
SSV 2008

Symbolic and Abstract Interpretation for
C/C++ Programs

Helge Löding2 ,4

GESy Graduate School of Embedded Systems
University of Bremen

and Verified Systems International GmbH
Germany

Jan Peleska1 ,3

Centre of Information Technology
University of Bremen

Germany

Abstract

We present a construction technique for abstract interpretations which is generic in the choice of data ab-
stractions. The technique is specialised on C/C++ code, internally represented by the GIMPLE control flow
graph as generated by the gcc compiler. The generic interpreter handles program transitions in a symbolic
way, while recording a history of symbolic memory valuations. An abstract interpreter is instantiated by
selecting appropriate lattices for the data types under consideration. This selection induces an instance of
the generic transition relation. All resulting abstract interpretations can handle pointer arithmetic, type
casts, unions and the aliasing problems involved. It is illustrated how switching between abstractions can
improve the efficiency of the verification process. The concepts described in this paper are implemented
in the test automation and static analysis tool RT-Tester which is used for the verification of embedded
systems in the fields of avionics, railways and automotive control.

Keywords: automated testing, static analysis, abstract interpretation, Galois connections

1 Introduction

1.1 Objectives and Overview

Concrete and abstract interpretation are core mechanisms for automated static

analysis, test case/test data generation and property checking of software: The

concrete interpretation helps to explore program (component) behaviour with con-

crete data values without having to compile, link and execute the program on the

1 Email:jp@tzi.de
2 Email: hloeding@tzi.de
3 Partially supported by the BIG Bremer Investitions-Gesellschaft under research grant 2INNO1015B
4 Supported by a research grant of the Graduate School in Embedded Systems GESy http://www.gesy.info

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:jp@tzi.de
mailto:hloeding@tzi.de
http://www.gesy.info

Löding and Peleska

Constraint
Generator

Interval
Analysis

Linear
Arithmetic

Bit−
Vector

String

Boolean

In
te

rm
e
d

ia
te

 M
o

d
e
l
R

e
p

re
s
e
n

ta
ti

o
n

S
U

T
 −

 M
e
m

o
ry

 M
o

d
e
l

S
U

T
 −

 A
b

s
tr

a
c
t

M
o

d
e
l

Constraint Solver

Test Data:
Input Assignment

Approximation

Solution Set

S
U

T
 C

o
d

e
/M

o
d

e
l
P

a
rs

e
rs

C
+

+
 M

o
d

u
le

+
S

p
e
c
if

ic
a
ti

o
n

U
M

L
2
.0

 S
ta

te
c
h

a
rt

s

Path Selector

Interpreters

AbstractSymbolic

Concrete

Fig. 1. Building blocks of tools for test automation, static analysis and property verification.

target platform. The abstract interpretation reduces the complexity of verification

goals or, more general, reachability problems, by abstracting from details which are

unnecessary for the goal under consideration.

Consider the building blocks typically present in tools supporting test automa-

tion, static analysis and/or property checking as shown in Fig. 1: The program code

to be analysed or a specification model are transformed into a uniform intermedi-

ate model representation (IMR) which is independent of the concrete SUT code or

specification syntax. This reduces the dependencies between concrete syntax and

analysis algorithms. Most of the problems arising in automated test case/test data

generation, static analysis and property verification can be paraphrased as reacha-

bility problems, as has been pointed out in [10]. Therefore a path selector performs

a choice of potential paths through the model to be checked with respect to feasi-

bility: The goal is solved if concrete input data can be found so that the software

component under analysis executes along one of the suggested paths. While the

general reachability problem is undecidable, concrete goals can often be realised in

a highly efficient way. To this end, the constraint generator constructs a collection

of constraints to be met in order to provoke an execution along the selected paths.

The construction requires a symbolic interpreter, a tool component for collecting

the guard conditions along the selected paths. With a sufficient collection of con-

straints at hand, the constraint solver tries to construct concrete data solving the

constraints or to prove their infeasibility.

The choice of the abstract interpretation technique considerably influences the

efficiency of automated solvers used for these purposes: For proving that a constraint

collection can never be satisfied it is often more efficient to show this for an ab-

stracted program version, so that this also implies infeasibility for the concrete pro-

gram. Conversely, some abstractions are especially useful for under-approximating

the solution set of the constraints given, so that any data vector of this approxima-

tion represents a solution.

In this paper we focus on interpreters for C/C++ programs. For this task it

is necessary to capture all “side effects” of aliasing, pointer arithmetic, type casts

2

Löding and Peleska

and unions possibly occurring in C/C++ software, so that no hidden effects of in-

structions on the valuation of symbols not occurring in the statement are missed

during the interpretation process. We first present operational rules for a concrete

semantics covering these aspects (Section 3). Next we observe that for a given col-

lection of constraints, the efficiency of the solver strongly depends on the choice of

abstraction. As a consequence it is desirable to switch abstractions for one and the

same data type during the interpretation while still ensuring the correctness of the

interpretation results. This objective is met by means of a symbolic interpreter for

C/C++ programs (Section 4): This tool component handles program transitions

in a symbolic way, while recording a history of symbolic memory valuations. The

valuations are represented by memory addresses (these are necessary in order to

cope with the aliasing problems), value expressions and application conditions: A

memory item is only valid if a valuation of inputs can be found so that the appli-

cation condition becomes true. Finally we describe how abstract interpreters can

be constructed by instantiating the symbolic interpreter with lattices to be used

for abstracting the data types involved (Section 5). As a consequence, the basic

interpretation algorithm can be completely re-used for each choice of abstraction

lattice, only functions for the valuation of expressions in the context of the selected

lattices have to be added. In Section 6 an example is given which illustrates the

mechanics and the effects of symbolic and abstract interpretation.

1.2 Background and Related Work

The full consideration of C/C++ aliasing situations with pointers, casts and unions

is achieved at the price of lesser performance. In [4,2], for example, it is pointed

out how more restrictive programming styles, particularly the avoidance of pointer

arithmetics, can result in highly effective static analyses with very low rates of

false alarms. Conversely it is pointed out in [14] that efficient checks of pointer

arithmetics can be realised if only some aspects of correctness (absence of out-

of-bounds array access) are investigated. As another alternative, efficient static

analysis results for large general C-programs can be achieved if a higher number of

false alarms (or alternatively, a suppression of potential failures) is acceptable [5], so

that paths leading to potential failures can be identified more often on a syntactic

basis without having to fall back on constraint solving methods.

On the level of binary program code verification impressive results have been

achieved for certain real-world controller platforms, using explicit representation

models [12]. These are, however, not transferable to the framework underlying our

work, since the necessity to handle floating point and wide integer types (64 or 128

bit) forbids the explicit enumeration of potential input values and program variable

states.

All techniques described in this paper are implemented in the RT-Tester tool

developed by the authors and their research group at the University of Bremen in

cooperation with Verified Systems International GmbH [15]. In [10] we have moti-

vated in more detail why testing, static analysis and property checking of software

code should be considered as an integrated verification task, so integrated tool sup-

port for these complementary aspects of software verification is highly desirable.

The approach pursued with the RT-Tester tool differs from the strategies of other

3

Löding and Peleska

authors [4,2,14]: We advocate an approach where test and verification activities

focus on small program units (a few functions or methods) and should be guided

by the expertise of the development or verification specialists. Therefore the RT-

Tester tool provides mechanisms for specifying preconditions about the expected or

admissible input data for the unit under inspection as well as for semi-automated

stub (“mock-object”) generation showing user-defined behaviour whenever invoked

by the unit to be analysed. As a consequence, programmed units can be verified

immediately and interactive support for bug-localisation and further investigation

of potential failures is provided. The SMT constraint solver used in the tool is based

on ideas described in [11,1,6].

2 Theoretical Foundations

Recall that a binary relation ⊑ on a set L is called a (partial) order if ⊑ is reflexive,

transitive and anti-symmetric. An element y ∈ L is called an upper bound of X ⊆ L

if x ⊑ y holds for all x ∈ X. The lower bound of a set is defined dually. An upper

bound y′ of X is called a least upper bound of X and denoted by ⊔X if y′ ⊑ y

holds for all upper bounds y of X. Dually, the greatest lower bound ⊓X of a set X

is defined.

An ordered set (L,⊑) is called a complete lattice, if ⊓X and ⊔X exist for all

subsets X ⊆ L. Lattice L has a largest element (or top) denoted by ⊤ =def ⊔L

and a smallest element (or bottom) denoted by ⊥ =def ⊓L. Least upper bounds

and greatest lower bounds induce binary operations ⊔,⊓ : L × L → L by defining

x ⊔ y =def ⊔{x, y} (the join of x and y) and x ⊓ y =def ⊓{x, y} (the meet of x and

y), respectively. If the join and meet are well-defined for an ordered set (L,⊑) but

⊔X,⊓X do not exist for all X ⊆ L then (L,⊑) is called an (incomplete) lattice.

From the collection of canonic ways to construct new lattices from existing ones

(L,⊑), (L1,⊑1), (L2,⊑2), we need (1) cross products (L1×L2,⊑
′) where the partial

order is defined by (x1, x2) ⊑′ (y1, y2) if and only if x1 ⊑1 y1 ∧ x2 ⊑2 y2 and (2)

partial function spaces (V 6→ L,⊑′) where f ⊑′ g for f, g ∈ V 6→ L if and only if

dom f ⊆ dom g ∧ (∀x ∈ dom f : f(x) ⊑ g(x)).

Mappings φ : (L1,⊑1) → (L2,⊑2) between ordered sets are called monotone if

x ⊑1 y implies φ(x) ⊑2 φ(y) for all x, y ∈ L. Mappings φ : (L1,⊑1) → (L2,⊑2)

between lattices are called homomorphisms if they respect meets and joins, that is,

φ(x ⊔1 y) = φ(x) ⊔2 φ(y) and φ(x ⊓1 y) = φ(x) ⊓2 φ(y) for all x, y ∈ (L1,⊑1). Since

x ⊑1 y implies x ⊔1 y = y and x ⊓1 y = x, homomorphisms are monotone.

A Galois connection (GC) between lattices (L1,⊑1), (L2,⊑2) is a tuple of map-

pings ⊲ : (L1,⊑1) → (L2,⊑2) (called right) and ⊳ : (L2,⊑2) → (L1,⊑1) (called

left) such that a⊲ ⊑2 b ⇔ a ⊑1 b⊳ for all a ∈ L1, b ∈ L2. This defining property

implies that Galois connections are monotone in both directions.

Given any transition system TS = (S, S0,−→) with state space S, initial states

in S0 ⊆ S and transition relation −→⊆ S × S, the most fine-grained state space

abstraction possible is represented by the power set lattice LP(S) = (P(S),⊆) with

join operation ∪ and meet ∩. We introduce an abstract interpretation semantics on

LP(S) by turning it into a state transition system TSP = (LP(S), {S0},−→P) by

lifting the original transition relation to sets: Using Plotkin-style notation, this can

4

Löding and Peleska

be specified as

∀i ∈ I, si, s
′
i ∈ S : si −→ s′i

{si | i ∈ I} −→P {s′i | i ∈ I}

Compared to the original transition system TS, this abstract interpretation

−→P introduces no loss of information, since its restriction to pairs of singleton sets

is equivalent to the original transition relation:

∀s1, s2 ∈ S : s1 −→ s2 ⇔ {s1} −→P {s2}

It is, however, an abstraction, since for transitions between states with cardinality

higher than one, say {s1, s2, . . .} −→P {s′1, s
′
2, . . .}, only the possible resulting states

are listed (s′1, s
′
2, . . .) but the information whether, for example, s1 −→ s′1 or s1 −→

s′2 is no longer available.

Now, given any other transition system TSL = (L, L0,−→L) based on a lattice

(L,⊑) we can check whether TSL is a valid abstract interpretation of TS by the

aid of TSP and Galois connections:

Definition 2.1 Transition system TSL = (L, L0,−→L), based on a lattice (L,⊑),

is a valid abstract interpretation of TS = (S, S0,−→) if (i) there exists a Galois

connection (P(S),⊆)
⊳

←−
−→

⊲

(L,⊑), (ii) the transition relation −→L is a valid abstract

relation the sense that ∀a, a′, b ∈ L : (a −→L a′ ∧ b ⊑ a ⇒ ∃b′ ∈ L : b −→L b′ ∧ b′ ⊑

a′), (iii) the transition relation −→L satisfies ∀(p, p′) ∈−→P: ∃a′ ∈ L : p⊲ −→L

a′ ∧ p′⊲ ⊑ a′ and (iv) the transition relation −→L satisfies ∀(a, a′) ∈−→L: ∃p′ ∈

P(S) : a⊳ −→P p′ ∧ p′ ⊆ a′⊳.

The following theorem provides a “recipe” for constructing valid abstract inter-

pretations, as soon as a GC according to Definition 2.1, (i) has been established:

Theorem 2.2 Given lattice (L,⊑) and Galois connection (P(S),⊆)
⊳

←−
−→

⊲

(L,⊑), de-

fine transition system TSL = (L, L0,−→L) by (i) L0 = {S0}
⊲, (ii) p⊲⊳−→Pp′

p⊲−→Lp′⊲
and

(iii) a⊳−→Pp′

a−→Lp′⊲
Then TSL is a valid abstract interpretation of TS in the sense of

Definition 2.1.

For more details about lattices and GC and the proof of Theorem 2.2 the reader

is referred to [3,9].

3 Control Flow Graphs and GIMPLE, Concrete Se-
mantics

3.1 GIMPLE Programs

We use the gcc compiler to transform a given C/C++ program into GIMPLE code.

As described in [7,8], this semantically equivalent representation of a program con-

stitutes an intermediate transformation result from source to assembler, where all

expressions appearing in statements contain at most one operator and (with the

exception of function invocations) at most two operands. Operands may only be

variable names or nested structure and array accesses (henceforth called selectors)

5

Löding and Peleska

as well as constant values. By introducing auxiliary variables, all original statements

will be transformed to adhere to this requirement. Statements may therefore only be

assignments from expressions to variables (or atomic selectors in the above sense).

Casting and referencing/dereferencing of variables (or selectors) form expressions

in themselves, and may therefore not be used as operands, but instead need to be

executed as separate assignments to auxiliary variables. GIMPLE programs contain

no loop constructs. Instead, all loops from the original source are transformed into

conditional jumps to preceeding labelled statements. GIMPLE therefore contains

only two different types of branching statements:

<if-else-stmt> ::= if (<condition>) goto <label>; else goto <label>;
<switch-stmt> ::= switch (<variable>) { <cases> <default>_opt }
<cases> ::= <cases>_opt case <value>: goto <label>;
<default> ::= default: goto <label>;

For the description of concrete GIMPLE semantics we encode each GIMPLE

function as a control flow graphs (CFGs). Each function/method of a C/C++

program is associated with a CFG. Each CFG G has a distinguished initial node

I(G) corresponding to function entry and a terminal node O(G) corresponding to

function return. Each CFG node is labelled with a single GIMPLE statement,

each edge with a GIMPLE branching condition. For sequences of non-branching

statements, the edges are labelled with true. Branching statements are represented

as edges labelled with the applicable branching conditions, each edge pointing to

the target node referenced in the goto <label> statement in the GIMPLE code.

The concrete operational semantics of a GIMPLE program P , represented by

a collection of control flow graphs as described above, will now be explained by

associating a transition system with P .

3.2 GIMPLE state space

For representing the semantics of GIMPLE programs P , we use the following class
of transition systems TSG = (SG, S0,−→G). The program state space is defined as

SG = N(P) × (Seg × N0 6→ Symbols) × (Seg × N0 6→ BY TE∗)

with typical element (n, ν, µ) ∈ SG. Set N(P) comprises all nodes in the CFGs

associated with any function of P . The second and third component of this Carte-

sian product represent function spaces for address mappings and memory state: For

modelling the association between variables, their aliases and their associated mem-

ory portions, we introduce (1) a partial function ν : Seg ×N0 6→ Symbols mapping

existing virtual addresses on the segment of type Seg = {stack, heap, global, code}

to a symbol (variable or function) associated with this address and (2) a partial

function µ : Seg × N0 6→ BY TE∗ associating with each existing virtual address a

sequence of bytes, representing the current memory valuation of the given address.

The set Symbols only contains the basic symbol names, that is, the name a of an

array, but not the array element a[4] and the name of a structured variable x but

not the name of x.y.z[5] of a structure component. Component and array element

identifiers are called selectors and comprised in a (possibly infinite) set Selectors

which is a superset of Symbols, since each basic name is a selector, too.

The initial state of SG is S0 = {(I(f), ν0, µ0)}, where I(f) is the initial node of

the CFG associated with the GIMPLE function of interest, ν0 contains all addresses

of global variables and actual parameters used in the invocation of f() and µ0

6

Löding and Peleska

contains the memory portions associated with these actual parameters and of all

global variables, initialised according to the precondition on which the execution of

f() should be based.

3.3 Auxiliary functions

For recording state changes in SG and determining the current state of variable

valuations some auxiliary functions are needed.

Given an arbitrary selector, function β : Selectors → Symbols returns its base

symbol, e.g. for β(x.y.z[5]) = x. This will be required to retrieve base addresses

for selectors by means of ν.

Since virtual addresses are unique across memory segments, a function ν̂ :

Symbols 6→ N0 mapping identifiers to their respective address is well-defined when

taking scoping into account. For a given symbol that is defined both within the

stack and global segments, ν̂ will return the virtual address corresponding to the

symbol definition within the stack.

ν̂ can be extended to map from selectors to virtual base addresses to yield

ν− : Selectors 6→ N0 with ν−(sel) =def ν̂(β(sel)).

Given an arbitrary selector, function ω : Selectors → N0 returns the bit offset of

the selector’s memory location from its base address. The offset is measured in bits

so that also operations on bitfields can be captured. This information is obviously

platform-specific: ω is constructed from the size and alignment information provided

by the gcc compiler on the specific platform it is used. As with ν−, the appropriate

memory segment for multiply defined base symbols is determined by first assessing

symbol definitions within the stack segment.

Function τ : Selectors 6→ Types returns the type for any given selector. The

type information is then gained from the internal type data gathered by the gcc

compiler. Again, scoping is taken into account.

Function τ may be extended to determine the type of a given expression form-

ing τ∗ : Expr 6→ Types by taking (return) types of used operands and opera-

tors into account. If a given selector corresponds to a pointer type, then function

~τ : Selectors 6→ Types may be used to obtain its target type.

Function σ : Types → N0 is used to determine a given type’s size in bits.

The state space only records the current memory state as sequences of bytes.

Function ι : BY TE∗ × Types 6→ D is used to interpret a given sequence of bytes as

a specific type. Here, D denotes the union of all atomic domains. It is only defined

for byte sequences long enough to hold a value of given type. Conversely, we define

ι− : D × Types 6→ BY TE∗ to be the byte representation for a given value with

known type. For these functions, the size of atomic types, encoding methods and

the little or big endianess of the platform has to be determined. This information

is retrieved from the gcc type- and debugging information.

For reading data from memory, we initially define ǫa : SG ×N0 ×N0 6→ BY TE∗.

Function application ǫa((ν, µ), a, s) reads a bit sequence of a given length s beginning

from a specified address a within the memory, and returns its contents as byte

sequence. For this, we find the segment and base address (seg, abase) within dom(ν),

for which byte sequence µ(seg, abase) encloses address a. If specified size s exceeds

7

Löding and Peleska

byte sequence µ(seg, abase) beginning from a, ǫa has to take direct successor byte

sequences within seg into account to be defined. If size s is not a multiple of 8, the

resulting byte sequence will be constructed by adding additional high order 0 bits

until its bitsize reaches the next higher multiple of 8.
Using ǫa, we now construct a function to read raw byte data from memory using

selectors. We define ǫs : SG × Selectors : BY TE∗ as

ǫs((ν, µ), sel) =def ǫa((ν, µ), ν−(sel) + ω(sel), σ(τ(sel)))

We now define a function ǫe : SG × Expr 6→ BY TE∗, which evaluates a given

GIMPLE expression according to the current memory valuation. As GIMPLE ex-

pressions contain at most one operator, we can do this by distinguishing different

expression types. For expressions consisting of constant values or selectors, ǫe cor-

responds to applications of ι− or ǫs respectively. Other types of expressions may be

evaluated using one of the following definitions of ǫe:
Let 2 ∈ {+,−, ∗, /,%,∧,∨, >, <,≥,≤, =, 6=} be a binary arithmetic or boolean

operator, and let exp =def exp1 2 exp2 be an application to two operand expressions.
We define

ǫe((ν, µ), exp) =def
ι−(ι(ǫe((ν, µ), exp1), τ∗(exp1)) 2 ι(ǫe((ν, µ), exp2), τ∗(exp2)), τ∗(exp))

Concurrently, for an unary arithmetic or boolean operator 3 ∈ {+,−, !} and ex-
pression exp =def 3 exp1 we define

ǫe((ν, µ), exp) =def ι−(3 ι(ǫe((ν, µ), exp1), τ∗(exp1)), τ∗(exp))

For a bitwise operator ◦ ∈ {&, |,XOR} and expression exp =def exp1 ◦ exp2, the
operation is performed on raw byte data, and we define

ǫe((ν, µ), exp) =def ǫe((ν, µ), exp1) ◦ ǫe((ν, µ), exp2)

For bitwise unary operator ∼ and according expression exp =def ∼ exp1, we define

ǫe((ν, µ), exp) =def ∼ ǫe((ν, µ), exp1)

For a shift operator △ ∈ {≪,≫} and expression exp =def exp1 △ exp2, the opera-
tion is performed as follows (note that exp2 must correspond to an integral type):

ǫe((ν, µ), exp) =def ǫe((ν, µ), exp1)△ ι(ǫe((ν, µ), exp2), τ(exp2))

Dereferencing of a selector, exp =def ∗sel, may be evaluated using

ǫe((ν, µ), exp) =def ǫa((ν, µ), ι(ǫs((ν, µ), sel), N0), σ(~τ(sel)))

Conversely, referencing of a selector, exp =def &sel, is defined as

ǫe((ν, µ), exp) =def ι−(ν−(sel) + ω(sel), N0)

For a cast expression exp =def (t)(exp1) with target type t, we define

ǫe((ν, µ), exp) =def ι−((t)C ι(ǫe((ν, µ), exp1), τ∗(exp1)), t)

where cast operator ()C uses C cast operator semantics for atomic types t and

τ∗(exp1).
For purposes of legibility, we henceforth denote ǫe by ǫ unless noted otherwise.

For specifying the effect of write operations on the memory, we use function
φ : (N0 × N0) × SG × BY TE∗ 6→ (Seg × N0 6→ BY TE∗)

To begin with, function application φ((atgt, otgt), (ν, µ), valbyte) determines the tar-

get memory segment for target base address atgt and offset otgt. It then returns

a new memory valuation µ′, which differs from µ only in the new valuation of the

target segment, starting at target base address atgt but unchanged before offset otgt.

Starting at the offset, the memory is changed according to the byte sequence valbyte.

8

Löding and Peleska

3.4 Transition relation: operational rules.

The operational rules specifying the transition relation −→G⊆ SG × SG on the
GIMPLE state space are based on the control flow graph representation of each
GIMPLE function. In Plotkin-style notation, each rule is of the form

n1
g

−→CFG n2, ι(ǫ((ν, µ), g), int) 6= 0

(n1, ν, µ) −→G (n2, ν′, µ′)

Informally speaking, a transition (n1, ν, µ) −→G (n2, ν
′, µ′) is possible if (1) there

exists an edge from n1 to n2 in the respective CFG, (2) the guard condition g

associated with this edge evaluates to true (for C-like languages this means that

it evaluates to an integral value not equal to zero) in the current valuation (ν, µ).

For each type of statement encoded in the nodes n1 it remains to define the effect

of this statement on (ν, µ), resulting in the new valuation state (ν ′, µ′). Below we

give some examples of detailed rule specifications.
(1) The effect of a stack variable definition, n1 =def typex x;, is to allocate the

required space on stack. The values, however, are still undefined. As a consequence
the effect on the memory valuation can be specified by

ν′ = ν ⊕ [(stack, a′) 7→ x]

where a′ is a fresh address not occurring in dom ν (in fact, we use the proper offset
of x from the base of the stack frame for building a′). The effect on the memory is

µ′ = µ ⊕ [(stack, a′) 7→ 〈?, . . . , ?〉
| {z }

sizeof(typex)

]

where “?” denotes that the byte values are still undefined.
(2) The effect of an assignment to a selector, n1 =def sel = expr;, is to change

the memory at the base address plus offset, as defined by the selector according to
the expression valuation. As the left-hand and right-hand sides of the assignment
need not necessarily be typed identically, we first construct the artificial cast ex-
pression expr′ = (τ(sel))(expr). As we have now ensured expr′ to be of the type
corresponding to sel, we go on and assign

ν′ = ν, µ′ = φ((ν−(sel), ω(sel)), (ν, µ), ǫ((ν, µ), expr′))

(3) The effect of an assignment to a de-referenced selector, n1 =def ∗sel = expr;,
is to change the memory at the address pointed to by sel according to the expression
valuation and the pointer target type of the selector. We therefore need to calculate
the target address atrg of the write operation first. This is done by evaluating atrg =
ι(ǫs((ν, µ), sel), N0). Again using an artificial cast expression expr′ = (~τ(sel))(expr),
we can now construct a new state space by assigning

ν′ = ν, µ′ = φ((atrg, 0), (ν, µ), ǫ((ν, µ), expr′))

(4) The effect of copying memory, n1 =def memcpy(trg, src, s);, is to copy s
successive bytes starting with address src to the memory indicated by trg. This
may be accomplished by defining

asrc = ι(ǫ((ν, µ), src), N0)

atrg = ι(ǫ((ν, µ), trg), N0)

to be the addresses specified in src and trg respectively. We can now construct

µ0 = φ((atrg, 0), (ν, µ), ǫa((ν, µ), asrc, 8))

. . .

µi = φ((atrg, 8 ∗ i), (ν, µi−1), ǫa((ν, µi−1), asrc + 8 ∗ i, 8))

. . .

µs−1 = φ((atrg, 8 ∗ (s − 1)), (ν, µs−2), ǫa((ν, µs−2), asrc + 8 ∗ (s − 2), 8))

9

Löding and Peleska

and finally

ν′ = ν

µ′ = µs−1

(5) The effect of a function invocation, n1 =def sel = f(x1, . . . , xn);, for a func-
tion with prototype t f(t1 z1,...,tk zk) is calculated according to the following
operational rule:

n1
g

−→CFG n2, ι(ǫ((ν, µ), g), int) 6= 0, (I(Gf), ν1, µ1) −→∗G (O(Gf), ν2, µ2)

(n1, ν, µ) −→G (n2, ν′, µ′)

In this rule, ν1, µ1 are extensions of ν, µ which comprise the initial settings of the
formal parameters and the return value:

ν1 = ν[(stack, a) 7→ xReturn, (stack, a1) 7→ z1, . . . , (stack, ak) 7→ zk]

Here a, a1, . . . , ak are fresh address values and xReturn is an auxiliary name for
the stack location storing the return value. The initial valuation of xReturn is
undefined, but the zi carry the valuation of their actual parameters xi:

µ1 = µ1
1

µ1
1 = φ((ν−1 (z1), 0), (ν1, µ2

1), ǫ((ν1, µ2
1), (t1)(x1)))

. . .

µi
1 = φ((ν−1 (zi), 0), (ν1, µi+1

1), ǫ((ν1, µi+1
1), (ti)(xi)))

. . .

µk
1 = φ((ν−1 (zk), 0), (ν1, µk+1

1), ǫ((ν1, µk+1
1), (tk)(xk)))

µk+1
1 = µ[(stack, a) 7→ 〈?, . . . , ?〉

| {z }

sizeof(t)

]

Now the precondition (I(Gf), ν1, µ1) −→∗
G (O(Gf), ν2, µ2) in the operational rule

above requires that a sequence of transitions through the CFG of f should exist,
starting with valuation ν1, µ1, so that the final valuation before function return,
ν2, µ2, defines the target state (n2, ν

′, µ′) via

µ′ = φ((ν−2 (sel), ω(sel)), (ν2, µ2), ǫ((ν2, µ2), (τ(sel))(xReturn)))

Finally, the local variable addresses and associated memory valuations of f are

removed from ν ′, µ′.

4 Symbolic Interpretation of GIMPLE-Programs

For symbolic interpretation the state space is defined as

SS = N(P) × N0 × M

M = dataSegment × heapSegment × stackSegment

dataSegment = M-Item∗

heapSegment = M-Item∗

stackSegment = stackFrame∗

stackFrame = M-Item∗

M-Item = N0 × (N0 ∪ {∞}) × BaseAddress ×

Types × Offset × Length × Value × Constraint

BaseAddress = String

Offset = Length = Value = Constraint = Expr(SymbolsS)

SymbolsS = Symbols × N0

Each symbolic state consists of a triple (node, n, mem) where node is a node in the

GIMPLE control flow graph representing the current “program counter state” of

the symbolic execution, n serves as an instruction counter and mem is the current

history state of symbolic memory valuations, called memory items m ∈ mem. The

collection of memory items generated so far is structured according their allocation

10

Löding and Peleska

in the data segment, heap or stack, respectively. The stack is further sub-divided

into frames, so that the validity of stack variables during their associated function

executions can be clearly specified.

The components of a memory item are accessed using m.v0, m.v1, m.a, m.t,

m.o, m.l, m.val, m.c for the respective projections. Component m.a represents the

base address of a memory item, typically denoted by &x if the memory location

corresponds to a variable x or by a fictitious address symbol representing the start

address of a dynamic memory allocation. Component m.o denotes the offset from

the base address, where the value specified in m.val is written to. For writing one

value m.val, the memory portion starting at m.a + m.o is used, and the length of

this portion is determined by the type information m.t. If the length specification

m.l is a multiple of sizeof(t) this specifies that m.l/sizeof(t) copies of m.val are

written into the respective memory segment, starting at m.a+m.o. Component m.c

represents a symbolic validity constraint for the existence of the item. For concrete

or abstract interpretations this means that the memory item is only feasible if m.c

– after having been properly resolved – evaluates to true.

For the symbolic specification of offsets, lengths, values and constraints GIMPLE

expressions over symbols from SymbolsS are used: Such an expression addresses each

identifier as a pair (x, n) where x ∈ Symbol is an ordinary GIMPLE symbol and

n is a version information. Components m.v0, m.v1 represent validity information:

When resolving a symbol (x, n) ∈ SymbolsS occurring in offset, length, value or

constraint expressions of some memory item m′, only the items m with m.v0 ≤ n ≤

m.v1 are considered.
In symbolic interpretation expressions are never resolved to concrete or ab-

stracted variable values, instead, a resolution stops if the expression only contains
literals (including base addresses which are considered as string literals), operators
and symbols from a given set V and with a specific version range n0 ≤ n ≤ n1. A
typical resolution variant is to take V as the set of base addresses, function call pa-
rameters and global input variables, and specify n = 0, meaning “resolve expression
until it only contains literals, operators and input variables in their initial version”.
The constraints of the memory items involved are part of the resolution result ρ, so
in general ρ is of the form

ρ = if c11 ∧ . . . ∧ c1k1
then e1 elseif c21 ∧ . . . ∧ c2k2

then e1 . . . else eℓ

with expressions ei ∈ Expr(V), that is, without version information. Examples for

handling memory items in SS are given in Section 6.
Symbolic interpretation is performed according to rules of the pattern

n1
g

−→CFG n2

(n1, n, mem) −→G (n2, n + 1, mem′)
,

so a transition can be performed on symbolic level whenever a corresponding edge

exists in the control flow graph 5 . To illustrate the effect of symbolic transitions

on the state space SS we present three transition rules explaining stack variable

definition, assignment to a variable (selector) and assignment to a de-referenced

pointer.

5 It may turn out, however, on abstract or concrete interpretation level, that such a transition is infeasible
in the sense that no valuation of inputs exists where the constraints of all memory items involved evaluate
to true.

11

Löding and Peleska

function up=(sel : Selectors; expr : Expr; n : N0; h : M-Item∗; g : Expr) : M-Item∗

m′ := (n + 1,∞, &β(sel), τ(stack, sel), ωA(sel), 8 · sizeof(sel), (expr, n), (g, n));

up= := up(m′, n, h);

end

Fig. 2. Effect of normal assignments on history of memory items.

(1) A stack variable definition , n1 =def typex x; only affects the current stack

frame. Value expression ⊤ marks that the value is still undefined.

mem′ = (mem.data, mem.heap, front(mem.stack) ⌢ 〈last(mem.stack) ⌢ 〈m〉〉

m = (n + 1,∞, &x, typex, 0, 8 · sizeof(typex),⊤, (g, n))

(2) The effect of an assignment to a stack variable, n1 =def sel = expr; affects

the current stack frame only:

mem′ = (mem.data, mem.heap, front(mem.stack) ⌢ 〈h′〉)

h′ = up=(sel, expr, n, last(mem.stack), g)

Function up=() (Fig. 2) specifies (1) how a new memory item m′ is created for the

stack frame history, carrying the right-hand side expression as its value and the

CFG guard condition as validity constraint and (2) which memory items m have

to be invalidated due to the new assignment, possibly leading to the creation of

“replacements” for these m involving new constraints. The details of this invali-

dation/creation process are specified in function up() (Fig. 3): All memory items

m matching with the new item m′ with respect to base address and validity infor-

mation have to be invalidated. It may be the case, however, that m′ “overwrites”

only a portion of m. As a consequence, it has to be specified that the “remains” of

m not affected by the assignment m′ are still valid. Therefore a new memory item

m1 is created and its constraint specifies that outside the range of m′, the old m

valuation still exists. Observe that the constraint of m1 always evaluates to false

if m and m′ are of the same type and have the same offset. This indicates that m1

is infeasible, so m is completely overwritten.

The effect of assignments to variables in the data segments are specified analo-

gously; they affect the mem.data-portion of the memory state.

(3) An assignment to a de-referenced pointer, n1 =def *p = expr; may affect

the data segment, heap or stack, depending on the potential target addresses p

points to. The details are specified by function up=p (Fig. 4).

mem′ = up=p
(p, expr, n, mem, g)

At first, a list ml of all possible pointer targets is generated, using auxiliary

function γ() (Fig.5): Depending on the valuation of different constraints associated

with different memory items, p may point to one or more locations in stack, data

segment or heap. For each of these possible situations, ml contains the new memory

item for the respective pointer target. The effect of each new item on the invalidation

of existing items and creation of new ones is performed again as specified by up()

and explained above.

5 Abstract Interpretation of GIMPLE-Programs

Based on the symbolic interpreter introduced in the preceding section it is now
possible to construct a variety of abstract interpreters according to the following

12

Löding and Peleska

function up(m′ : M-Item; n : N0; h : M-Item∗) : M-Item∗

u := 〈 〉; w := 〈 〉;

for m = last(h) downto head(h) do

if (m.v1 = ∞∧ m′.a = m.a) then

m1 := (n + 1,∞, m.a, m.t, o, l, m.val,

m.c ∧ m′.c ∧ 0 < l ∧ m.o ≤ o ∧ o < l ∧ l ≤ m.l ∧ (o + l ≤ m′.o ∨ m′.o + m′.l ≤ o));

m.v1 := n;

u := 〈m1〉 ⌢ u;

endif

w := 〈m〉 ⌢ w;

enddo

up := w ⌢ u ⌢ 〈m′〉;

end

Fig. 3. Effect of new memory item on history h ∈ M∗.

function up=p
(p : Symbols; expr : Expr; n : N0; mem : M ; g : Expr) : M

hd := mem.data; hh := mem.heap; hs := last(mem.stack);

ml := γ(p, expr, n, mem, g);

forall m′ in ml do

if (σ(m′) = data) then hd := up(m′, n, hd)

elseif (σ(m′) = heap) then hh := up(m′, n, hh)

else hs := up(m′, n, hs);

enddo

upp=
:= (hd, hh, front(mem.stack) ⌢ 〈hs〉);

end

Fig. 4. Effect of assignments to de-referenced pointers on history of memory items.

function γ(p : Symbols; expr : Expr; n : N0; mem : M ; g : Expr) : M-Item∗

ml := 〈 〉;

if σ(p) = data then h := mem.data else h := last(mem.stack);

forall mp in h do

if mp.a = &p ∧ mp.v0 ≤ n ≤ mp.v1 then

pl := ξ(mp.val, mem);

forall q in pl do

a := base address from expression pl;

o := offset expression from expression pl;

c := conjunction over all conditions of memory items occurring in pl;

m′ := (n + 1,∞, a, ~τ(p), o, 8 · sizeof(~τ(p)), (expr, n), c ∧ (g, n));

ml := ml ⌢ 〈m′〉;

enddo

endif

enddo

γ := ml;

end

Fig. 5. Function γ finds list of memory items potentially affected by assignment to de-referenced pointer.

rules: (1) For every datatype t in the concrete program component chose a suit-

able abstraction lattice (L(t),⊑), so that a Galois connection (P(t),⊆)
⊳

←−
−→

⊲

(L(t),⊑)

exists. (2) Lift each operation 3 defined on t to L(t) by means of the canonic
construction 3L : L(t) × L(t) → L(t); p13Lp2 =def (p1

⊳
3Pp2

⊳)⊲. In this
definition, 3P denotes the canonic lifting of 3 to the powerset lattice over t:

13

Löding and Peleska

function ξ((expr, n) : Expr × N0; mem : M) : M-Item − Expr∗

el := 〈expr〉;

e := head(el);

while e is not resolved to base address plus M-Item-expression for offset do

x := next unresolved identifier from e;

h := if σ(x) = stack then last(mem.stack) else mem.data;

for m := last(h) downto head(h) do

if m.a = &β(x) ∧ m.v0 ≤ n ≤ m.v1 then

e1 := e;

In e1: exchange each occurrence of x by m;

el := el ⌢ 〈e1〉;

endif

enddo

el := tail(el);

e := head(el);

enddo

ξ := el;

end

Fig. 6. Function ξ finds list of base addresses potentially associated with a pointer.

a13Pa2 =def {x13x2 | xi ∈ ai, i = 1, 2} (3) Having defined all abstraction lat-
tices L(t), lift all Boolean operators
△ : t × t′ → B to [△] : L(t) × L(t′) → L(B) by

p1[△]p2 =

8
><

>:

⊤ if {x1△x2 | x1 ∈ p1
⊳ , x2 ∈ p2

⊳} = {false, true}

false if {x1△x2 | x1 ∈ p1
⊳ , x2 ∈ p2

⊳} = {false}

true if {x1△x2 | x1 ∈ p1
⊳ , x2 ∈ p2

⊳} = {true}

(4) Lift the symbolic state space SS = N(P) × N0 × M defined above to its lattice
representation SL = N(P)×N0×L(M), where L(M) is the interpretation of memory
items over the respective abstraction lattices chosen for offsets, length, values and
constraints. (5) The transition rules for the abstract interpretation semantics over
SL are of the form

n1
g

−→CFG n2, (n1, n, mem) −→G (n2, n + 1, mem′), L(mem) |=L (g 6= false)

(n1, n, L(mem)) −→L (n2, n + 1, L(mem′))

where L(mem) denotes the lattice interpretation of memory items. Informally

speaking, an abstract transition between CFG nodes n1 and n2 with changes in

abstract memory valuations from L(mem) to L(mem′) is possible in SL if (a) there

exists a corresponding edge in the CFG, (b) the lattice valuation of the guard con-

dition g is true or ⊤ and (c) the collection of memory items changes from mem to

mem′ in the symbolic interpretation.

6 Application Example

The following example illustrates some of the advantages obtained by the higher

flexibility resulting from the interplay between symbolic and abstract interpretation.

Consider the GIMPLE function 6 shown in Fig. 7 and an associated invocation

x = f(i0, z0); Applying the symbolic interpretation rules described in Section 4 for

the two possible paths through the function results in the symbolic state of the stack

6 Observe that in contrast to C/C++, GIMPLE always uses byte values in pointer arithmetic. As a conse-
quence, we find assignment q = p + 4*i; in line 4, whereas we would write q = p + i; in the corresponding
C/C++ program.

14

Löding and Peleska

frame as shown in the list of memory items on the right-hand side of Fig. 7, valid

at function return in line 11. Consider the following verification goals: (Goal 1):

f() only assigns to valid de-referenced pointers., (Goal 2): f() never returns an

undefined value.

0 float f(int i, float z) {
1 float *p, *q;
2 float a[10];
3 p = &a;
4 q = p + 4*i;
5 if (0 < z) {
6 *q = 10 * z;
7 else {
8 *q = 0;
9 }

10 return a[i];
11 }

Line No. Resulting M-Item

0. (1,∞, &i, int, 0, 32, (i0, 0), true)
0. (1,∞, &z, float, 0, 32, (z0, 0), true)
0. (1, 6, &xReturn, float, 0, 32,⊥, true)
1. (2, 3, &p, float∗, 0, 32,⊥, true)
1. (2, 4, &q, float∗, 0, 32,⊥, true)
2. (3, 5, &a, float, 0, 320,⊥, true)
3. (4,∞, &p, float∗, 0, 32, &a, true)
4. (5,∞, &q, float∗, 0, 32, (p + 4 · i, 4), (0 ≤ i < 10, 4))
6. (6,∞, &a, float, (32 · i, 5), 32, (10 · z, 5), (0 < z, 5))
6. (6,∞, &a, float, o, l,⊥, (0 < z ∧ 0 < l ∧ 0 ≤ o ∧ o + l ≤
320 ∧ (o + l ≤ 32 · i ∨ 32 · i + 32 ≤ o), 5))
8. (6,∞, &a, float, (32 · i, 5), 32, 0, (z ≤ 0, 5))
8. (6,∞, &a, float, o, l,⊥, (z ≤ 0 ∧ 0 < l ∧ 0 ≤ o ∧ o + l ≤
320 ∧ (o + l ≤ 32 · i ∨ 32 · i + 32 ≤ o), 5))
10. (7,∞, &xReturn, float, 0, 32, (a[i], 6), true)

Fig. 7. GIMPLE Code sample and associated symbolic interpretation result.

Alternative 1: Interpretation with is-defined and interval lattices.

Chose lattice LD = ({⊥, ∆,⊤},⊑) with ⊥ ⊑ ∆ ⊑ ⊤ as an appropriate ab-

straction for checking well-definedness of float z; float a[10]; (∆ stands for

is-defined, ⊥ for is-undefined). For checking pointer addresses we abstract inte-

gers to intervals over Z: LI = (I(Z),⊆). With these lattices, we now perform the

corresponding abstract interpretation on the history of memory items in Fig. 7,

each time resolving the associated to symbols down to constants, base addresses

or input variables i0, z0 as explained in Section 4. Additionally we assume that a

precondition i0 ∈ [3, 5] has been asserted. Then the abstract interpretation results

in

0. (1,∞, &i, LI , 0, 32, [3, 5], true)

0. (1,∞, &z, LD, 0, 32, ∆, true) (z is well-defined, since it is initialised with input z0)

0. (1, 6, &xReturn, LD, 0, 32,⊥, true)

1. (2, 3, &p, LI , 0, 32, [−∞, +∞], true)

1. (2, 4, &q, LI , 0, 32, [−∞, +∞], true)

2. (3, 5, &a, LD, 0, 320,⊥, true)

3. (4,∞, &p, LI , 0, 32, [&a, &a], true) (symbolic single-point interval [&a, &a])

4. (5,∞, &q, LI , 0, 32, &a + 4 · [3, 5], true) (([0, 0][≤][3, 5][<][10, 10]) is true in LI

6. (6,∞, &a, LD, 32 · [3, 5], 32, ∆,⊤) (0 < ∆ evaluates to ⊤, 10 · ∆ evaluates to ∆ over LD)

6. (6,∞, &a, LD, o, l,⊥, 0 < l ∧ 0 ≤ o ∧ o + l ≤ 320 ∧ (o + l ≤ 32 · [3, 5] ∨ 32 · [3, 5] + 32 ≤ o))

8. (6,∞, &a, LD, 32 · [3, 5], 32, ∆,⊥) ({0}⊲ = ∆)

8. (6,∞, &a, LD, o, l,⊥, 0 < l ∧ 0 ≤ o ∧ o + l ≤ 320 ∧ (o + l ≤ 32 · [3, 5] ∨ 32 · [3, 5] + 32 ≤ o))

10. (7,∞, &xReturn, LD, 0, 32, (a[[3, 5]], 6), true) (not yet resolved – see next paragraph)

Now we apply the resolution rules to 10: First it is noted that a([[3, 5]], 6)
matches all memory items of the form

m = (v0, v1, &a, LD, 32 · [3, 5], 32, val, c), v0 ≤ 6 ∧ 6 ≤ v1

15

Löding and Peleska

As a consequence the valuation candidates are those from lines 6. and 8. above. We
only have to investigate the feasibility of memory items with undefined valuation
⊥, so it remains to show that

0 < l ∧ 0 ≤ o ∧ o + l ≤ 320 ∧ (o + l ≤ 32 · [3, 5] ∨ 32 · [3, 5] + 32 ≤ o) ∧ o = 32 · [3, 5] ∧ l = 32

has no solution; this proof obligation is simplified to showing that no solution of
[3, 5] + 1 ≤ [3, 5] ∨ [3, 5] + 1 ≤ [3, 5]

exists. Unfortunately this predicate evaluates to ⊤ in LI because we can select

(different) numbers from [3, 5] in each of its occurrences so that the predicate eval-

uates either to true or to false. As a consequence it is necessary to perform 2

partitioning steps of the i0 interval valuation [3, 5] into [3, 3] [4, 4], [5, 5], in order to

prove that this predicate is always false.

Alternative 2: Interpretation with is-defined and predicate lattice.

As we have seen in the discussion of alternative 1 above, the interval lattice is

suitable for proving well-definedness of pointer de-referencings but is quite inefficient

to prove the crucial step for well-definedness of the return value. We can fix this by

taking the solution of verification goal 1 as constructed above, but using another

lattice to represent pointer and integer expressions for discharging goal 2: Let LP

the lattice of predicates over programming variables, together with their comparison

operators 7 . Use LD as above. Abstract interpretation now results in
0. (1,∞, &i, LP , 0, 32, i = i0, true)
0. (1,∞, &z, LP , 0, 32, ∆, true)
0. (1, 6, &xReturn, LD, 0, 32,⊥, true)
1. (2, 3, &p, LP , 0, 32,⊥, true)
1. (2, 4, &q, LP , 0, 32,⊥, true)
2. (3, 5, &a, LD, 0, 320,⊥, true)
3. (4,∞, &p, LP , 0, 32, p = &a, true)
4. (5,∞, &q, LP , 0, 32, q = &a + 4 · i0, true)
6. (6,∞, &a, LD, 32 · i0, 32, ∆,⊤)
6. (6,∞, &a, LD, o, l,⊥, 0 < l ∧ 0 ≤ o ∧ o + l ≤ 320 ∧ (o + l ≤ 32 · i0 ∨ 32 · i0 + 32 ≤ o))
8. (6,∞, &a, LD, 32 · i0, 32, ∆,⊤)
8. (6,∞, &a, LD, o, l,⊥, 0 < l ∧ 0 ≤ o ∧ o + l ≤ 320 ∧ (o + l ≤ 32 · i0 ∨ 32 · i0 + 32 ≤ o))
10. (7,∞, &xReturn, LD, 0, 32, (a[i0], 6), true) (not yet resolved – see next paragraph)

Now, for the resolution of (a[i0], 6), all memory items of the form

m = (v0, v1, &a, LD, 32 · i0, 32, val, c), v0 ≤ 6 ∧ 6 ≤ v1

match, and the condition for returning an undefined value is
0 < l ∧ 0 ≤ o ∧ o + l ≤ 320 ∧ (o + l ≤ 32 · i0 ∨ 32 · i0 + 32 ≤ o) ∧ o = 32 · i0 ∧ l = 32

which – applying the rules on term replacement and arithmetics in LP – boils down

to i0 + 1 ≤ i0 which is obviously false.

7 Conclusion

We have described techniques for concrete and abstract interpretation of C/C++

programs represented in GIMPLE, which basically produces a control flow graph

model for each C/C++ function or method. The results are implemented in a tool

and they are currently applied for integrated module testing and static analysis

of safety-critical embedded systems software in the railway and avionic domains.

Applications in the field of automotive control are currently prepared; they focus,

7 More formally, the quantifier-free Presburger formulae over program variables are suitable for our purpose
because efficient solvers exist for problems of this type [13].

16

Löding and Peleska

however, on model-based test case generation. Due to the intermediate model rep-

resentation of the tool which uses the same class of hierarchic transition systems

for code (control flow graph) and model (e. g. UML 2.0 Statechart) representation,

the test case generation mechanisms are the same for code-based and model-based

testing. Currently a correctness proof for the abstract interpretation semantics

constructed according to the rules given in Section 5 is elaborated: We show that

application of these rules always result in a valid abstract interpretation semantics

according to Definition 2.1.

References

[1] Bahareh Badban, Martin Fränzle, Jan Peleska, and Tino Teige. Test automation for hybrid systems. In
Proceedings of the Third International Workshop on SOFTWARE QUALITY ASSURANCE (SOQUA
2006), Portland Oregon, USA, November 2006.

[2] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min, D. Monniaux, and X. Rival. Combination of
abstractions in the Astrée static analyzer. In M. Okada and I. Satoh, editors, Eleventh Annual Asian
Computing Science Conference (ASIAN’06), pages 1–24, Tokyo, Japan, LNCS, December 6–8 2006.
Springer, Berlin. (to appear).

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press,
2002.

[4] Bruno Blanchet et. al. Design and implementation of a special-purpose static program analyzer
for safety-critical real-time embedded software. In T. AE. Mogensen et al., editor, The Essence of
Computation, volume 2566, pages 85–108, 2002.

[5] Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and Felix Rauch. Goanna - a static
model checker. In Proceedings of 11th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS), Bonn, Germany, 2006.

[6] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schubert. Efficient solving
of large non-linear arithmetic constraint systems with complex bo olean structure. Journal on
Satisfiability, Boolean Modeling and Computation, 2007.

[7] GCC, the GNU Compiler Collection. The GIMPLE family of intermediate representations. See
http://gcc.gnu.org/wiki/GIMPLE.

[8] Helge Löding. Behandlung komplexer Datentypen in der automatischen Testdatengenerierung.
Master’s thesis, University of Bremen, May 2007.

[9] Jan Peleska and Helge Löding. Static Analysis By Abstract Interpretation. University of Bremen,
Centre of Information Technology, 2008. available under
http://www.informatik.uni-bremen.de/agbs/lehre/ws0708/ai/saai script.pdf.

[10] Jan Peleska, Helge Löding, and Tatiana Kotas. Test automation meets static analysis. In Rainer
Koschke, Karl-Heinz Rödiger Otthein Herzog, and Marc Ronthaler, editors, Proceedings of the
INFORMATIK 2007, Band 2, 24. - 27. September, Bremen (Germany), pages 280–286.

[11] S. Ranise and C. Tinelli. Satisfiability modulo theories. TRENDS and CONTROVERSIES–IEEE
Magazine on Intelligent Systems, 21(6):71–81, 2006.

[12] Bastian Schlich, Falk Salewski, and Stefan Kowalewski. Applying model checking to an automotive
microcontroller application. In Proc. IEEE 2nd Int’l Symp. Industrial Embedded Systems (SIES 2007).
IEEE, 2007. ISBN 1-4244-0840-7.

[13] Ofer Strichman. On solving presburger and linear arithmetic with sat. In M.D. Aagaard and J.W.
O’Leary, editors, Formal Methods in Computer-Aided Design (FMCAD),, number 2517 in LNCS, pages
160–170. Springer, 2002.

[14] Arnaud Venet and Guillaume Brat. Precise and efficient static array bound checking for large
embedded c programs. In Proceedings of the PLDI’04, June 9-11, 2004, Washington, DC, USA.
ACM 1581138075/04/0006.

[15] Verified Systems International GmbH, Bremen. RT-Tester 6.2 – User Manual, 2007.

17

http://gcc.gnu.org/wiki/GIMPLE
http://www.informatik.uni-bremen.de/agbs/lehre/ws0708/ai/saai_script.pdf

	Introduction
	Objectives and Overview
	Background and Related Work

	Theoretical Foundations
	Control Flow Graphs and GIMPLE, Concrete Semantics
	GIMPLE Programs
	GIMPLE state space
	Auxiliary functions
	Transition relation: operational rules.

	Symbolic Interpretation of GIMPLE-Programs
	Abstract Interpretation of GIMPLE-Programs
	Application Example
	Conclusion
	References

