrl-State last left right Time-
Stamps
B1

Time-
Stamps
B2

0IDLE 0 0 0 0 0

1IDLE 0 0 0 1000 2000

1ACTIVE 1 1 0 1000 2000

1ACTIVE 1 1 0 1440 2440

1STABLE 1 1 0 1440 2440

0STABLE 1 1 0 2000 10000

0IDLE 0 0 0 2000 10000

Time stamp of B1 and B2Identical values of B1 and B2

From requirements to test cases

55

How many test cases are required for REQ-TIP-002?

• TIP_FLASHING,til==0 

TIP_FLASHING,til==last 

TIP_FLASHING,til==0 

TIP_FLASHING,til==0,t.elapsed(1980)  IDLE

• What „history“ should be considered according to the equivalence
class principle?

• Data flow analysis: In ACTIVE, all values that influence REQ-TIP-002
will be reassigned

From requirements to test cases

56

IDLE
Entry/ left = 0;
right = 0;
last = 0;

ACTIVE
Entry/ left = (til == 1);
right = (til == 2);
last = til;
t.reset();

STABLE TIP_FLASHING

[til > 0]

[t.elapsed(440)]

[til > 0 and til != last]

[til == 0]

[til > 0 and til != last][til == 0]

[t.elapsed(1980)][til > 0 and til != last]

From requirements to test cases
Since ‚last‘ and ‚t‘ are set here, it is well
justified if only one (or less) paths from
the initial state to ACTIVE are used.

Likewise, it is not necessary to stimulate
the transition TIP_FLASHING ACTIVE
after reaching TIP_FLASHING, because
this again leads to reassignments of
‚last‘ and ‚t‘.

57

For ‚last‘ and ‚til‘ all relevant values should be tested
(1, 2 for Left/Right)  2 test cases

TC-TIP-002.1: F (TIP_FLASHING and til == 0 and
(X (til == 1 and til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U
(t.elapsed(1980) and X IDLE))))))

TC-TIP-002.2: F (TIP_FLASHING and til == 0 and
(X (til == 2 and til == last and (TIP_FLASHING U

(TIP_FLASHING and til == 0 U
(t.elapsed(1980) and X IDLE))))))

From requirements to test cases

58

• In TIP_FLASHING , it is sufficient to test only one Transition

til == 0  til == last  til == 0

since this does not change any states

• TC-TIP-002.1, 2 are symbolic test cases:

– symbolic test cases represent equivalence classes

– every computation that fulfills the formulas is a valid
concrete test case

From requirements to test cases

59

• The traceability of the requirements to the required test
cases is

• For the logical formulas TC-TIP-002.1, 2, the test case
generator generates concrete input sequences and their
respective points in time

Requirement Test Case

REQ-TIP-002 TC-TIP-002.1

TC-TIP-002.2

From requirements to test cases

60

Overview

1. Model-based system integration testing

2. Integrating external models in the HW-in-the-loop test
bench

3. Requirements – test model – test case

4. Contributing test expertise in the automation process

5. Summary

61

Contributing test expertise in the automation process

Problem:

• Many available tools for test automation support only the work flow

1. Modeling

2. Configuration of model parameters

3. Automatic test case- test data generation

• Test experts would like not just to model and then „wait on the result of
the generator“, …

• … but also to influence the test case generation process with their expert
knowledge, where necessary

62

Scenario-based testing:

• Views test generation as an interactive process between test experts and
the automatic generator

– Test experts „guide“ the generator to „important“ test scenarios, e.g.
through the input of LTL-formulas, which specify relevant test cases

– The generator carries out the „routine work“: generation of concrete
input data for a predetermined test goal

Contributing test expertise in the automation process

63

Interactive test generation paradigm:

• User-controlled construction and expansion of (partial) computation
trees rather than push-button generation of single computations

• Several techniques for the expansion of computation trees

– Large range w.r.t the degree of automation used

• Visualisation of computation trees and associated model states

• Search function to locate computations, which fulfill given LTL properties

– Evaluate coverage of requirements

– Locate suitable prerequisite model states for the expansion of the
computation tree

Contributing test expertise in the automation process

64

Computation tree expansion techniques:

• Model simulation using user-specified inputs and time delays

• Random input generation to acquire some preliminary model coverage

• Maximum transition coverage generation to produce useful prerequisite
model states

• Multiple/single target transition coverage to force coverage of specific
transitions

– Enforce/disregard order, in which to cover selected transitions

– Enable/disable back-tracking within the computation tree to
enforce/disregard selected prerequisite model state

• Requirement-driven test generation using user-specified LTL properties

– Enable/disable back-tracking

Contributing test expertise in the automation process

65

Interactive test generation work-flow:

1. Initial computation tree consists of initial model state only

2. Search the computation tree and select a model state to expand

3. Select and configure technique to expand the selected model state

4. Explore and evaluate the resulting computation tree w.r.t coverage of
scenarios to be tested

5. Repeat from 2. as needed

6. Select computations (i.e. final computation tree nodes) to be refined
into executable test procedures

Contributing test expertise in the automation process

66

Example scenario: Aborted lane change

• Test case 1:

– Initiate tip flashing left

– While tip flashing left, initiate tip flashing right

– Wait until tip flashing right has finished

• Test case 2:

– Initiate stable flashing left

– While stable flashing left, initiate tip flashing right

– Wait until tip flashing right has finished

Contributing test expertise in the automation process

67

Contributing test expertise in the automation process

IDLE
til = 0
last = 0
t = 0
timestamp = 0

The initial computation
tree consists only of the
initial model state

68

Contributing test expertise in the automation process

TIP_FLASHING
til = 0
last = 1
t = 200
timestamp = 200

ACTIVEIDLE

Construct a model state, where tip
flashing is active, by employing
single target transition generation
for transition:
ACTIVE -> TIP_FLASHING

69

Contributing test expertise in the automation process

TIP_FLASHING
til = 0
last = 2
t = 200
timestamp = 800

ACTIVEIDLE TIP_FLASHING ACTIVE

Expand computation using LTL-driven generation using
formula:

(not t.elapsed(1980)) U (TIP_FLASHING and last = 2)

70

Contributing test expertise in the automation process

IDLE
til = 0
last = 0
t = 1980
timestamp = 2580

ACTIVEIDLE TIP_FLASHING ACTIVE TIP_FLASHING

Perform manual model simulation,
let 1980 ms elapse

71

Contributing test expertise in the automation process

ACTIVE
til = 1
last = 1
t = 0
timestamp = 0

IDLE TIP_FLASHING ACTIVE TIP_FLASHING IDLE

Search for a suitable prerequisite
model state for test case 2. Look for
a model state fulfilling formula:

ACTIVE and til = 1

72

Contributing test expertise in the automation process

STABLE
til = 1
last = 1
t = 440
timestamp = 440

IDLE TIP_FLASHING ACTIVE TIP_FLASHING IDLEACTIVE

Perform manual model simulation,
let 440 ms elapse.

Alternatively, use target transition
generation for transition:
ACTIVE -> STABLE

73

Contributing test expertise in the automation process

IDLE TIP_FLASHING ACTIVE TIP_FLASHING IDLEACTIVE

ACTIVE TIP_FLASHING IDLESTABLE

Continue as before…

74

Graphical User Interface

Contributing test expertise in the automation process

Generation
commands

Model state
view

Target transition
selection

Computation
tree view

Search bar

75

Overview

1. Model-based system integration testing

2. Integrating external models in the HW-in-the-loop test
bench

3. Requirements – test model – test case

4. Contributing test expertise in the automating process

5. Summary

76

• Three practical problems and respective solution approaches for model-
based testing of vehicle's control systems were presented

• The described test approach was implemented in a complete tool chain
and is a part of a pilot project at Daimler since 2010

• The „real“ test models are far greater than the simplified examples
presented here: real models are comprised of 40 – 100 components with
corresponding complex hierarchical state machines and timers running in
parallel (see statistics in reference [2])

Summary

77

Summary

• Evaluation of model-based test projects in the aerospace, rail and
automotive domains have shown a high increase of efficiency compared
to manually developed test suites

• The authors hope that the presented topics are helpful for other research
groups, tool developers and their users in the field of model-based
testing of embedded systems

• Further reading is provided on the last page of the presentation

• A „real“ test model was publicly released by Daimler, it is described in *3+
and is available for download via the Internet; a detailed description of
our testing technology is provided as well.

78

Thank you for your attention!

Any questions ?

79

References

1. Stephan Weißleder, Holger Schlingloff: Automatic Model-Based Test Generation
from UML State Machines in Model-Based Testing for Embedded Systems,
Editors Justyna Zander, Ina Schieferdecker, Pieter J. Mosterman, to appear in
05/2011

2. Jan Peleska, Elena Vorobev and Florian Lapschies. Automated Test Case
Generation with SMT-Solving and Abstract Interpretation. In Proceedings of the
NASA Formal Methods Symposium NFM2011. Springer LNCS 6617 (2011).

3. Jan Peleska, Peer Smuda, Florian Lapschies, Hermann Schmid, Artur Honisch,
Elena Vorobev and Cornelia Zahlten. A Real-World Benchmark Model for Testing
Concurrent Real-Time Systems in the Automotive Domain. Submitted to
ICTSS2011: International Conference on Testing Systems and Software Also
available under http://www.informatik.uni-bremen.de/agbs/benchmarks

4. Jan Peleska, Hristina Fidanoska, Artur Honisch, Helge Löding, Hermann S.
Schmid, Peer Smuda und Daniel Tille: Model-Based Testing in the Automotive
Domain – Challenges and Solutions. Available under
http://www.informatik.uni-bremen.de/~jp/jp_papers

