Institut fur Informatik und Praktische Mathematik der
Christian-Albrechts-Universitit zu Kiel
Olshausenstr. 40
D - 24098 Kiel

Formal Methods and the Development of
Dependable Systems

Jan Peleska

e-mail: jp@informatik.uni-bremen.de

Bericht Nr. 9612
Dezember 1996

Dieser Bericht enthalt die Habilitationsschrift des Verfassers.

Referent: Prof. Dr. Willem-Paul de Roever
Koreferenten: Prof. Dr. Manfred Broy, Prof. Dr. Mathai Joseph, Prof. Dr. Hans
Langmaack, Dr. Tech. Anders P. Ravn






Preface

This Habilitationsschrift' focuses on methods for the development of dependable software-
based systems. It summarises, discusses and extends my publications cited in the bibliog-
raphy, which reflect the efforts and experiences gained in this field during the last decade,
working as a software engineer, project leader and manager at Philips GmbH, Deutsche
System-Technik GmbH and as a consultant for various other companies.

The applications to be discussed as examples will mostly be chosen from the field of non-
military information and control systems. Such a specialisation appears to be necessary,
because the type of application influences the objectives to be met by dependability mecha-
nisms. For example, in dependable and secure military applications (see [50]), the aspect of
confidentiality (mandatory access control, covert channels etc.) plays a much more important
role than for a railway control system. As a consequence, different application areas lead to
different approaches with respect to system design, development techniques and underlying
specification and design methods.

The methodological framework used is based on Formal Methods. 1 would like to point out
that though my university education was rather theoretical (see [72]), the motivation to use
theory for building software was purely motivated by the fact that the informal heuristics ap-
plied for constructive or analytic software quality assurance are completely insufficient when
applied to systems where correctness of software really matters. The key ideas described in
the chapters to follow might be summarised by three statements reflecting my conviction
how the software crisis should be tackled in the future:

e The complexity of today’s applications can only be managed by applying a combina-
tion of methods, each of them specialised to support specific development steps in an
optimised way during the system development process.

e The application of formal methods should be supported by development standards, i. e.,
explanations or “recipes” showing how to apply the methods in the most efficient way
to a specific type of development task. Indeed, tool support and development standards
may be regarded as essential for the success of formal methods in an industrial context.

e The application of formal methods for the development of dependable systems will
only become cost-effective if the degree of re-usability is increased by means of re-
usable (generic) specifications, re-usable proofs, code and even re-usable development
processes.

As a consequence, the objective of this Habilitationsschrift is not to introduce new specifi-
cation languages, proof techniques et cetera, but to show how new combinations of existing
methods can be applied more efficiently to solve problems in the field of dependable systems.

! Postdoctoral thesis, required in Germany for the qualification of a university lecturer; since the English
language does not, provide a proper counterpart for this term, we keep the German expression instead of
using an English circumscription.
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The “architecture” of this work is depicted in Figure 0.1. In the introductory Chapter 1
some basic definitions used in the context of dependability are presented and discussed,
since the “invasion” of software into this field has forced specialists to re-interpret important
terms previously used only in the context of mechanical and electrical engineering. More-
over, an example is given which reflects the complexity to be encountered when trying to
combine different dependability mechanisms (e. g. a fault-tolerant protocol together with a
security mechanism) in order to “add up” the benefits of these mechanisms in one system.
In Chapter 2 I will describe an approach for the systematic formal development of depend-
able systems. This approach offers a design technique systematically dealing with situations
where not just one threat to system dependability but a collection of threats has to be taken
into account. At the same time it is embedded in a general development framework that has
proved to be practical for large projects and is accepted by (at least the more enlightened
species of) today’s software engineers in industry. This embedding associates a theoretic
foundation with an informal development standard, using selected formal methods to pro-
duce the contents of the documents pre-defined in the standard. The example of Chapter 1 is
used to demonstrate how the approach can be put into practice. This work has been mainly
motivated by my cooperation with ELPRO LET GmbH and the University of Oldenburg in
the field of distributed railway interlocking systems.

1. Dependability:
Basic Definitions - Introductory Example

3. Reliability/ 4. Safety 5. Security
Availability Aspects: Aspects:
Aspects:

Fault- Test Product
Tolerance Automation Evaluation

2. Common theoretical framework
for the development of dependable systems

Figure 0.1: “Architecture” of the Habilitationsschrift.

Chapters 3 to 5 focus on specific aspects and applications in the field of dependable systems:
reliability /availability, safety and security. In Chapter 3 the formal specification and verifi-
cation of a dual computer system is described, where the reliability of the system is ensured
by means of a fault-tolerance mechanism. The underlying design and verification concepts
have been worked out during my time with Philips, where I was confronted with the devel-
opment of a fault-tolerant database server. In Chapter 4 a concept for the automated test
of safety-critical embedded systems will be introduced. The concept and the corresponding
tool support have been developed for and applied in the field of railway interlocking systems
for small private railways or tramways. For these systems, the degree of complexity is con-
siderably lower than in the case of large-scale railway networks. Furthermore, safety aspects
play the dominant role, while reliability and availability are subordinate aspects. Therefore
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we can achieve a much higher degree of automation for the test and verification process than
for the case of dependable systems in general. In Chapter 5 security aspects of dependable
systems are investigated. Here we concentrate on the evaluation of commercially available
I'T security products. The objective of this evaluation is to certify in a trustworthy way that
the system is capable to protect its users against the specified types of security attacks. This
work has been initiated while I was manager of a department at DST that was specialised
on developing dependable systems. Associated with the department was an evaluation lab-
oratory which was accredited at the Bundesamt fiir Sicherheit in der Informationstechnik
BSI, the German authority for the certification of IT security products.

You may have noticed that I did not use the Preface to give a “sales talk” about how
much we are threatened by software of insufficient quality and how only formal methods
can deliver us from this evil. Firstly, I assume that this Habilitationsschrift will only be
read by experts anyway, and either you will already be a member of the formal methods
community or you will be too much of an expert to be convinced by my arguments. Secondly,
I have the impression that the common understanding about the status quo of the software
crisis, what formal methods can do about it and where the limitations of formal methods
lie has improved very quickly during the last five years. This even holds for hard-boiled
software practitioners to be encountered in software industry. If you still feel like reading
some motivating thoughts about all this, I am sure the articles of Gibbs [31], Heisel and
Weber-Wulff [38] and the Hamer-Horcher-Peleska formal methods primer [79] will satisfy
your needs.
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1. Introduction

1.1 Dependability — Basic Definitions and Concepts

Throughout this work, we will follow Laprie’s terminology [56, 57, 58] with respect to de-
pendability and related terms.

Generally speaking, dependability is the capability of a system to deliver the specified appli-
cation services during its period of operation. This definition emphasizes two aspects that
influence the design, the implementation and our reasoning about system “correctness” in a
crucial way:

e Dependability does not forbid the occurrence of failures in general. Instead, it requires
that the application service, i. e., the functionality required by the end user of the
system is delivered as specified.

e Delivery of service is only required to the extent covered by the specification. This
is a very reasonable requirement — otherwise the supplier would never have a chance
to prove that the system has been completed and the customer’s requirements have
been implemented. On the other hand, the approach is only useful, if the technical
contents of a specification document reflecting how a system will behave according to
the developers’ understanding is consistent with the end user’s intuitive understanding
of how the system should behave. As a consequence, the specification phase has become
the most critical phase of the whole system development life cycle.

Laprie identified four attributes which characterise the dependability of a system: (1) A
safe system cannot assume states that are regarded as “catastrophic” from the point of view
of the application. This means that the system will only perform transitions into states
satisfying the specified invariants, perform calculations that are correct with respect to the
specification and output data fulfilling the desired integrity constraints. Safety does not
guarantee that a desired calculation and the corresponding output will always be produced.
This aspect is covered by the following two attributes: (2) Reliability is a characteristic
specifying the probability that a system will deliver its service for a given period of time!.
(3) Awvailability is a measure reflecting the probability that the system will be available at a
certain point in time. (4) Finally, Security reflects the capability of the system to protect
the application against damage arising from accidental or malicious human interaction. All
dependability attributes refer to the specified application, and this is the very premise for the
notion of fault-tolerance: A dependable system may be subject to various internal defects,
as long as these problems do not affect the application behaviour.

For the security attribute, a further characterisation has been provided: According to the
standards [17, 28, 29, 47, 111] the notion of Information Technology (IT) Security is defined

'For example, the mean time between failure (MTBF) is a reliability measure.
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by the attributes Confidentiality (prevention of unauthorised disclosure of information), In-
tegrity (prevention of unauthorised modification of information) and Awvailability (prevention
of unauthorised withholding of information or resources)®. 1T security focuses on the damage
that can be caused by humans. In [17, p. 3] this is made explicit by defining I'T security
as “..protection of information ...by countering threats to that information arising from
human activities whether malicious or otherwise.” There is at least one good reason to dis-
tinguish between threats arising from technical deficiencies and those arising from human
activities: In many cases technical faults can be considered as accidental events and there-
fore adequately modelled by statistical approaches. These modelling techniques will fail,
however, when being applied to the behaviour of malicious human intruders, who can try to
cause damage in a systematic way.

Since the definition of dependability is intended to be applicable to a wide spectrum of
systems and the aspects of dependability are intended to be describable by a wide range
of formalisms, Laprie’s definitions are of informal nature. It is useful to relate them to
the formal notions of safety and liveness. Recall that in the context of formal methods a
specification item § is a safety property, if any sequence of events or transitions etc. violating
S contains a prefix all of whose infinite extensions violate S. A specification item L is called
a liveness property, if any arbitrary finite sequence of events can be extended to an infinite
sequence satisfying L [62, p. 303]. Obviously, the dependability attribute safety is also a
safety property in the sense of formal methods. The situation is less obvious for availability:
In the context of hard real-time systems, it is best interpreted as another safety property,
because the availability of a service is then interpreted as “available within n time units”, and
an assertion saying that the service will “finally” be available is not helpful at all. For less
time-critical applications, however, the notion of availability might be associated with “the
service will not be blocked forever” or “the service will be activated sufficiently often”, and
these are liveness properties. As a consequence, the formalisation of the availability definition
depends on the specific application. Reliability is only indirectly related to safety and liveness:
Intuitively, this dependability attribute describes the possibilities of the system to “switch”
from one specified behaviour to another behaviour which is regarded as exceptional. Of
course, both behaviour specifications can be decomposed into safety and liveness properties.
The confidentiality and integrity aspect of security is a safety property. For the availability
aspect of security the same considerations apply as for availability in general.

The notion of security is a “new” dependability attribute, due to Laprie. For example, in
the definition given 1985 in [7], security is not yet mentioned, and even in a fairly recent
survey [107] on real-time computing the authors state that ...t is not very important in
a real-time operating system to provide extensive support for ...security. 1 think that this
fact is characteristic for the type of systems designers had — and sometimes still have —
in mind when coining the notion of dependability in the context of computer science for
the first time. The major threats to dependability were hardware and software errors and
external physical events. Threats caused by humans were thought to be similar to natural
disasters like acts of vandalism. The more “subtle” aspects of security were not considered as

2Obviously, these attributes introduce redundancy in the dependability definition, since availability has
already been introduced as a main attribute of dependability and integrity can be regarded as a safety
aspect. These issues have been discussed by Jonsson and Olovsson [53]. However, it is not our objective to
try and improve existing definitions, but to find trustworthy ways how to build systems according to given
dependability requirements.
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relevant in the early eighties. On the other hand, it has always been an obvious requirement
that a dependable system should also be secure because otherwise, a human attacker might
systematically damage the integrated dependability mechanisms. However, in the “early
times” of dependable computerised systems, security issues could often be ignored in the
software design, because the operational environment was automatically secure, i. e. did not
possess any interfaces accessible to a human attacker. In recent years, a growing demand
for open and/or distributed dependable systems became apparent. Obviously, these new key
attributes force us to treat security as a global system issue which has to be covered by
protective mechanisms both in the operational environment and in the software. Examples
for such projects are given in Chapter 2 and in [78]. From my experience it is interesting to
note that the demand for open, distributed dependable systems came from two sides:

e In the “classical” application domains of dependable systems openness and distribution
have often been introduced to reduce costs by providing a system architecture that can
be customised and extended more easily.

e In less critical applications dependability became an important aspect a posteriori, in
order to reduce costs by increasing the operational availability and to avoid loss or
corruption of valuable data. These systems were often open and distributed by their
very nature, and the new dependability features had to be fitted into this existing
architectural framework.

I will use the term classical dependability when referring to safety, reliability and availability
only.

To illustrate the design tasks to be tackled for the development of dependable systems the
classification of system behaviours depicted in Figure 1.1 will be used. In absence of any
undesired (internal or external) events, the system executes® normal behaviour. In presence
of undesired events the system may perform an execution possibly differing from that of the
undisturbed system. Now there are two possibilities: In the first case, an undesired event
impairs the functionality of the system in a way that can be tolerated or might even be
unobservable in the application layer. In this case the system shows exceptional behaviour.
If the system performs an execution showing normal and/or exceptional behaviour, this is
summarised as acceptable behaviour. In the second case, the occurrence of the undesired
event corrupts the application functionality in a way that cannot be tolerated. This is called
catastrophic behaviour. Although the above classification has been introduced in [59] to
describe concepts of fault-tolerance only, it fits very well to deal with dependability as a
whole.

In order to prevent undesired events from leading to catastrophic system behaviour, system
designers must anticipate the possibility of their occurrence and incorporate protective mech-
anisms in their development concepts. The potential occurrence of any undesired event will
be called a Threat or a Fault Hypothesis. If it is necessary to distinguish between aspects of
classical dependability and security, we will denote the fault hypotheses anticipating human
interactions as Security Threats. The actual occurrence of any undesired event is called a

3Depending on the formalism used, an execution may be a modelled as a trace of events, hiding internal
state information, or as a sequence of state transitions triggered by events. For hybrid systems, the execution
is modelled as some type of trajectory, traversing an appropriate space-time model spanned by state and
time parameters.
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Normal Behaviour trace showing acceptable behaviour

Exceptional Behaviour trace showing normal behaviour

Catastrophic Behaviour trace showing normal, exceptional

and catastrophic behaviour:
- transition to exceptional behaviour
- transition to catastrophic behaviour

Figure 1.1: Types of system behaviour.

Fault. Faults caused by security threats are termed Human-Made Faults;, we will also use
the more suggestive term Security Attack and summarise human-made and other faults as
Exceptions. The process of anticipating exceptions will be denoted as Threat Analysis. If an
exception causes a transition into an undesired system state, this state is called an Error.
If due to the occurrence of exceptions and errors a specified service to be performed by a
(sub-)system cannot execute as required, this is called a Failure. In the context of real-time
systems it is often necessary to distinguish Value Failures, where incorrect data is produced
or processed by the system from Timing Failures, where correct data appears at the wrong
time.

The means to prevent faults, errors and failures are Fault Avoidance (building “perfect”
hardware and software components by means of special construction techniques), Fault Tol-
erance (use of techniques allowing the continuation of service in presence of faults), Verifica-
tion (detection and removal of errors by means of analytic techniques) and Error Forecasting
(analysis of the impact of specific errors and of the probability for their occurrence). The
objects implemented to prevent the undesired consequences of security attacks are called
Security Mechanisms.

To model the system behaviour in presence of exceptions, two main techniques have been
used by different authors:

o FExplicit specification, for example by specifying the system and the impact of exceptions
in terms of a process algebra. This method will be demonstrated in the next section.
Further applications are presented in Chapter 3.

e Behavioural specifications* The system behaviour and the impact of anticipated ex-
ceptions is described by predicates on traces of events or executions of a transition
system [70, 104].

“Following Jones [52], we also use the term implicit specifications.
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1.2 Combination of Dependability Mechanisms —
Case Study Part 1

While many publications investigate isolated dependability aspects®, relatively few of them
are concerned with combinations of these aspects. I am convinced, however, that it is just this
combination that introduces a new degree of complexity in the field of dependable systems,
because

e it can be dangerous to combine two dependability mechanisms in a naive way and hope
that the resulting system will automatically possess the strength of both mechanisms,

e the design of correctly cooperating dependability mechanisms is likely to differ strongly
from solutions where only one isolated mechanism is required.

To support these theses, we will now analyse a case study focusing on the development of a
network protocol which is dependable in the presence of both unreliable and insecure trans-
mission media (Figure 1.2). The case study is a revised version of the example worked out
in [78]. In the remaining part of this chapter it will serve to illustrate the complexity to be
expected when more than one dependability threat is involved: two mechanisms correctly
defending the system against the reliability threat and the security threat alone, respec-
tively, will result in an unreliable protocol when combined in a “naive” way. This failure to
construct “globally” dependable mechanisms from isolated solutions in an intuitive way will
motivate the systematic approach for the development of dependable systems as introduced
in Chapter 2.

Producer Consumer
PROD CON
app_tx app_rc
Target System
SYS
reliable and secure
Network Layer

N
I
Transmission Media

Figure 1.2: Context of the target system (network layer) and its environment.

In the examples to follow the number of transmission media and their various deficiencies will
vary in order to illustrate different aspects of dependability. The dependability requirement
will always remain the same, however:

e Construct SYS in such a way that the resulting communication service will act for pro-
ducer PROD and consumer CON as a FIFO buffer without loss of data or corruption
of messages.

>Rushby [102] has collected a comprehensive bibliography.
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I will use CSP (Communicating Sequential Processes) as introduced by Hoare [44] to specify
and reason about system behaviour. Correctness properties will be expressed by means of
failures-divergence refinement relating the CSP process expressing correct behaviour to the
protocol solutions proposed in the examples. The refinement steps presented have been
mechanically checked using the FDR tool [27]. FDR allows to verify refinement properties
by means of complete model checking for CSP systems consisting of cooperating finite-
state sequential processes. The specification by explicit processes only serves for illustration
purposes in these examples. In Chapter 2, a behavioural specification style will be used
which is more adequate for the abstract description of large systems.

The informal dependability requirement can be specified by relating an implementation X
to the explicit CSP process® FIFO defined as

a(FIFO) = {| apptz, app_rc |}
FIFO = BUFF({))

BUFF (s) = (#s < N)&app_te?z — BUFF (s (z))

(D#s > 0)&app_rc!(head(s)) — BUFF (tail(s))

which represents a FIFO buffer of finite capacity N: Any X consisting of the transmission
media and the protocol layer SYS used in the implementation has to satisfy

FIFO Cpp X\ (a(X) —{]| app—tz, app_rc |})
where P Cpp () means that P is refined by @) in the failures-divergence model of CSP.
Example 1.1 (Communication disturbed by unreliable media) We first consider the

case where only unreliable transmission media are available, behaving as follows:

1. Fault hypothesis: The medium may lose messages. The number of consecutive input
messages that the medium may lose is bounded by a number mazLoss > 0.

2. The medium does not change the values of messages delivered to the consumer.
3. The medium delivers messages in the order of the corresponding inputs.

In order to design a fault-tolerant network layer taking into account the above fault hy-
pothesis, the architecture shown in Figure 1.3 is used (the “lightning” symbols indicating
the possibility of data losses). M1, M1ACK are two instances of the unreliable medium.
Their behaviour according to the above assumptions can be expressed by the following CSP
processes:

6We use communication guards: in an expression b&c, the communication via channel ¢ is refused by
the process, if the Boolean expression b evaluates to false. {| ¢, d,... |} denotes the set of channel events
{c.z1,c.x2,...,d.yr,d.yp,...}, ; and y; are values of the channel alphabets of ¢ and d, respectively.
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PROD CON
app_tx app_rc
ABP_TX ABP_RC
abp_ack_rc abp_ack_tx
M1ACK
abp_tx abp_rc|

i Target System
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Figure 1.3: Unreliable transmission media and alternating bit protocol implemented by

ABP_TX,ABP_RC.

M1 = M1(mazLoss)

M1(n) = abp_tx?(b,z) —
(if n = 0 then

(abp_rc!(b, z) — M1(mazLoss))

else

(abp_rc!(b, z) — M1(mazLoss)

M
M1(n —1)))

M1ACK = M1ACK (mazLoss)

M1ACK (n) = abp_ack_tz?b —

(if n = 0 then

(abp_ack_rc!b — M1ACK (mazLoss))

else

(abp_ack_rc!b — M1ACK (mazLoss)

M

M1ACK (n — 1))

To construct a reliable network layer on top of M1, M1ACK, we use the well-known alter-
nating bit protocol (e. g., see [64, 104] for two alternative versions of the protocol) consisting
of a transmitter ABP_TX and a receiver ABP_RC with SYS = (ABP_TX || ABP_RC).
ABP_TX receives data from the producer, attaches a bit value alternating with each new
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message accepted on app_tr and sends it via M1 to ABP_RC. The receiver passes data
via app_rc to the consumer, if the attached bit has the expected value in the alternating
sequence. In any case ABP_RC sends the bit value received back to ABP_TX via medium
M1ACK to acknowledge reception. In our ABP solution ABP_TX will continuously trans-
mit the actual (bit, data)-package until it receives an acknowledgement with the same bit
value. The corresponding CSP processes are

ABP_TX = ABP_TX (1)

ABP_TX (bit) =
app_tr?r — ATX ((1 — bit), x)

[
abp_ack_rc?b — ABP_TX (bit)

ATX (bit,v) =
abp_tx!(bit,v) — ATX (bit, v)
[
abp_ack_rc?b —
(if (b = bit) then ABP_TX (bit) else ATX (bit,v))

ABP_RC = ABP_RC(0)

ABP_RC (bit) =
abp_re?(b,x) —
(if (b = bit)
then (app_rcle — abp_ack_tz'b — ABP_RC (1 — bit))
else (abp_ack_tz!b — ABP_RC(bit)))

The transmission media and SYS cooperate according to

ABP = (M1|| M1ACK) || (ABP_TX || ABP_RC)

To prove that ABP is an acceptable implementation of our ideal transmission medium, we
have to show that

FIFO Cgp ABP\{| abp_tz, abp_rc, abp_ack_tz, abp_ack_rc |}

which can be proven for finite maxLoss and buffer capacity N = 1 using the FDR model
checker.
O

Example 1.2 (Communication disturbed by insecure media) Let us now consider
a transmission medium that is physically reliable but suffers from attacks by a malicious
agent X. In the field of communication protocols, the most important types of attack have
been classified as follows (see [9]): (1) Eavesdropping: Messages sent from PROD to CON
are properly received by CON, but X can also receive (some of) them. (2) Blocking: X
can receive messages intended for CON and prevent them from being delivered to CON.
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(3) Delay: X can delay the transmission from PROD to CON. (}) Masquerading: X can
send a fake message to CON that looks as if it has been sent by PROD. (5) Replay: X can
send an old message that has already been sent from PROD to CON once more at a later
point in time. (6) Tampering: X can alter a message while it is transmitted from PROD to

CON, so CON receives modified data.
In this example, let the following behaviour be defined for the transmission medium:

1. Security threat: X can perform eavesdropping and tamper with data sent from
PROD to CON. Making use of tampering, X can also replay a message by “copying”
an old message onto a new package. X cannot block or delay messages or fake the
identity of PROD. X can modify at most marModified > 0 messages in a row.

2. The medium delivers messages in the order of the corresponding inputs.
3. The medium does not lose messages.

4. While transmission of user data can be tampered with, there exists a separate reliable
and secure communication channel for the transmission of control data.

The last condition may seem slightly artificial. I have added it in order to construct an ex-
tremely simple security protocol that works properly in this example but fails when combined
with a fault-tolerance mechanism, as will be shown in the next example.

To defend the application layer against the insecure transmission medium M2 the architec-
ture depicted in Figure 1.4 is chosen.

PROD CON
app_tx app_rc

I

I I

I I

I I

| |

I I

[ ' Target System
. SEC1_TX SEC1_RC |

; 18YS
I I

I I

| |

I I

: sec_ack_rc sec_ack_tx }

I I

L e | P}

M2ACK
sec_tx sec_rc

; M2
:
@

Figure 1.4: Security layer SEC1_TX,SEC1_RC to protect the application layer against
eavesdropping and tampering on M2 by agent X.
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The insecure behaviour of M2 may be modelled as follows:

M2 = M2(mazModified)

M2(n) = sec_tx?z —
(if n =0 then
(sec_rclz — M2(mazModified))
else
(sec_rcle — M2(maxModified)
M
sec_rc!modify(z) — M2(n — 1)))

Here output sec_re!modify(z) represents the case where X has tampered with input sec_tz.z.
Counter n prevents M2 from sending more than mazModified corrupted outputs in a row.
M2ACK is assumed to be dependable and acts as a one-place buffer:

M2ACK = sec_ack_tz?b — sec_ack_rclb — M2ACK

To meet the security threat represented by M2, the security layer implemented in SYS will
use encryption techniques to detect altered or replayed messages and to prevent X from
reading them. This technique will be explained in more detail in Chapter 2; for now it is
sufficient that we may assume the existence of an encryption procedure € and an detection
algorithm which signals isModified(z) = true if a package = has been tampered with. By €~
we denote the corresponding decoding procedure. The security layer may now be specified
as

SEC1_TX = app_tz?z — sec_tx'le(z) — S1TX (e(z))

S1TX (z) = sec_ack_rc.Modified — sec_txlz — S1TX (z)

]
sec_ack_rc.Valid — SEC1_TX

SEC1_RC = sec_rc?y —
(if isModified(y)
then (sec_ack_tz!Modified — SEC1_RC))
else (app_rcle(y) — sec_ack_tz!Valid — SEC1_RC)

Process SEC1_TX accepts inputs from the application layer via channel app_tz. It enciphers
the message by means of € and passes the result to M2. Aslong as X does not know the key
to decipher the message, it can only corrupt the data at random or copy an old package over
the new data block. But this will be detected by SEC1_RC using the isModified algorithm on
the input y received on sec_rc. If the message has been modified or is a replay of an old one,
SEC1_RC will send a control message Modified via M2ACK to SEC1_TX and the latter
will re-transmit the enciphered message. Since according to the assumptions neither M2 nor
M2ACK lose messages and agent X can only modify, but not interrupt the communication
on M2, SEC1_TX can be sure to receive a response from SEC1_RC for each message
transmitted. It is therefore not necessary to watch for timeouts while waiting for the control
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message. If the message has been received by SEC1_RC without previous modification, the
deciphered message contents will be passed on to CON, and control message Valid is sent
back to SEC1_TX. After that SEC1_TX is ready to accept new data from PROD.

The complete secure implementation cooperates according to
SEC = (M2|| M2ACK) || (SEC1_TX || SEC1_RC)
and again it may be shown using the FDR tool that
FIFO Cpp SEC\{| sec_tx, sec_re, sec_ack_tz, sec_ack_rc |}

for fixed values maxModified and buffer capacity N = 1. The example does not show how to
initiate communication and exchange keys for enciphering/deciphering between SEC1_TX
and SEC1_RC'. Possible solution for such identification, authentication and on-line key
distribution procedures have been described in [9, 19].

(I

Example 1.3 (Naive combination of protocols in presence of more than one
threat) Now what happens if we are confronted with a transmission medium M3 which
is both unreliable in the sense of the first example and insecure in the sense of the sec-
ond? It may be tempting to try and combine the existing solutions in an architecture as
shown in Figure 1.5. SEC1_TX,SEC1_RC, M2ACK are chosen as in the previous example.
ABP1_TX,ABP1_RC implement an alternating bit protocol on top of M3, M1ACK. They
are copies of ABP_TX /RC above, with channels app_tz, app_rc renamed to sec_tz, sec_re.
This seems to work at first sight, because the ABP layer makes up for lost messages and the
security layer can deal with corrupted data.

We assume that M1ACK behaves as in Example 1, but M3 now combines the fault hy-
potheses and security threats of the previous examples according to

M3(n) = abp_tz?(bit, z) —
(if n =0 then
(abp_rc!(bit, ) — M 3(mazModifiedOrLost))

else
(abp_rc!(bit, ) — M3(mazModifiedOrLost)
-
M3(n—1)
M
abp_rc!(bit, modify(z)) — M3(n — 1)
1
abp_re!((1 — bit),z) - M3(n — 1)
M

abp_rc!((1 — bit), modify(z)) — M3(n — 1)))

And this is the reason why this combination of mechanisms will fail: The resulting system
will allow to block messages on app_tx because

(M3|| M1ACK) || (ABP1_TX || ABP1_RC) || (SEC1_TX || SEC1_RC)
\ {| sec_tx, sec_rc, sec_ack_tx, sec_ack_rc, abp_tz, abp_rc, abp_ack_tx, abp_ack_rc |}
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Figure 1.5: Naive combination of security layer and network layer with unreliable and in-

secure medium M3. (For the sake of simplicity, M1ACK and M2ACK are assumed to be
ideal transmission media.)

diverges: There exist traces of unbounded length consisting only of events other than
app_tz, app_rc. For example, consider the process DivTrace:

DivTrace =
app_tz?r — Div0(z)

Div0(z) =
sec_tr.e(z) —
abp_tx.(0,€e(x)) — abp_rc.(0, modify(e(x))) = sec_rc.modify(e(z)) —
sec_ack_tz.Modified — sec_ack_rc. Modified — abp_ack_tx.0 —
abp_tz.(0,€e(z)) — abp_re.(0,e(z)) —
abp_ack_rc.0 = abp_ack_tx.0 — abp_ack_rc.0 —
sec_tr.e(z) —
abp_tz.(1,€e(z)) — abp_rc.(1, modify(e(z))) — sec_rc.modify(e(z)) —
sec_ack_tx.Modified — sec_ack_rc. Modified — abp_ack_tz.0 —
abp_tz.(1,€e(z)) — abp_rc.(1,e(z)) —
abp_ack_rec.1 — abp_ack_tz.1 — abp_ack_rc.1 — Div0(x)

DivTrace produces a trace which is correct with respect to the “naive system”. This can be
proven using FDR by checking that DivTrace is a correct trace refinement of

(M3 || M1ACK) || (ABP1_TX || ABP1_RC)|| (SEC1_TX || SEC1_RC)



1.2 Combination of Vependaablty iviechanisms — Case otuay rart 1

The problem arises as follows: The message = sent by PROD via app_tr is modified during
the first transmission on M3, identified by bit ‘0’. As a consequence the control message
sec_ack_tx.Modified is sent back to SEC1_TX. Meanwhile a re-transmission is initiated by
the ABP layer because the acknowledgement associated with the first message has not yet
been received by ABP_TX. This message passes M3 without any modifications, but it is
useless, because ABP_RC' discards it on account of the same bit identification ‘0’ as in the
first transmission. Next ABP_TX receives an acknowledgement for the first transmission,
because is has been carried out successfully, as far as the ABP layer is concerned. Now the
re-transmission sec_tz.e(z) takes place, initiated by SEC_TX as a response to the Modified
control message. Again, this message is modified, this time carrying bit ‘1’. This procedure
can be continued endlessly, and the hypothesis that at most maxModifiedOrLost consecutive
messages may be corrupted is never violated, if maxModifiedOrLost > 0.

Note that it does not help to swap the ABP layer and the security layer: Since SEC1_TX
has been built under the assumption that messages will only be changed, SEC_TX might
wait forever for an acknowledgement on channel sec_ack_rc after a message has been lost
on M3. This will prevent the ABP layer from re-transmitting the message.

O

In the next chapter, based on the systematic approach for the development of dependable
systems, a correct protocol for the combined fault hypothesis and security threat will be
presented.



2. A Framework for the Development of
Dependable Systems

2.1 Overview

This chapter describes a formal approach for the systematic development of dependable
systems. The necessity for such an approach is illustrated in Section 2.2 by means of an
industrial project in the field of railway interlocking systems, which is a typical example
of control systems requiring the full scale of dependability properties. Motivated by the
introductory example presented in Section 1.2 we claim that any formal method suitable
for the development of dependable systems should be applied according to a development
standard (Section 2.3)!. Such a standard provides a re-usable framework for the specification
and verification activities to be performed during the various phases of system development.
It does not require a specific method to be applied but describes the activities to be performed
and objects to be produced during the development stages. Tailored for the specific problems
related to the development of dependable systems, it ensures that design errors as the one
discussed in 1.2 are very unlikely to occur. Indeed, today many researchers and practitioners
are convinced that a formal method can only be successfully applied in an industrial context
if supported by both tools and a development standard.

The work presented in this chapter summarises and partly extends the results described
in [78], using CSP [44] as the underlying method for the specification and verification of
distributed systems. To overcome the problems specifically related to dependability in a
systematic way, we make use of a method developed by Schepers [104] in the context of
fault-tolerant systems. We will show in Section 2.4 how his method may be extended to the
field of dependability in general, transforming the design obligation to develop a dependable
system into the design obligation for an “ordinary” system. As for the development standard,
we will focus on the Vorgehensmodell (V-Model) [112] which is authorised by the Germany
Ministry of the Interior and considered as the state-of-the-art software development standard
in Germany. Application of a standard helps to benefit from a formal method in the most
systematic way during the software life cycle. Conversely, the formal approach will increase
the insight about how the standard should be applied in an optimal way and what the
documents informally introduced by the standard should describe to achieve a useful and
reliable description of the system to be developed.

To illustrate the application of our approach, the case study of Chapter 1 will be re-worked
in Section 2.5 in a systematic way, this time leading to a correct solution allowing to re-use
at least one of the protocols introduced before to defend the system against isolated threats.

'In this context “standard” means either an (inter-)national standard regulating development proce-
dures or a “customised” company standard, which is usually an instantiation of an international or national
standard for the specific type of tasks to be solved in the company.

14
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2.2 Related Industrial Projects

The following example of a “real-world” project is presented to support the assertion that
modern control systems should combine aspects of both “classical” dependability —i. e. safety,
reliability, availability — and security. It has motivated the case study presented in Sec-
tion 1.2, to be continued below. The example is typical for systems where classical de-
pendability has always been an important issue, but the demand for security mechanisms is
relatively new. Further examples are given in [78].

Distributed Railway Control System In Germany today, available electronic computer
based railway control systems are centralised. One signal tower controls the state of all sig-
nals, points and level crossings of a specific area. Signals, points and level crossing barriers
(or traffic lights) are directly wired to the signal tower. Each train is supervised by exactly
one signal tower at a time. This technique is much too expensive for small private tramways,
railway or underground networks. On the other hand, in the future these smaller networks
will depend on highly automated control systems, because otherwise the operational costs
would be too high. Therefore several European companies and research institutions investi-
gate concepts for decentralised railway control.
(

i =8 %é@ o

I’

Figure 2.1: System overview of a distributed interlocking system.

In one of these concepts? the control logic is distributed on a collection of ‘local’ switch
boxes and on the trains (Figure 2.1). Each switch box controls a small number of nearby
signals, points and level crossings. It stores its local system state, supervises its local safety
conditions and communicates with approaching trains. The control computer of a train will
request local state information from (several) switch boxes and decide, based on the state
information available, whether signals, points and barriers or traffic lights may be switched
according to the request of the train or whether the train will have to wait at a signal. Data
between trains and switch boxes is communicated via radio transmission, preferably making
use of standard networks designed for the purpose of digital data transfer.

2The information in this paragraph is presented by courtesy of ELPRO LET GmbH. At present, I am
working as a consultant for this company in the field of test automation and verification of components of
interlocking systems. The concept is described in the proposal [26] in more detail.
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This basic idea induces a variety of dependability requirements differing from those of cen-
tralised railway control system:

e The decision whether a train is allowed to pass a certain signal, point etc. is produced
by a distributed algorithm which involves switch boxes “safe-guarding” their local
safety requirements and the train control computer deducing the “global decision” from
the local information of the switch boxes. The algorithm must never allow a transition
into an unsafe state, even in the presence of component failures (safety requirement
plus reliability requirement).

e Data exchange between trains and switch boxes has to apply protocols based on
repreated package transmission to avoid the loss of data caused by accidental dis-
turbance of the radio transmission (reliability requirement).

e The data transmission must also be protected against systematic manipulation by
humans using radio transmission devices (security requirement).

Though the accidental physical disturbance of radio transmission will certainly be the threat
with the highest probability, I believe that the idea of humans trying to manipulate the
exchange of control signals does not represent a theoretical, but a very realistic threat. If
hackers find it fascinating to plant viruses into other people’s PCs (even though they cannot
watch the effect in most cases), how much more fun would it be to stop, accelerate and
re-direct a real train by “remote control”, while watching the railway track! For these
reasons, the distributed concept will introduce a new level of complexity. However, this does
not represent an unmanageable problem, because the networks we consider here are much
simpler structured and have a lower traffic rate than the big railways networks where the
centralised concepts are used.

2.3 Standards for the Development of Dependable
Systems

2.3.1 Overview

Software Development Standards provide frameworks for the activities to be performed and
objects to be produced during the software life cycle. They describe the logical links between
development objects (specification documents, software code, test data etc.) and specify the
activities to be exercised on the objects (development, review, verification etc.), as well as
their “synchronisation” during the development life cycle. Ideally, the application of such
a framework will help to meet the quality requirements applicable for the target system in
the most systematic way. Standards admit a variety of methods — informal, semi-formal
or formal — to be applied during the phases of system development. Therefore they are
of informal nature themselves, written in natural language. However, they usually suggest
the characteristics that should be present in a method, when applied to develop a system
of certain criticality and according to pre-defined quality requirements. The relationship
between standards, methods and tools is depicted in Figure 2.2.

Examples for standards with relevance in the field of dependable systems are
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Figure 2.2: Relationship between standards, methods and tools.

e ISO 9000-3 [24] At present this is the most well known and at the same time the most
general international standard providing rules with respect to organisational aspects
of software projects and standardisation and documentation of the complete software
development life cycle. Apart from rules concerning the process of software develop-
ment itself, it emphasizes the regulation of every business process which may have a
direct or indirect impact on the quality of software products developed in a company.

e ITSEC (Information Technology Security Evaluation Criteria) [47] This stan-
dard focuses on the security aspect of dependable systems. It will be discussed in more
detail in Chapter 5.

e RTCA DO-178-B (Software Considerations in Airborne Systems and Equip-
ment Certification) [22] The international development standard for software in civil
aircrafts. Apart from the general requirements regarding project management, config-
uration management and software development, its main issues are the selection and
justification of validation, verification and test methods, safety aspects and reliability
aspects. The CIDS system [1] discussed in [85] has been developed according to this
standard.

e V-Model (‘Vorgehensmodell’) [112] The standard for the development of software-
based systems authorised by the German ministry of the interior.

Each of these standards is written in natural language. The objects and concepts used are
informally defined and therefore subject to different interpretations. While each standard
suggests the application of formal methods for the description and verification of the most
critical system components, only few attempts have been made to show how the objects and
concepts described in the standard should be related to the objects and concepts to be usually
encountered when applying formal methods. With respect to the full scale of dependability
issues, our approach to properly relate these different “worlds” appears to be a new enterprise.
Similar investigations are currently carried out by Ravn and Stavridou [96, 97] with respect
to the British Ministry of Defence Interim Standard MoD 00-55 [65]. In this chapter, we will
discuss the regulations for software development according to the V-Model, because it may
presently be regarded as one of the most advanced standards in Europe. Nevertheless, several
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adjustments of the standard will be made concerning the structure and the contents of the
documents introduced by the V-Model. These changes will be introduced in Section 2.3.2
and justified while introducing the formal approach in Section 2.4.

In Chapter 5 a similar approach will be described, this time focusing on security aspects
only and referring to the [TSEC.

2.3.2 System Development According to the V-Model
Process Model

Similar to [24, 22|, the V-Model adopts the well-accepted concept to model the whole system
development procedure as a system of cooperating “meta” processes: Each team performs
a well-defined task. In order to complete the task, inputs (documents, code, test data
etc.) are received from the environment (e. g., the customer) and from other teams. After
having processed the inputs, the corresponding outputs are distributed to the teams, to
the customer and other external groups. The standard project structure comprises four
cooperating processes: Software Development Team, Project Management Team, Quality
Assurance Team and Configuration Management Team. In the following we will focus on
the tasks to be performed by the software development and the quality assurance teams in
the context of the development of dependable systems.

Levels of Abstraction

To make the development of large and complex systems more feasible, they are described by
means of a collection of documents describing different levels of abstraction and associating
a modular structure with each level. In the V-Model five levels of modularisation and ab-
straction are proposed for the full description of a system. They are informally introduced as
(1) System Level: The top-level description of the whole target system without distinctions
between software and hardware. Data and functions are described on the end user’s level of
abstraction. Interfaces to existing components in the environment (e. g., another computer)
are described on the level of abstraction which is “seen” by the software to be developed for
the target system. For example, if only application software has to be developed in a system
layered according to the OSI model, the interface to an existing network is described on the
level of abstraction offered by the send- and receive services provided by the OSI session
layer for the application. (2) Sub-System Level: Large systems (e. g., a wide area network)
may be decomposed into sub-systems (e. g., a local area network in the wide area network),
in general without changing the level of abstraction for the representation of data, functions
and interfaces. (3) Segment Level: This is a further modularisation step which partitions
(sub-)systems into well-defined components (e. g. one computer in a network). On this level
the segments consisting of hardware only are separated from those to be built out of both
hardware and software. (4) SW Configuration Item Level: The software to be allocated in a
segment is decomposed into different configuration items, each item representing a software
sub-system (e. g., the processes associated with a specific layer of the OSI model which will
be allocated in the segment). This is usually the starting point from where to change also the
level of abstraction for the representation of data and associated functions. (5) Component
Level: A part of a configuration unit, performing a well-defined service (e. g., one task of
the configuration unit). Several component layers may be “inserted” to refine a top-level



4.9 oOtandards 1or the pevelopment ol Depenaable oystems

component (e. g., tasks might be decomposed into threads). (6) Module Level/Data Level:
This is the lowest level of abstraction and modularisation to be distinguished according
to the V-Model (e. g., a sequential function or a database table with associated attribute
definitions).

Documents Associated With Each Level

The V-Model describes the documents to be associated with each level of abstraction and
the topics to be covered by each document. In the context of this chapter two types of docu-
ments are of interest which appear (with slightly different naming and varying contents) on
every level: (1) Requirements Description: This document type describes the functions, data
and dynamic behaviour of an object associated with a specific level. In addition, bound-
ary conditions restricting the class of possible realisations for the object are documented.
(2) Architecture Description: This is a design structure which decomposes the object under
consideration and/or refines its data structures. The process of decomposition introduces
new objects to be associated with a lower level, as well as interfaces between them. Each
new object is associated with its own lower-level requirements description. In this way, the
alternation between requirements and architecture documents can be recursively applied to
the decomposition tree from system to module level.

To illustrate the contents of requirements and architecture documents, let us look at the
system level.

System Requirements The system requirements document should describe what the sys-
tem is supposed to do without telling us how this can be achieved. Specifically, the document
describes the following aspects: (1) Operational Environment: The external interfaces and
hypotheses about the normal behaviour of the environment. (2) Application Requirements:
A specification of the functions, data and dynamic behaviour of the complete application, as
seen by the end user. The application requirements describe this behaviour in relation to the
operational environment (1). This means that other types of behaviour have to be expected,
if the characteristics of the operational environment are changed. (3) Threat Analysis (Ex-
ternal): A specification of those possible deviations from normal behaviour which are to be
expected in the environment (e. g., crash of external computers, security attacks by unautho-
rised users from outside the system, corrupted data at an input interface). For each threat
the list of dependability requirements it might impair is documented. Note that since at this
stage nothing is known about the internal structure of the system, only external threats can
be specified. (4) Dependability Requirements: A list associating items from the application
requirements with safety, reliability /availability and security requirements. This describes
the degree of protection to be established for each of these items in case of a deviation of the
environment from normal behaviour. (5) Risk Analysis (External): An estimator associated
with each threat, specifying the probability for the corresponding exceptional behaviour to
occur.

This is not the complete list of items to be covered by the system requirements document,
but the others described in [112] are not relevant in our context. It is more important to
note that we have deviated from the description [112] in the following ways:

e According to the V-Model, security requirements and reliability requirements are de-
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scribed in different parts of the document, while safety requirements are subsumed
under reliability and availability is not mentioned at all. T think that this is inappro-
priate, since it will be illustrated below that all dependability aspects can be covered
by a unified approach. Therefore I have decided to introduce the general term Depend-
ability Requirements where safety, reliability, availability and security issues should be
described.

e The V-Model does not distinguish between external and internal threat/risk analysis. I
regard this as an important aspect, because in general designers will have no influence
on external threats, while they can influence the internal ones by means of their design
decisions.

System Architecture The main topics to be covered by the system architecture docu-
ment are (1) System Structure: The system is decomposed into sub-systems, segments or
software configuration items. (2) External Interfaces: The external interfaces described in
the system requirements document are allocated to the corresponding components of the
system structure. (3) Internal Interfaces: The internal communication paths between the
new components are defined. This gives rise to interface specifications for the requirements
documents associated with each component using the interface. (4) Requirements Alloca-
tion: Each application requirement is associated with one or more components of the system
structure which have been designed to implement the requirement. This induces application
requirements specifications for each component. (5) Dependability Requirements Allocation.:
The dependability requirements are mapped to corresponding components designed in the
system structure. This induces dependability requirements for each of these components.
(6) Threat Analysis (Internal): The decomposition introduces new interfaces and new com-
ponents, therefore new threats may arise in addition to the external threats (e. g., component
failure, security leak inside the system). (7) Risk Analysis (Internal): associated with the
internal threat analysis. (8) Dependability Concept: 1t is explained how the system depend-
ability requirements can be achieved by means of the chosen system structure in combination
with the requirements defined for each component.

Here we have altered the suggestions of the V-Model in the following way:

e In [112] only the description of the security concept is required. Consistent with the
change proposed for the system requirements, we will describe the complete depend-
ability concept instead.

e The internal threat/risk analysis is missing in the V-Model. This also holds for the re-
quirements and architecture documents associated with the lower levels of description.
This seems to be an important aspect overlooked by the authors of [112]: Each design
decision may introduce new threats to the dependability requirements. Therefore it is
necessary to perform a new threat analysis at each level of decomposition.
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2.4 A Formal Approach for the Development of
Dependable Systems

2.4.1 Selection Criteria for the Formal Method

When choosing a suitable formal method for the development of dependable systems of the
type introduced in the case study in Chapter 1, the following selection criteria have been
considered:

e Specification of distributed systems: Since the problem belongs to the field of
distributed systems, the underlying method should allow to specify aspects of concur-
rency, synchronisation etc. in a suitable way.

e Compositional and modular refinement: The technique of describing the target
system by means of stepwise decomposition, as suggested by the V-model, is related
to refinement in a natural way. Moreover, there are two types of refinement that typ-
ically occur during the development process. They have been explored in detail by
Zwiers [120]: If the designer has full freedom in the decomposition of a system com-
ponent, being allowed to choose both the architecture and the specifications of the
lower-level components created in the decomposition step, we speak of compositional
refinement. If, on the other hand, existing components (e. g., off-the-shelf software)
have to be used in the decomposition step we are confronted with pre-defined specifi-
cations and have to adjust the architecture and the specifications of new modules in
such a way that the pre-defined ones can be integrated. This situation is called mod-
ular refinement. Since most software projects require both the development of new
components and the integration of existing ones, we require that a suitable method
should allow both compositional and modular refinement.

e Dependability features: The formal method should allow to derive systematically
the description of system behaviour in presence of (combinations of) threats.

These criteria led to the selection of CSP [44], enriched by Schepers’ theory [104] for the char-
acterisation of fault hypotheses and their impact on distributed systems: The CSP process
algebra has been explicitly designed to describe and verify distributed systems, several of its
semantics definitions are compositional and the associated proof theories support both mod-
ular and compositional refinement. Schepers’ approach introduces one of the few available
techniques allowing to model combinations of threats and their resulting impact on system
behaviour in a formal way. An additional motivation for this selection was that the method
and the tools for test automation in the field of safety-critical reactive systems described in
Chapter 4 are also based on CSP. As a consequence, the formal specification and verifica-
tion approach described here may be consistently used together with the test and validation
techniques of Chapter 4.

Various denotational and operational semantics have been defined for CSP. The formalisa-
tions and results described below hold

1. in the trace model of CSP, as described in [44],

2. in the failures-divergence model of CSP, as described in [44],
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3. in the timed CSP model in the extent as introduced in [104].

The first model is useful to describe safety aspects only. The second model may be used to
specify and verify both safety and lifeness properties in the untimed case, and the last one
should be applied when real-time aspects have to be explicitly considered as well.

In the sections to follow, we will associate formal notions with the system requirements and
the system architecture, as defined by the V-Model. Moreover, it will be indicated how the
formalisation on system level may be continued in a recursive way to cover the requirements
and architecture descriptions of lower levels as well. It might be helpful to read in parallel
the case study in Section 2.5, because it will illustrate most of the formalisations introduced
below.

2.4.2 System Requirements

In this section formalisations for the following items of the system requirements document
will be presented:

e operational environment
e application requirements
e threat analysis (external)
e dependability requirements
The risk analysis is not covered in our approach, because it requires other (e. g., statistical)

methods outside the scope of the formal methods applied here.

Operational Environment

To formalise the notion of an operational environment recall that a context is a CSP term
C(X) with one free identifier X. Since the CSP operators —, ||, ||, [], M,; , \ used in
a process term are continuous, every context can be regarded as a continuous mapping
from CSP processes X to CSP processes C(X) (see [71, p.160]). In order to formalise the
operational environment, we use a special context £(SYS) with the following interpretation:

1. The free identifier SYS denotes the target system to be “plugged into” the environment
E.

2. Every other process identifier F; appearing in the term £(SYS) is an environment
process which is considered relevant with respect to the operation of SYS, but is not a
part of SYS itself.

3. The CSP operators used to define the term £(SYS) describe the architecture of the
environment.

Each process parameter E; in the term £(SYS) is associated with
e its alphabet «a F;, as far as visible to the outside world,

e a specification F; sat Sg. (h) representing the normal behaviour of E; when the trace
model of CSP is appropriate for specification and verification purposes,
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e a specification E; sat Sg (h, R) representing the normal behaviour of E; when the
failures(-divergence) model of CSP is appropriate for specification and verification pur-
poses.

We will use this behavioural specification style also in the other specifications to follow. In
P sat S(h,R), S(h, R) is a predicate with free variables h and R. h denotes a trace which
can be executed by P, and R is a refusal set of P/h, the process state of P after having
executed trace h. This holds for behavioural specifications in the failures-divergence and in
the timed CSP model. If only properties about traces are described, specifications S(h) are
used, possessing only the trace parameter as free variable. As a consistency condition it is
required that

ch(S(h, R)) C ch(P)
i. e., every channel referenced in the predicate S(h, R) is also a channel of the process P.
To complete the specification of the operational environment, we will introduce a set

I CU;a(E;)

denoting the interface between the environment and the target system SYS.

It is important to note that for the relevant parts of the environment, the system requirements
specify behaviour plus architecture. Otherwise a threat analysis would become impossible,
as shall be explained below.

Application Requirements

Our objective is to develop a system SYS subject to a behavioural specification Sgys(h, R)
when operating in the specified environment £. Therefore the application requirements are
formalised as

E(SYS) sat Ssys(h, R)

which is again interpreted as the normal system behaviour. The consistency conditions
I C a(SYS)
ch(Ssys(h, R)) C ch(SYS)

require that SYS must contain the pre-defined interface and its specification may only refer
to SYS-events. If ch(Ssys(h,R)) C I the application requirements are called a black box
specification, since they describe only the system behaviour visible at the interface.

Threat Analysis (External)

The objective of the external threat analysis is to specify the possible deviations from normal
behaviour of the environment. In the CSP world, the only observable objects are traces and
— in the failures-divergence model or for timed CSP — refusals. Therefore a threat can only
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refer to possible deviations from the specified characteristics of traces and refusals. To this
end Schepers [104] has introduced assertions of the type

P sat A(h,h',R, R')

where A is a predicate with free variables h, k', R, R, to be called a threat®. In this notation
(h, R) are interpreted as the trace/refusal pairs representing normal behaviour, whereas
(h', R') denote the trace and refusal of the exceptional behaviour. Informally speaking,
the threat A(h,h', R, R') is a predicate relating the exceptional behaviour to the normal
behaviour. The following consistency conditions are required:

e Threats are reflexive relations with respect to (h, R): | A(h, h, R, R)

e Threats are prefix-closed with respect to the trace h':

E (AW, 0,0) AN <h')= (Tses<hAA(s,s,0,0)

e Threats are subset-closed with respect to refusals R’:

= (A(h, W, R,RYANU' CR)= 3UeUCRAAMNU,U")

e The channels referenced in A(h, h', R, R') have to be channels of the process threatened
by A(h,h', R, R').

Since — as demonstrated in the example of Chapter 1 — such a predicate can become very
complex as soon as more than one threat is involved, it is useful to determine A(h, h', R, R')
in a systematic stepwise procedure:

Threat Analysis — Step 1: Definition of Isolated Threats For each environment
process E defined by the context £ and each isolated threat having impact on the process,
set up a predicate specifying the acceptable behaviour of E in presence of this isolated threat.
This results is a list of predicates

Ag,(h, 1, R, R

ranging over environment processes F and isolated threats indexed by j.

Threat Analysis — Step 2: Compositional Ordering of Threats In preparation of
the next step, where the resulting overall threat shall be derived from the isolated threats, it
is necessary to ensure that a certain Compositional Ordering of the threats can be obtained.
A systematic derivation of the resulting threat will only be possible if the environment
architecture suggests that the isolated threats Ag; for an environment process E can be
arranged in an order (Ag;, Agj,, Ag s, .. .) such that each Ag j, can be assumed to act on
E with the threats (Mg, ..., Agj,_,) already present. There seems to be no way to formalise
the condition for such an ordering to exist, because no formal reference document is available

3In [104] the term failure hypothesis is used for A(h,h', R, R'), since Schepers uses these predicates only
for the description of exceptional behaviour in the context of fault tolerance. Failure hypotheses are typically
denoted by x(h,h', R, R') in [104].
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on the system level from where such an ordering could be verified. As a consequence, it
depends completely on the insight of the analysts how to find such an ordering and how
to justify it in an intuitive way. If no compositional ordering of threats may be justified,
the overall threat has to be derived from scratch without making use of isolated threat
specifications.

Threat Analysis — Step 3: Derivation of the Resulting Threat If a compositional
ordering (Ag j,, Ag j,, Ag js, . . .) of threats can be found in step 2, the resulting threat may be
derived by the composition of threats Ay, Ay using the threat introduction operator ! defined
by Schepers [104] as

(ARAS) (b, B R, R') =4 (35, U @ Ay(h, s, R, U) A Ag(s, 1, U, R))

(A12As) expresses the situation where the threat A, acts “on top of” threat A;: A; refers
to h representing normal behaviour and admits a deviation s. Then Ay specifies exceptional
behaviour A’ in reference to s, which represents the exceptional behaviour caused by A;.

Threat Analysis — Step 4: Derivation of Specifications in Presence of Threats
After completion of Step 3, each process E of the operational environment is associated with

e a specification of normal behaviour E sat Sp(h, R), as obtained in the operational
environment specification,

e an overall threat Ag(h,h', R, R") associated with E and derived according to steps 1
to 3 of the threat analysis®.

The last step of the threat analysis is devoted to the derivation of the specification of each
environment process in presence of its overall threat. To this end, we can use the threat in-
troduction rule® given by Schepers [104, p. 84] for his proof theory for failure prone processes:

E sat Sg(h,R)
(EZAE) sat (SEZAE)(]'LI,RI)

In this rule, (EF'Ag) denotes the process capable of both normal behaviour as performed by
E and exceptional behaviour as defined by Apg. In analogy to the composition of threats,
the composition of specifications S(h, R) and threats A(h,h', R, R") is defined by

(S (B, R') =4 (3h, R e S(h, R) A A(h, ', R, R"))

Note that since (h, R) are bound by the existential quantifier, this is again an “ordinary”
specification with only one pair (h', R") of free variables.

Example 2.1 To provide an example where the overall threat cannot be represented by a
compositional ordering of the isolated ones, let us assume that the ideal system in absence
of threats should do nothing but execute the trace

h={cl,clel,...)

4If E is not subject to exceptional behaviour, the threat can be assumed to be Ag(h,h',R,R') = h =
K ANR=R
This rule is called failure hypothesis introduction in [104].



4. A rframework 1or the peveilopment ol Depenaable oystems

Assume further that the implemented system is threatened by®

Aq(h, ') =g ch*(h') = ch*(h)

ANNVi:l..#h e h'(i)=h(i)V val(h'(i)) = val(h(i)) + 2)
Ao(hyB) =g ch* (W) = ch*(h)

ANVi:1..#h e h'(i)=h(i)V val(h'(i)) = 4 % val(h(7)))

but the combined threats interact in such a way that they mutually exclude each other in
each step, so that the overall threat is described as

Ao(h, ') =4 ch*(W') = ch*(h) A (Vi:1..#h e h'(i)=h(i)V
val(h'(i)) = val(h(i)) —|— 2V val(h'(i)) = 4 % val(h(i)))
=(Vi:1..#h e h'(i) € {c.1,c.3,c4})

Then, applying the definition of the threat introduction operator !, we get

(ARA) (A, By = (Vi:1..#h e h'(i) € {c.1,¢.3,c.4,c.12})
(ARQA) (b, Ay = (Vi:1..#h e h'(i) € {c.1,¢.3,c.4,c.6})

and thus neither (A12A5)(h, h') nor (AtAq)(h, h') are equivalent to Ay (h, h')
O

Dependability Requirements

The informal definition of dependability requirements given by the V-Model may be re-
phrased as a specification describing the maximum deviation from normal behaviour which
may be tolerated for certain objects of the application. As pointed out above, these objects
may only be traces and refusals in the CSP context, and we may use the same formalism as
in the threat analysis above: A dependability requirement is a threat predicate

Agys(h,h', R, R)
satisfying
ch(Agys(h,b', R, R")) C ch(5YS)
and interpreted as
Even in presence of exceptional environment behaviour or exceptional internal

behaviour, the specification (SsystAsys)(h', R') has still to be observed.

Summary of the System Requirements

Before tackling the system architecture document, let’s summarise what has been achieved
during the development of system requirements. At first, the following activities were per-
formed:

1. definition of a context £(X) describing the architecture of the environment, as far as
relevant for the development of the target system,

SFor any event c.z with channel ¢ and value z, ch(c.z) = ¢ and val(c.z) = = denote the projections on
the channel and the value, respectively.
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. specifications E sat Sg(h, R) of the normal behaviour of environment processes E de-
fined by the context £(X),

. specification £(SYS) sat Sgys(h, R) of the normal system behaviour,

. specifications of (lists of) isolated threats Agj(h,h', R, R") for the environment pro-
cesses F introduced by £(X),

. specification of dependability requirements Agys(h,h', R, R") describing the acceptable
deviations of the target system from normal behaviour, as far as visible at the system
interface.

In this list the items 1 to 3 will be present in any system development procedure. Only
items 4 and 5 are specific for the development of dependable systems. The inputs 1 to 5 were
transformed into

1. specifications (E?Ag) sat (SgtAg)(h', R') of the acceptable behaviour of environment

processes E defined by the context £(X)

. a modified context (E1A)(X) = E(X)[E/(FAg),...], where every process parameter
F used in £(X) has been replaced by the process (E1Ag) showing acceptable behaviour
in presence of threats

. a predicate (SgystAgys)(h', R') defining the acceptable system behaviour in presence of
all possible threats. This specification summarises the normal behaviour specification

plus the dependability requirements
Analysis of (E1Ag), (E1A)(X) and (SsystAsys)(h', R") shows:

The obligations associated with the system requirements for dependable systems
can be transformed into “ordinary” design obligations, containing the results of
the threat analysis and the dependability requirements as integral parts of the
behavioural specifications for environment processes and target system.

Note that in our approach the threats have not been associated with the corresponding
dependability requirements, as suggested in the V-Model: At the present stage of the devel-
opment, the relation between the objects to be protected and the objects threatened by the
environment is not clear because the architecture document is still missing. Therefore my
suggestion is to describe the relation between threats and dependability requirements in the

architecture document.

2.4.3 System Architecture

We will now describe the formal treatment of the items to be covered by the system archi-
tecture document, as has been informally defined by the V-Model. We claim that only the

items
e System Structure
e Interfaces

e Internal Threat Analysis
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e Internal Risk Analysis

have any formal relevance for the development and verification process. The Correspondence
between Application Requirements and Architecture and the Dependability Concept only serve
to illustrate the system concept, as will be made clear in the following paragraphs. As in
the description of the system requirements document I will skip the Internal Risk Analysis.

System Structure

The target system SYS§ is decomposed into an implementable collection of cooperating pro-
cesses. Formally speaking, the system structure is a CSP equation

SYS:ASYS(Pla"'a-Pn)

where Agys is a continuous function mapping processes (P, ..., P,) to a new CSP process
by making use of the CSP operators. The processes P; are components of a lower level, e. g.,
sub-systems. However, the terms sub-system, segment, SW-configuration item etc. do not
have any formal meaning; their objective is only to aid the intuition of the reader trying to
understand the specification document.

Interfaces

In general, the definition of the system structure will also introduce new channels, whose
channel alphabets constitute the internal interface descriptions. Internal plus external in-
terfaces are completely defined by the alphabets «(P; \ Lp,), denoting the events visible at
the interface of each process, while Lp, denotes the set of internal P;-events. Since one of
the objectives of the architecture document is to completely establish the interface between
target system and environment, we demand that the interface set I should be contained in
the component alphabets, i. e.,

IcC Uia(Pi)

Component Specifications

Each lower-level component P; (sub-system, segment etc.) has to be equipped with a speci-
fication of its normal behaviour,

Pi sat Spi(h, R)

This specification will be located in the component requirements document associated with
P;. However, it has to be developed during the definition of the system architecture, because
otherwise the architecture cannot be verified against the system requirements.

Threat Analysis (Internal)

As is well-known in the context of dependable systems, a general refinement step may intro-
duce new internal threats that could not be captured on system requirements level, because
they completely depend on the architecture selected in the refinement step. As a consequence
a new threat analysis and associated risk analysis have to be performed after the definition
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of the system structure. Though specific boundary conditions ensuring that dependability
will be preserved under refinement are of great interest, especially in applications to security
(see [101]), we think that in general it has to be accepted that the selection of a specific ar-
chitecture may introduce new threats and lead to a “feed-back loop” between threat analysis
and revision of refinement decisions.

The distinction between external and internal threat analysis is justified by the fact that the
external threats are caused by the environment processes whose acceptable behaviour cannot
be influenced by the system designer, whereas internal threats may be altered by means of
architectural decisions.

Fortunately, the internal threat analysis may be treated in analogy to the external threat
analysis described above: Starting with an association of isolated threats Ap, ; for each
process P;, the threat analysis will derive specifications

(PzZApl) sat (SplZApl)(h,R)
which again constitute ordinary specifications of the acceptable behaviour of each P;.

Dependability Concept

All information needed to verify the correctness of the architecture decisions is contained
in the definition of Agys and the specifications of the lower-level components P; including
internal threats. As a consequence, the dependability concept will not add anything to the
architecture document which is essential for specification or verification purposes. It is good
design practice, however, to “separate concerns” in specifications. If a global specification
of C((P11Ap,),...,(PtAp,)) can be separated into a conjunction of predicates App(h, R)
and Dep(h, R) and the assertions expressed by Dep(h, R) can be shown to be responsible
for the preservation of dependability requirements while App(h, R) expresses properties of
the application system, then Dep(h, R) will be called the (formal) dependability policy of the
system.

Requirements Allocation

This is a means to trace the system requirements in the system architecture. In practice it
is achieved by maintaining tables listing requirements features and associated components
in the architecture which have been intended to implement the requirement. This is only an
informal aid, since our formal approach offers the opportunity to prove that the architectural
decisions have been correct, as can be seen in the next section. In the context of formal
methods, a requirements allocation document would be a table listing the premises for the
proofs which are necessary to demonstrate that the system decomposition designed really
implies the requirements specification.

2.4.4 Verification on System Level

We wish to prove that the system structure selected is appropriate for the global development
task in presence of external and internal threats. To this end, two things have to be shown:
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1. If the lower-level processes perform according to their normal behaviour specification,
their cooperation according to Agys results in a behaviour consistent with the normal
behaviour specification on system level.

2. If the lower-level processes perform according to their acceptable behaviour specifica-
tion, their cooperation according to Agys results in a behaviour consistent with the
acceptable behaviour specification on system level.

At first glance, condition 1 might seem superfluous, because the formal definition of threats
A requires that normal behaviour always satisfies the threat predicate, that is, (h,R) €
Fail(P) &= A(h,h, R, R). However, this requirement does not guarantee that the normal
behaviour will really be implemented in the system: An implementation only showing ez-
ceptional behaviour would satisfy requirement 2, but certainly not be consistent with the
customer’s expectations.

Formally speaking, these considerations result in the following proof obligations:

1. System Verification Obligation — Normal Behaviour:

(Vi e P; sat Sp.(h,R))
(Vj e E; sat SE(h R))

E(Asys(Py, ..., P,)) sat S(h, R)

2. System Verification Obligation — Acceptable Behaviour:

(Vl ® (PzZApl) sat (Sp Ap)( , ))
(Vj o (EjiAg,) sat (SpAg)(h, R))

(EWA) (Asys((PRAR,), - -, (PulAp,))) sat (S1Asys)(h, R)

In proof obligation 2, (1A)(X) = E(X)[E1/(ERAg,), .. .|, where [E/(E1AR,), . ..] denotes
the substitution of every environment process F; showing only normal behaviour by its
associated process (E;?Ap,) showing acceptable behaviour.

Observe that on system level, we are confronted with the obligation to verify a mized modu-
lar and compositional refinement step. The environment processes which cannot be altered
according to the designer’s preferences introduce modular refinement obligations. Com-
positional refinement, on the other hand, applies for the processes P; created during the
architecture design for the target system.

Furthermore, note that also the system verification obligation for acceptable behaviour is an
ordinary proof obligation, where all references to dependability issues have been transformed
into ordinary requirements during the threat analysis. Therefore the rules for the standard
compositional proof theory of CSP can be applied to verify this assertion. Observe, however,
that the creative process of finding suitable components P; crucially depends on the existence
of internal threats: If internal threats do not have to be taken into account, the system veri-
fication obligation for acceptable behaviour represents a standard proof obligation according
to the tnvent and verify paradigm:
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Given (E!Ag,) sat (SgtAg) (W', R'), (E1A)(X) and (S1Qsys)(h, R) as defined
in the system requirements document, invent an architecture Agys and component
specifications P; sat Sp,(h, R), such that

(gZA)(ASYS(Pl, ey Pn)) sat (SZASYS)(}I,, R)
holds.

The freedom to invent Agys and the specifications of P; is severely restricted, if internal
threats are present: Now the invent and verify paradigm has to be re-phrased as:

Given (E!Ag,) sat (SgtAg)(h', R'), (E1A)(X) and (S1Qsys)(h, R) as defined
in the system requirements document, invent an architecture Agys and component
specifications P; sat Sp,(h, R), such that, taking into account the threats Ap,
induced by Agys,

(EWA) (Asys((PAp,), ..., (PntAp,))) sat (S1Agys)(h, R)
holds.

2.4.5 Recursive Application of the Development Procedure

After having established the system architecture with its corresponding component specifi-
cations, the approach can be recursively applied in top-down fashion:

1. For a given sub-system or lower-level component P and an associated specification
P sat Sp(h, R) for normal behaviour and (P?A) sat (SptA)(h, R) for acceptable be-
haviour develop a component architecture Ap(Py, ..., Py).

2. Associate specifications of normal behaviour for each P;: P; sat Sp,(h, R).

3. Analysing the architecture chosen for P, perform an internal threat analysis and derive
the resulting overall threat Ap for each P;.

4. Using the threat introduction rule, derive the specification of acceptable behaviours
(PlZApl) sat (SPlZAPz)(h, R)

5. Prove the
1. Component Verification Obligation — Normal Behaviour:
(Vi e P; sat Sp,(h, R))
Ap(Py,..., Py) sat Sp(h, R)

otherwise improve the architecture chosen for P or revise the requirements for the
sub-components, P; sat Sp,(h, R).

6. Prove the
2. Component Verification Obligation — Acceptable Behaviour:
(Vi e (PRAp,) sat (SpAp,)(h, R))
Ap((PRAP,), ..., (PrAp,)) sat (SptA)(h, R)
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otherwise improve the architecture chosen for P or revise the requirements for the
sub-components, P; sat Sp,(h, R).

7. Continue this process for each P; until a sufficient level of decomposition has been
reached.

In this stepwise refinement procedure, steps 3 and 4 are needed to transform the development
obligation involving dependability issues into an “ordinary” development obligation. They
are only necessary if the refinement step forces the designer to consider new dependability
threats.

Note that from sub-system level downward only compositional refinement is needed, as
long as the designer does not have to integrate re-usable off-the-shelf software at a certain
refinement level.

2.5 Combination of Dependability Mechanisms —
Case Study Part 11

We will now develop a revised version of the case study introduced in Section 1.2. As before
it will be assumed that the target system to be developed is only the fault-tolerant and
secure network layer. Producer PROD, consumer CON and the transmission media are
therefore considered to be objects located in the environment, as depicted in Figure 2.3.
However, this time a more realistic setting will be assumed: We will use two instances of
the transmission media; M will carry application data and MACK will transmit control
messages to acknowledge reception of application data. Both M and MACK are subject to
the following assumptions:

1. Fault hypothesis: The transmission media may lose messages. The number of con-
secutive input messages that each medium may lose is bound by mazLoss > 0.

2. Security Threat: A malicious agent X can perform eavesdropping and tamper with
messages both on M and MACK . Making use of tampering, X can also replay messages
by “copying” an old message onto a new package. X cannot block or delay messages or
fake the identity of a sender. On each medium, X can modify at most maxModified > 0
messages in a row.

3. Neither M nor MACK change the ordering of the messages.

The presentation will be structured according to the formal framework given in the previous
section. We will first use the trace model of CSP to specify and prove safety properties based
on behavioural specifications of type P sat Sp(h). After having reached the final level of
decomposition, a separate argument will be presented allowing to prove liveness properties
by means of automated model checking. I regard this approach as a promising alternative to
the simultaneous processing of safety and lifeness properties in the failures-divergence model
which is frequently used in CSP applications. The latter technique has been applied by the
author in [74] and will be discussed in Chapter 3.
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PROD CON

app_tx app_rc

Target System SYS:

fault-tolerant and secure
Network Layer

rc

Figure 2.3: System configuration for the case study, part II

2.5.1 System Requirements
Operational Environment
Following the configuration sketched in Figure 2.3 the system context may be specified by

£(SYS) = (PROD || CON || M || MACK) || SYS

where the normal behaviour of the environment processes satisfies’

E a(FE) E sat Sg(h)

PROD { app—tz |} true

CON { app_rc |} true

M { tz,re |} val*(h1{ re [}) <' val*(h1{ tz [})

MACK | { ack_tz, ack_rc [} | val*(h|{ ack_rc [}) <' val*(h[{ ack_tz [})

E(SYS) introduces an environment architecture where each environment process is com-
pletely independent of the others, but operates in parallel with the target system. Therefore
the system interface consists of every channel visible in the environment:

I = {app_tz, app_rc, tz, re, ack_tr, ack_rc}

Obviously, ch(Sg(s)) C ch(E) is fulfilled for every specification, since the free trace variable
h only appears filtered to the channels of the corresponding processes. Thus the consistency
condition for the interface (p. 23) are fulfilled.

"For traces s, u, the notation s <™ v is used to denote that s is a prefix of v with #u — #s < n.
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Application Requirements

The application requirements may then be formally defined as follows®:
a(SYS\ Lsys) = { app—tz, app_re, tx, rc, ack_tx, ack_rc |}

g(SYS) sat Sgyg(h)

Ssys(h) =4 val*(h[{] app_re [}) <N val*(h[{] app—tz [})

where N > 0 is an unspecified but fixed natural number. « (SYS\ Lsys) is the alphabet
of the interface of SYS visible to the environment, where Lgys denotes the set of local
SYS-events which will become visible during the decomposition steps to follow.

Ssys(h) requires (SYS\ Lsys) to input values on app_tr and output them on channel app_rc
without changing their order or value. The constant N in the prefix relation ensures that
each output may be expected within a bounded number of consecutive inputs. The fixed
upper bound N is appropriate in the context of real-time applications, where the assertion
that a message will “finally” reach its destination is not useful at all, because this may still
admit failures in the time domain.

Since I = ch(Ssys(h)) we are dealing with a black box specification. SYS is obviously
underspecified by Ssys(h). For example, it does not show that the transmission media
should be used for the purpose of data transfer between PROD and CON. However, this
is an architectural issue and will therefore be covered in the system architecture described
below. The consistency conditions relating the interface to the channels of SYS (p. 23) are
obviously fulfilled.

Threat Analysis (External)

Threat Analysis — Step 1: Definition of Isolated Threats According to the hy-
potheses informally described above, we are confronted with a reliability threat and a secu-
rity threat present for both transmission lines M and MACK. The security threat can be
specified as follows”:

AM’l(h, h,) Edf
ch*(h'1{ ta, re [}) = eh*(h1{] tz, re |})
A
W te [y = A1t [}
A
(Vi:1..(#({ re[}) — mazModified) o
(3J i (i + mazModified) o (h'[{] re [})(j) = (14| re })()))
A
(ran val*(h'[{ tz |}) Cran e =
(Vz :ran val*(h'[{ rc |}) @ z ¢ rane V x € ran val*(h'[{] tz |}))

8We use the notation val*(h) to denote the trace derived from h by projecting each h(i) onto its value
component val(h(7)).

9ch*(h) denotes the trace derived from h by projecting each h(i) onto its channel ch(h(i)). ran h is the
set of events contained in h.
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In presence of the isolated security threat, M will allow the same inputs as in the case
of normal behaviour and preserve the number of outputs, as well as the ordering between
inputs and outputs. However, out of maxModified + 1 outputs only one can be guaranteed
to be unmodified. The last term of the conjunction is a security hypothesis expressing the
possibilities to detect modified messages by means of encryption. e denotes an encryption
function, whose existence is assumed in the hypothesis, such that we may depend on the
following properties: If the values on channel ¢z are encrypted by means of e (i. e., every (h[{
tr [})-value is contained in the range of e), then a malicious agent only has two possibilities
to modify the messages, before they reach channel re. Either a replay is performed (i. e.,
the modified value is contained in the set of messages already transmitted), or the modified
value is not contained in the range of e.

Given any encryption function f, e may be implemented by enciphering the message plus a
checksum by means of f: If it is safe to assume that agents have no possibility to decipher
the message and encipher an altered message with corresponding checksum, then it is also
safe to assume that any modification of the enciphered message will be detected by means
of the mismatch between modified message and checksum. More sophisticated encryption
mechanisms allowing to detect tampered messages are provided by the public-key mecha-
nisms, described for example in [95]. In practice, any reasonably secure e will require the
distribution of encryption keys between producer and consumer. A formal treatment of key
distribution protocols is given in [9)].

According to the definition of threats, A i (h, h') characterises acceptable behaviour. This is
expressed by the hypotheses about e, assuming that an agent may only tamper with messages
to the extent specified by the fourth conjunct in Ay 1 (h, h'). If an agent might “crack” the
encryption code for e and alter messages, such that the result would still look like a valid
encryption, this would represent catastrophic behaviour, and our protocols to be introduced
and verified below would produce unpredictable results.

An analogous threat Apack1(h,h') is defined for MACK.
The second threat present for M is the hypothesis assuming the possibility of data losses'’:

AM,Q(h, h,) Edf
W to,re b QW] o, re |}
VAN

W bz [ = hi{] e [}
A

(#(h1{ rc [}) > mazLoss =

#(WH{ re ) >0
A

(3 ho7 hl7 o pH#WRrelt) . {| re |}* °
#h° < mazLoss A B0 .. . hH#FWHD = By re [}
A
Vi:1. . #W{rcl)e |
(h'1{] re [})(i) = head(hi) A #h' < mazLoss + 1)))

10p" 4 h denotes the subtrace relation: Every h'-event is contained in h, and the ordering of A’ is also

preserved in h.
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Again, h’ allows the same inputs on {| tz [} as h, but this time it outputs only a subtrace of
(h{] rc [}). The number of consecutive data losses in limited by mazLoss. Let Apack 2(h, h')
be analogously defined for MACK. It is trivial to see that Ay ;(h,h') and Ayack ;(h,h')
are reflexive and prefix-closed, and the full set of consistency conditions (p. 24) for threats
holds.

Threat Analysis — Step 2: Compositional Ordering of Threats In the network
example a possible ordering of threats can be found along the following lines:

1. If it is reasonable to assume that the malicious agent attacks directly at the input
channel ¢z of M, then the ordering (A1, Ap o) is justified: First a package is possibly
corrupted by the agent, then it may still be lost by the unreliable network.

2. If it is reasonable to assume that the agent gets a chance to attack directly before
M outputs on channel rc, the reverse ordering (Ajps o, Ay ) is justified: The attacker
will now only tamper with packages having already been securely transmitted over the
medium.

3. If it cannot be predicted whether the agent may attack at the beginning or at the end
of the transmission, it is not possible to make use of the isolated threats Apsq, Apro.
If it can be guaranteed, however, that at least n% of the messages are neither lost nor
corrupted, a global threat can be defined as

AM’O(h, h,) Edf
ch*(W' ] tz,re [t) < ch*(hI{] tz,re [})

A
W bz [ = hi{ e [}
A

(In" o (B"[{ tx,rc }) < (B'[{ tz,rc [}) A
WLt = ] e A
# (W 1] o [}) + n/100 < (A" [{] re [}) A
W e [f SRt )
A
(ran val*(h'[{ tz |}) C ran e =
(Vz :ran val*(h'[{ rc |}) @ z ¢ rane V x € ran val*(h'[{] tz |}))

Threat Analysis — Step 3: Derivation of the Resulting Threat Assuming the
ordering (Aps 1, Ay ) of threats results — after having eliminated the bound variable s — in
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the overall threat

(AptAp2)(h, b)) =4
ch*(h'1{ e, re [t) < ch* (R[] tz, e [})
A
Wi te [t = A1t [}
A
(#(h[{ rc |}) > mazLoss =
#(W 1 re ) >0 A
(IR0 A, hHEEHED ) e 1 e #4° < mazLoss A
(Vi:1.. (I rel) — mazModified) o
(37 : i .. (¢ + marModified) e
(b4l re 1) () = (RO R#FHED) (5)) A
(VE: 1. #MR[{rc])e
(W' re })(k) = head(h*) A #h* < mazLoss + 1))))
A
(ran val*(h'[{ tz }) C ran e =
(V :ran val*(h'[{ rc [}) @ x ¢ rane V z € ran val*(h'[{| tz [}))

For maxModified > 0 A mazLoss > 0, this predicate admits traces A’ containing only
modified values on output channel {| rc [}: Choose j such that (h[{ rc [})(j) never coincides
with head(h*). As a consequence it is impossible to construct a fault-tolerant and secure
network service for the medium under the hypothesis (A 1244 2)*.

Since { reflects the compositional ordering of threats, it is not symmetric. Indeed, assuming
the ordering (A 2, Apr1), the overall threat derived is

(A2 Ay 1) (h, b)) =4
ch* (W' T{ te,re |}) < ch*(h 1 tx,rc |})

A
W b [p = hi{] e [}
A

(#(h{ rc |}) > mazLoss =
#(W e ) >0
(3RO, Y, ... hFEWHED 1 e [} @ #1° < mazLoss A
(VEk:1.. 4 1{ rc[}) @ #h*F < mazLoss + 1) A
RO h#FWHY) = B re [} A
(Vi:1l..(#([{ rc[}) — mazModified) o
(35 :i.. i+ maxModified @ (' rc [})(5) = head(h?)))))
A
(ran val*(h'[{ tz |}) C ran e =
(Va :ran val*(h'[{ rc[}) @ x ¢ rane V z € ran val*(h'[{| tz [}))

If this ordering of threats is realistic, it is possible to extract valid data from the transmission
medium, if it does not block completely: The predicate states that the length of A’ [{ rc |}
grows with the number of inputs on tz:

HTf we weaken A ;1 such that only every nth message can be modified and mazLoss < n — 1, a fault-
tolerant and secure network service would exist.
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Lemma 1 Let h,h' be traces such that

(Aaratar) (1) A O < H (]t ) — #(h 1] re ) <1

Then

#(h f{\:zgaz;ozajfossfl < #(h' r{| re |})
holds.
Proof.

0 < #h[{ tc}) —#(h[{ rc[}) <1 ensures that after mazLoss + 2 inputs #(h[{ rc [}) >
mazLoss is fulfilled. Therefore the consequence in the third conjunct of (A 22Awy 1) (h, ')
holds, so that we may assume the existence of A* such that

RO A p#EW el — ] re [}

Since b'[{| tx [} = h[{ tz [} by the second conjunct of (Ay 20Au1)(h,h'),

0<#(h{tz[}) —#({rclt) <1implies #(h'[{ tz [}) — 1 < #h[{ rc }), so
#(01 to ) = 1< (RO DRFOND)

follows. Since #h° < mazLoss and #h* < mazLoss + 1 for i > 0, we get
#(W'1{ tz [}) — 1 < mazLoss + #(W'[{] rc [}) * (mazLoss + 1)

As a consequence

#(h'{tz]})—mazLoss—1 < #(h/ r{| re |})

mazLoss+1

O

As soon as #(h'[{| rc [}) > mazModified, it will be possible to find at least one valid data
package out of mazModified + 1 consecutive values received on rc. For the remaining part
of the case study it is therefore assumed that (Ajps 2, Ay ) is the appropriate compositional
ordering of threats.

This example elucidates the fact that design aspects have to be taken into account when
calculating the effect of possible faults and security threats. It is a fundamental difference
whether malicious agents can only tamper with data successfully transmitted by the medium
or whether they can modify data packages while it is still uncertain if a package will reach
its destination.

Threat Analysis — Step 4: Derivation of Specifications in Presence of Threats
Using the specification Sy (h) of M given in the operational environment specification (p. 33)
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and assuming that the overall threat to M is represented by (A 20Ajps) as derived in the
previous example, application of the threat introduction rule and of Lemma 1 results in

(MUA M2 AM,1)) sat (Sud(Ap 22D 1)) ()

(SmUAnp2An 1)) (B) =
(3s e val*(s{| re }) <" val*(s[{| tz [})

A ch (W' I bz, re [}) < ch*(s 1] tw, re ) A (W1t ) = (s 22 [}))
A

(3A" o (W1 tw, e [}) S (B {] tz, re [}) A val*(h" T{] re [t) < val*(h"[{] tz [})

h'{tz|})—mazLoss—
A (maf]\(/[otg{i‘}fiegll)*(mazLosi«kl) < #(h” r{| re |}))

A
(ran val*(h'[{ tz }) C ran e =
(Vz :ran val*(h'[{ rc |}) @ z ¢ rane V x € ran val*(h'[{] tz |}))

In this specification the bound variable s represents the normal behaviour trace. The sub-
trace h” of the acceptable behaviour trace h’' contains the messages that are neither lost nor
corrupted. This means that (MUApy2Ay,1)) will transmit at least a subtrace of inputs

correctly. The behavioural specification in presence of threats is completely analogous for
MACK.

Dependability Requirements

For SYS it is not allowed that irregularities become visible at the interface to PROD and
CON, therefore the dependability requirements say

Agys(h,b') =g W' T{ app_tz, app_rc [} = h[{ app_tz, app_rc |}

Since the specification Sgyg(h) of normal behaviour only refers to channels app_tz, app_re,
application of the threat introduction rule results in the same assertion:

(SsystAsys)(h') = val* (' [{] app_rc [}) <N val* (W' 1{] app_tz [})

2.5.2 System Architecture

System Structure

For the reliable and secure network service we choose a layered architecture
SYS = Asys(ABP,SEC) = (ABP || SEC)

as depicted in Figure 2.4.

This choice is inspired by the observation that the specification of (MU(Ap 20Ap 1)) implies
the existence of a subtrace A" < h' satistying (b [{ tz [}) = (s[{ tz [}) A B < s, where
s is the trace denoting correct behaviour. This type of problem can be solved by means
of the alternating bit protocol, which we intend to implement in the ABP layer. To make
use of this protocol, we first have to extract A" from A’. This will be the task of the SEC
layer. The allocation of parts of the layers on different computers is deferred to a further
decomposition step.
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app_tx app_rc
| N
| |
I
ABP !
I
i ' Target System
! abp_tx abp_ack_rc bp_ack_tx bp_rci !
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Figure 2.4: System architecture consisting of network layer and security layer.

Interfaces
For the architecture of SYS introduced above we have alphabets

a(ABP\ Lagp) = {| app—tz, app_rc, abp_tz, abp_re, abp_ack_tzr, abp_ack_rc |}

a(SEC\ Lspc) = {| tz, re, ack_tx, ack_rc, abp_tz, abp_re, abp_ack_tz, abp_ack_rc |}

The interface definition is completed by describing the channel alphabets: Let DATA denote
the set of application data to be passed from PROD to CON. Define BIT = {0,1}.

Channel Channel Alphabet
app_tzr, app_rc DATA
abp_tz, abp_rc BIT x DATA

abp_ack_tx, abp_ack_rc | BIT
tr, re, ack_tz, ack_rc BIT*

The channel alphabets of tx and rc are defined to contain “raw data”, i. e., each message
on tz,rc is just an uninterpreted sequences of bits. Since the transmission media establish
a point-to-point connection, we did not introduce a header data structure, which would
precede the data block on a real network.

Obviously, the system interface I is contained in ch(ABP) U ch(SEC).

Component Specifications

For the new component ABP we choose the following specification for the alternating bit
protocol (see [104, pp. 44]):
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ABP sat SABp(h)

Sapp(h) =4
data*(p(h1{ abp_tz [})) <* val*(h1{ app_tz [})
N
val*(p(h[{] abp—ack_rc [})) <" bit*(p(h[{] abp—tz }}))
A\
val*(h1{| app—rc [}) <" data*(p(h[{] abp_rc |}))
N

val*(p(h1{] abp_ack_tz [})) <' bit*(p(h[{] abp_rc [}))

In this definition, bit and data are the projections onto the bit and data component, respec-
tively, of channel events of abp_tz and abp_rc. For channels ¢ with alphabet BIT we may
also write bit(c.b) instead of val(c.b) to extract the bit value from a channel event. p is a
filter for traces deleting duplicated messages identified by means of the bit value on channels
with alphabet BIT or BIT x DATA:

p(()) =)
p(s™(e)) =if #s > 0 A bit(e) = bit(last(s)) then p(s) else p(s)"(e)

For SEC we specify
SEC sat SSEC(h')

Sspc(h) =4
val*(h{] tz [}) <" e(val*(h[{ abp_tz [}))
A
val*(h1{ ack_tz [}) <' e(val*(h|{| abp_ack_tz [}))
A
val*(h[{ abp-re [}) <' data*(o(val* (R [{] rc })))
A

val*(h[{| abp_ack_rc [}) <! data*(o(val*(h1{| ack_rc [})))

In this specification, € denotes an encryption filter adding a sequence number to each value
of a trace and encrypting this pair by means of e:

e(()) =)
e(s7 () = e(s) " (e(z, #s + 1))

The filter ¢ will discard every message which is not correctly encrypted (z ¢ rane) or
which is a replay of an older message, as can be detected by means of the sequence number
snum(e 1(z)) of the decoded message:

p((N) =)

o(s™(z)) = if z ¢ rane V (#p(s) > 0 A snum(e ! (z)) < snum(last(p(s))))
then ¢(s)

else ¢(s) " (e7'(z))
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If the message is accepted by ¢ the filter outputs its decoded value e™'(z), consisting of the
pair (data, sequence_number).

Threat Analysis (Internal)

Let us assume that for the architecture Agys(ABP, SEC) the possibility of data losses on
channel abp_rc has to be taken into account (Figure 2.5). As before it is assumed that only
maxLoss > 0 messages may be lost in a row. Formally speaking, there exists a threat

Agpoa(h,b') =4
(W' Ta(SEC)) < (hla(SEC))
A
(W1 (a(SEC) = { abp_rc [})) = (h[(a(SEC) — {| abp_rc [}))
A
(#(h1{ abp_rc |}) > mazLoss =
#(h' 1] abp_rc }) >0
A
(3RO, ... h#WHabr—rel) . e 1 o
#h° < mazLoss A RO .. D h#EWHabr—rel) — b1l abp_re [}
A
(Vi:1.. 4 [{ abp_rc |}) o . .
(h'1{| abp_re [})(i) = head(h*) A #h* < mazLoss + 1)))

Deriving the specification for SEC in presence of this threat uses a lemma analogous to
Lemma 1 and results in

(SEOZASEC,l) sat (SSECZASEC,I) (h'l)

(SsectAsrca)(h') =4
val*(W'[{] tz [}) <" e(val* (W' [{] abp_tz [}))

A

val*(h' 14 ack_tx [}) <' e(val*(W' [{] abp_ack_tx [}))

A

val*(h' 14 abp_ack_rc [}) <! data*(p(val* (W' 14 ack_rc [})))
A

(Fs @ val*(s[{ abp_rc [}) <' data*(o(val*(s[{] rc [}))) A

W1 re, abpre [} < s[4 re,abp_re [) AR T re |p = s[{ re [})
A
#(p(val* (W' {rcl})))—mazLoss—1 < #(h/rﬂ abp_rc |})

mazLoss+1

We will see below that Agys(ABP, SEC') correctly implements the system requirements, even
in the presence of threat Aggc 1(h, h'). However, if also a security threat allowing to modify
data on channel abp_tzr had to be taken into account, it is easy to see that the strength of
the mechanisms pre-planned for ABP and SEC would not suffice to provide a dependable
network service. An idea to re-design the architecture could be to make the channel abp_tz
“invulnerable” to agents located inside SYS. For example, the transmission component in
SEC could be linked into the transmission component of ABP, so that the communication



4.0 Lombination o1 Dependabuity viechanisms — CLase otudy rart 11

PROD CON

T

I

! app_tx app_rc .
I

3 :

1 ABP

! I

| ' Target System

| b bp_ack, bp_ack_tx b [

i abp_tx abp_ack_rc  abp_ack_tx abp_rc| @ : sYS
I

3 :

! SEC .

! |

S (N S | W :

ack_rc ack_tx
MACK
x rc
M

Figure 2.5: Internal threat analysis: Possible loss of data on channel abp_rc.

on abp_tx could be implemented by means of a procedure call using only local variables
not accessible to other processes than ABP. Formally this architecture decision could be
modelled as

sys(ABP, SEC) = (ABP || SEC)\ {| abp_ta |

2.5.3 Verification on System Level

Applying the System Verification Obligations introduced in Section 2.4.4 to the example and
observing that the specifications of PROD and CON are just true, it has to be shown that
the following properties can be derived:

1. System Verification Obligation — Normal Behaviour:

ABP sat Sapp(h)
SEC sat Sguc(h)

M sat Sy (h)

MACK sat SMACK(h)

(M || MACK) || ABP || SEC sat S(h)

2. System Verification Obligation — Acceptable Behaviour:

ABP sat Sapp(h)

(SECZASEC,l) sat (SSEczASEC,l)(h)

(M?(AM,QZAMJ)) sat (SMZ(AM,QZAMJ))(}L)

(MACK (Apmack 21Amack,1)) sat (Syack(Amack 2D mack 1)) (h)
(

(MU A 20AM 1)) | (MACKU Apmack 21DAmack 1)) | ABP || (SEC1Agpc 1) sat (StAgsys)(h)
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We skip the proof of the normal behaviour obligation, because the verification concept will
become clear in the treatment of the obligation for acceptable behaviour. For the second
verification obligation we have assumed that the alternating bit protocol layer is not subject
to internal threats. Therefore Sypp(h) and ABP appear without application of the threat
introduction operator. We will split this proof obligation into two steps: First it will be
derived that the security layer in cooperation with the transmission media will only pass
messages to the network layer which have not been corrupted by security attacks, i. e.,

Proof Obligation 1:
SECAgpe,) sat (SspclAspeq)(h)

(

(MUAM A1) sat (Sud(Aw20Auq))(R)
(MACK (A mack 2D mack,1)) sat (Syackl(Amack 28D mack 1)) (h)
(

(MUAM 28 M 1)) | (MACKUAApmack 20D mack 1)) || (SECW Agge 1) sat Si(h) A Sa(h)

where Si(h) defines the behaviour of the transmission via M and Sy(h) the behaviour of
the transmission via MACK:

Sl(h,) Edf
val*(h1{| abp_rc [}) < wal*(h1{ abp_tz [})
VAN

#(h{ abp—tz})—(mazModified+1)*(mazLoss+1)> —mazLoss—2
(mazModified+1)*(mazLoss+1)? < #(h r{| abp_rc |})

Sg(h,) Edf
val*(h[{ abp_ack_rc |}) < wal*(h1{ abp_ack_tz |})

A

#(h{ abp_ack_tz[})—(mazModified+1)*(mazLoss+1)> —mazLoss—2
(mazModified+1)*(mazLoss+1)?2 < #(h r{| a’bp_G’Ck_rc |})

For the second step of the proof we observe that the alternating bit protocol with the
behavioural specification as given for ABP above will provide a reliable network service when
working in parallel with transmission components satisfying S;(h) and Sy (h) respectively. We
will only give the proof for Proof Obligation 1; a proof for the second step may be found for
example in [104, pp. 44].

Lemma 2 Proof Obligation 1 is implied by
Proof Obligation 2: If

(SsectAspca)(h) A (Sul(Ay 20Dy 1))(R)

then Si(h) holds.
and
Proof Obligation 3: If

(SsectAspca)(h) A (Suack(Amack 2D mack 1)) (h)

then Sy(h) holds.
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Proof.

The premises of Proof Obligation 1 state that

(SECZASECJ) sat (SSECZASEC,I)(}L); (MZ(AM,QZAM,l)) sat (SMZ(AM,QZAM,l))(h)
and (MACKUAmack 2D mack,1)) sat (Suackl(Amack 208 mack 1)) ().

We use the law
P sat Sp(h) @ sat Sg(h)
(Pl Q) sat Sp(hla(P)) A So(hla(@))

which holds in the trace model of CSP [44, p. 90]. In our context, the free variable h of a
specification P sat S(h) appears only in expressions restricted to channels of P, therefore
we always have

Sp(hla(P)) A Sq(hla(Q)) < Sp(h) A Sq(h)

for a trace variable h of (P || Q). Moreover || is identical to || for disjoint alphabets. It
follows that

(MUAM2A41)) | MACKU A pack 20D mack 1)) || (SEC1Asge 1) sat
(St A 28w 1)) () A (Smack(Amack 2D mack,1))(h) A (SsectAsec1)(h)

If Proof Obligation 2 is valid, application of the consequence rule results in
(MUAM2A01)) | MACKUAApack 203 mack 1)) || (SECUAsge 1) sat Sy(h)

Similarly, if Proof Obligation 3 is valid, application of the consequence rule results in
(MAAp 28y 1)) | (MACKAAmack 2D mack 1)) | (SEC1Aspe,1) sat S(h)

Therefore, if both obligations are valid, we may apply the conjunction rule which yields
Proof Obligation 1.
([l

The following lemmas are used to prepare the proof of Obligation 2.
Lemma 3 If

(SspctAspoa)(h) A (Sul(Aw 2D ,)(h)
then

(Vz :ran val*(h[{ rc|}) e z ¢ rane V z € ran e(val*(h[{ abp_tz [})))
holds.

Proof.
According to (SspctAspc,)(h) (p. 42) and the definition of € (p. 41), every value passed over
channel ¢z is in the range of e. The lemma now follows from the last conjunct in predicate

(S An22Ax1))(R) (p. 39).
|

The following lemma summarises the implications of specification (SspctAsrc,1)(h) (p. 42)
with respect to events observed on channels abp_rc and rc: An event abp_rc.y is always
preceded by a communication rc.z, such that



4. A rframework 1or the peveilopment ol Depenaable oystems

e 1 is correctly encrypted by e.
e y is equal to the data part of the decoded message .

e The sequence number associated with message z is higher than the sequence number
of the most recent previous message on rc which was accepted by the filter ¢ (p. 41).

Lemma 4 The validity of (SspctQsrc,1)(h) implies

(Vy e last(h[{| rc, abp_rc |}) = abp_rc.y =
(Fz o last(front(h[{ rc, abp_rc |}))) = re.x A
T €rane A
y = data(e™"(z)) A
#hMrel)>1=
snum(e 1 (z)) > snum(last(p(val*(front(h[{ rc }))))))))

Proof.
According to the fourth conjunct in (SspctAsre,1)(h) (p. 42), we may assume the existence
of a trace s satisfying

val*(s[{| abp—re [}) <" data*(p(val*(s[{| rc }))) A
h1{| re, abp_rc |} < s[{ rc,abp_rc }) AN h[{ rc |} = s[{ rc |}

Assume that the lemma has been proven for those traces h satisfying h = s, i. e., for those
h where data losses on abp_rc did not occur. Then the lemma will also hold for arbitrary h
satisfying (SspctQAsec,1)(h), because h[{| rc,abp_rc [} < s[{ re,abp_re [}) A h[{ rc [} =
s[{l re |}, and the implication of the lemma remains valid for any trace derived from s by
deleting abp_rc-events only.

For rest of the proof we may therefore assume

val*(h[{] abp_rc [}) <! data™(p(val*(h[{] rc }))) (0)

Let (h[{| re,abp_re [}) = (u[{| re, abp_re [}) " (abp_rc.y). Then (u[{| rc, abp_rc [}) cannot
be empty because of (0).

We will first prove that ch(last(u[{ rc,abp_rc [})) = rc by assuming the contrary and
deriving a contradiction. Assume therefore that ch(last(u[{ re, abp_re [})) = abp_rc. Then

#(h 14 abp_rc [}) = #(front(u[{| rc, abp_rc }) [{] abp_rc [}) + 2 (1)

and

hi{l re [} = front(ul{] re, abp_re [}) [{ re } (2)
Now (0) together with (2) implies

val*(h1{ abp_rc }) < data*(p(val*(front(u[{| re, abp_rc [})1{ rc [}))))

and therefore

#(h1{ abp_rc [t) < #(o(val* (front(u[{] re, abp_re ) I re [}))) (3)
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Since u < h and (0) is also valid for every prefix of h, this yields

val? (front (u 4] re, abp_re ) [{ abp_re [}))) <!
data* (p(val* (front(u  { re, abp_re ) 1] re }))))

and therefore

#(p(val* (front(u {] re, abpre [})1{ re })))) <
#(front(u[{] re, abp_rc [}) [{

With (3), this results in

#(h1{ abp_rc [}) < #(front(ul{ re, abp_rc [}) [{] abp_rc [})) + 1
which contradicts (1).

| abp_re })) +1

Let therefore last(u[{] rc, abp_rc |}) = re.z.

Case (C1): Assume (h[{| rc [}) = (re.z). If (h[{| rc,abp_rc [}) = (rc.z, abp_rc.y), (0)
implies val*(h [{| abp_rc [}) = data*(p(val*(h[{| rc [}))), that is, (y) = data*(¢({z))). Now
z)

the definition of ¢ applied to the case p({ )" (z)) yields z € rane A ¢((z)) = (e7'(z)) which

proves the lemma for #(h[{ rc [}) = 1.

Case (C2): Assume #(h[{ rc [}) > 1 A last(h[{ rec,abp_rc [}) = abp_rc.y. Again,
(0) implies val*(h [{] abp_rc |}) = data*(e(val*(h[{| rc [}))), which now results in y =
data(last(e(val*(h [{| rc [})))). From the recursive definition of ¢ (p. 41) we get (using
induction over the length of sequences 2)

#0(2) > 0= last(o(z)) = e L(last(z))
It follows that

last(p(val*(h [ re [}))) = ™ (val(last(h[{] rc [}))) = e7'(z)

and
p(val*(h1{ re [})) = p(val*(front (R { rc [}))) ™ (e7" (2))

Now the definition of ¢ implies
snum (e~ (z)) > snum(last(¢(val*(front(h{ rc [})))))

which completes the proof.
([l

Lemma 5 If
(SsectAsrc,a)(h) A (Sul(Am 20D 1) (h)
holds, this tmplies

h{|abp_tz|}) —mazLoss—2 «
bt meslos—2 - < o (val* (b1 re [})
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Proof.
The first conjunct in (SspctAsgci)(h) is val*(h[{ tz [}) <' e(val*(h[{ abp_tz })). Since
#e(s) = #s for every trace s, this yields

#(h 14 abp—te [})) =1 < ##(h1{ tz [})
Together with the second conjunct of (Sy (A 20Ap1))(h) this implies
3" e (A" tw, re [}) S (A1 to,re [}) A val™(h" 4] re [}) < val* (R[] £z [}) A

#(hN{abp_tz|})—mazLoss—2
(mazModiIJ)‘ied-l—l)*(mazLoss-i—l) < #(h’” r{| rc |}))

The lemma will now follow if #(h" [{ rc [})) < #p(val*(h[{ rc [})) can be established. To
this end, we will show that every (A" [{ rc [})-event in h adds an entry to @(val*(h[{ rc [})).
Assume therefore that last(h[{] tz, rc [}) = last(h" [{ rc [}). We show that this implies

p(val*(h1{ re 1)) = @(val* (front (h[{] rc }))) ™ (e~ (val(last(h" [{] re [}))))

Since val*(h" [{| rc [}) is a subtrace of tz-values, the first conjunct in (SspctAspc)(h)
implies that ranval*(h" [{ rc [}) C rane. If #(h[{| rc [}) = 1, this means that val(h|
{| re [}) will be accepted by the filter p. If #(h[{ rc [}) > 1, the first conjunct of
(S A 20Ap1))(h) implies that val(last(h” [{ rc [})) is the value of the most recent tz-
event transmitted before, because MU Ap20Ax 1) acts as an (unreliable) one-place buffer.
Since € adds strictly increasing sequence numbers, the third conjunct in (S (A 20Awm1)(h)
implies that snum(e (val(last(h”1{ rc [})))) is greater than any other sequence number of
(b rc [})-events. Now the definition of ¢ implies that e !(val(last(h"{| rc [}))) is appended
to the sequence filtered by ¢. This completes the proof.

O

Proof of Obligation 2 : If (SspctAsrc1)(h) A (SuU(Ap20Ap1))(h) then Si(h) follows.

To prove val*(h [{| abp_rc [}) < wval*(h[{ abp_tz [}), we will use induction over the length
of (h[{| re, abp_rc [}). Clearly, the assertion holds for (h[{| rc, abp_rc |}) = (/). Now assume
that it holds for all traces of length less or equal n > 0 and let (h[{ rc, abp_rc [}) = (u[{

re, abp_re [}) 7 (a) with #(u[{] rc, abp_rc |}) = n and some re- or abp_rc-event a.

Case (C1): Assume that (u[{| rc, abp_rc |}) = () or ch(last(u[{] re, abp_re [})) = abp_re.
Then Lemma 4 implies that (u[{ rc, abp_rc |}) can only be continued by an rc-event, i. e.,

we may assume (h[{| rc, abp_re |}) = (u[{ re, abp_rc [}) " (rc.x) for some z € a(re). As a
consequence

val*(h[{] abp—re [}) = val*(u 4] abp_rc [})
< wal*(ul{] abp_tz [}) [induction hypothesis]
< val*(h[{| abp_tz [}) [u < h]

Case (C2): Assume that last(u[{ rc, abp_rc |}) = rc.x.

Case (C21): Assume that
z ¢ rane V snum(e ' (z)) < snum(last(p(val*(front(u|{ rc [})))))
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Then according to Lemma 4 ¢ must be an rc-event and we have again h[{ abp_rc [} = u[{
abp_re |} as in Case (C1).

Case (C22): Assume that

z € rane A snum(e ' (z)) > snum(last(p(val*(front(u[{] rc [})))))

Then a may be an rc-event (rc.z is lost before an abp_rc-output occurs) or an abp_rc event.
In the former case we use the same argument as in (C1). In the latter case we get

val*(h1{ abp_re }) = val*((u[{ abp_rc [}) " (data(e™'(z)))) [Lemma 4]

< wal*((u'l{ abp_tz [}) " (data(e ' (z)))) [induction hypothesis]
< wal*(h[{| abp_tz [})

[Lemma 3, def. of € and snum(e~"(z)) > snum(last(p(val*(front(u[{] rc [})))))]

This completes the inductive proof of val*(h[{ abp_rc |}) < val*(h[{ abp_tz |}).
For the estimate of #(h[{] abp_rc [}) we calculate

#(h r{| abp_rc |}) Z #(p(val* (W{|rc]})))—mazLoss—1 [(SSECZASEC,I)(}II)]

mazLoss+1

# (h[{labp—tz|}) — maxLoss—2
> (mazModified+1)*(mazLoss+1)

mazLoss+1
_ #(h{abp—tz]})—(mazModified+1)*(mazLoss+1)> —mazLoss—2
o (mazModified+1)*(mazLoss+1)?

—mazLoss—1

[Lemma 5]

This completes the proof of Obligation 2; Obligation 3 is derived in an analogous way.
O

2.5.4 Recursive Application of the Development Procedure

For the architecture Agys(ABP,SEC) depicted in Figure 2.4 further decomposition steps
may be taken according to Figure 2.6.

For ABP the architecture Appp(ABP_TX, ABP_RC) = (ABP_TX || ABP_RC) is chosen.
ABP_TX and ABP_RC have alphabets a(ABP_TX) = { app_tz, abp_tz, abp_ack_rc |}
and a(ABP_RC) = {| app_rc, abp_rc, abp_ack_tz |} and are specified by

ABP_TX sat SABP_TX(h)

Sapp_rx(h) =4

data*(p(h[{| abp—tz })) <" val*(h1{] app—tz [})
A

val*(p(h1{] abp_ack_rc })) <" bit*(p(h[{] abp_tz [}))

and

ABP_RC sat Sipp_nc(h)

Sapp_rc(h) =g

val*(h[{] app—re [}) <" data*(p(h[{ abprc [}))
A

val*(p(h 1| abp_ack_tz [})) <" bit*(p(h[{ abp_rc [}))
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PROD CON
,,,,,,,,,,,,,,,,,,,,,, apptx____________MNappre
ABP_TX ABENRC | ABP
abp_tx abp_ack_rc abp_ack_tx abp_rc }
——————————————————————————————————————————————————————————————————————————————————— ; ' Target System
: |
: . SYS
: SEC_ SEC_ : I
|| SEC_TX ACK RC | |Ack Tx SEC_RC |'sec
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
| MACK |
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Figure 2.6: Correct combination of a new security layer with re-used network layer.

Since ABP_TX and ABP_RC have disjoint alphabets and are composed by means of inter-
leaving, it is trivial that their specifications imply the component requirements specification
Sapp(h) since the latter is just the conjunction of Sypp_rx(h) and Sapp_rc(h).

Analogously, SEC' is decomposed by
Aspc(SEC_TX,SEC_RC,SEC_ACK_TX,SEC_ACK_RC) =
(SEC_TX || SEC_RC|| SEC_ACK_TX || SEC_ACK_RC)
with the corresponding terms from Ssgc(h) as component specifications.

In the next decomposition for each of the components ABP_TX,...,SEC_ACK_RC it will
be appropriate to introduce ezplicit specifications, because we will reach the level of isolated
sequential processes, which are straightforward to implement in the target programming
language. The following processes may be used to implement the implicit specifications of
the security layer:

SEC_TX = STX (1)

STX (n) = abp_tz?z — tzr'le(z,n) = STX (n + 1)

SEC_RC = SRC(0)

SRC(n) =rc?z— (if z ¢ rane V snum(e ' (z)) < n
then SRC(n)
else (abp_rc!(bit(e (2)), data(e ' (2))) = SRC(n + 1)))

SEC_ACK_TX,SEC_ACK_RC are defined analogously. For the network layer we may
re-use the processes ABP_TX and ABP_RC defined in Chapter 1 (p. 8).
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To prove that these processes correctly implement their corresponding behavioural specifi-
cations two techniques may be used:

e Application of CSP laws connecting explicit process algebraic representations to their
corresponding implicit specifications, as given by Hoare [44].

e Assertional reasoning about CSP processes in normal form representation according
to the proof rules introduced by Apt and Olderog [5]. The link between normal form
processes and their corresponding behavioural specifications can be realised by means
of auxiliary variables representing traces and refusals, as described by the author in [74].

The second approach will be explained in Chapter 3, we will therefore skip the proofs here.

2.5.5 Verification of Deadlock Freedom

The verification in the trace model of CSP performed above may be informally summarised
as: “If values are delivered on output channels, they will be correct with respect to the system
requirements”. As a by-product, the verification process also produced estimates for the
number of messages to be delivered over output channels. For example, Proof Obligation 2
(p. 44) showed for the security layer that the number of messages delivered via output
channel abp_rc grows with the number of inputs on abp_tz. Analogous estimates may be
given for channels abp_ack_rc (Proof Obligation 3) and finally for app_rc. These estimates
simplify the proof of non-blocking properties: It only has to be shown that the complete
system will allow an unbounded number of events on certain input channels. For our case
study these channels are app_tz, abp_tr and abp_ack_tx. Formally, the obligation to allow
unbounded numbers of events on a channel may be expressed using a refinement relation
in the failures-divergence model of CSP. For the case study we have the following proof
obligations:

Non-Blocking Proof Obligation 1: For P, = app_tz?z — P; show that

Py Cpp ESYS\ (a(ESYS) — {| app—tz [})

Non-Blocking Proof Obligation 2: For P, = abp_tx?z — P, show that

Py Cpp ESYS\ ((ESYS) — {| abp_tz [})

Non-Blocking Proof Obligation 3: For P; = abp_ack_tz?x — P3 show that

Py Cpp ESYS\ (a(ESYS) — { abp_ack_tzx |})

In these obligations, ESYS stands for the completely developed system and its environment
with explicit representations of ABP_TX,...,SEC_ACK_RC:

ESYS = (PROD || CON) |
ABP_TX || ABP_RC) |
SEC_TX || (SEC_RC: spc.,) || SEC_ACK_TX || SEC_ACK_RC) ||

(MUAy 2Ay1)) | MACKUA pmack 22D mack 1))

e N N S
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Since these obligations only refer to the possible occurrences of events, but do not require
to consider actual data values, it seems promising to try a mechanised proof. To this end,
let us follow the technique of abstract interpretations for distributed systems (see Clarke et
al. [16]) and analyse the following processes that represent simplified but less deterministic
versions of the corresponding processes ABP_TX,...:

ATX, = app_tz?r — ATXy; [] abp_ack_rc?y — ATX;
ATX, = (M ia(abp_tz) 0bp_tz'z — ATXyy) [] (abp_ack_rc?z — (ATX, M ATX,,))
ARC, = abp_rc?z —
(M 2:a(app_re) aPP—1¢'z2 = (M wia(abp_ack_tz) abp—ack_tzlw — ARCY))
-

(N w;a(bp_ack_m) abp_ack_tz!w — ARCY)
STX, = abp_tz?z — (M yaue)ts!y = STX,)

SRCI = SRC’I(ml)
SRC\(n) = rc?zx— (if (n =0)
then (M .0 (abp_re)abp_rcly — SRCy (my))
else (SRCI(”' - 1) M (|—] y:a(abp_rc)abp—rdy - SRCl(ml))))

M, = M (mazLoss)
M (n) = tz?z — (if (n =0)
then (M y.q(yc)rcly — My (mazLoss))
else (M;(n — 1) M (M y.a@reyrely — My (mazLoss))))

MACK, = MACK,(mazLoss)
MACK,(n) = ack_tz?z —
(if (n =0)

then (M y.a(ack_re)ack_rcly = MACK, (maxLoss))
else (MACK (n — 1) M (M y:a(ack_re) ack_rcly — MACK, (mazLoss))))

In these definitions, m; is a constant derived from Lemma 5. It indicates that SRC; will not
refuse output for an unbounded number of input events.

Obviously, ATX; Cpp ABP_TX, because the communication structure of ATX; is the same
asin ABP_TX, but for ATX; the degree of nondeterminism has been increased by replacing
internal decisions of ABP_TX by the M-operator. Similarly, ARCy, ..., MACK; are refined
by ABP_RC,...,(MACKUAmack 21QAmack 1)) in the failures-divergence model. Therefore
Non-Blocking Proof Obligations 1 to 3 are implied by the corresponding refinement proofs
for system ESYS, = ESYS[ATX,/ABP_TX,...] against P;, P, and P;.

Next observe that the behaviour of ATX;,..., MACK; does not depend on the values re-
ceived on any input channel. Therefore a non-blocking property referring only to the
occurrence of any channel event holds for ESYS; if and only if it holds for ESYS, =
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ESYS|[ATX,/ATX,...] with processes

ATX, = app_tz, — ATXy [] abp_ack_rcy; — ATX,
ATX21 = abp_tx2 — ATX21 I:I abp_ack_r02 — (ATX2 1 ATXQl)
ARCy = abp_rcoy — (app_rco — abp_ack_res — ARCY

M

abp_ack_try — ARCy)
STX2 = abp_tx2 — ity — STX2

SR02 = SRCg(ml)
SRCy(n) = reg— (if (n =0)
then (abp_rcy — SRCy(my))
else (SRCy(n — 1) M abp_rcy — SRCy(my)))

M, = My(mazLoss)
My (n) =ty — (if (n = 0)
then (rc; — My(mazLoss))
else (My(n — 1) M (rey — My(mazLoss))))

MACK, = MACK,(0)
MACK,(n) = ack_tzy — (if (n = 0)
then (ack_rcy — MACK,(mazLoss))
else (MACKy(n — 1) M ack_rcy — MACK,(mazLoss)))

In these definitions app_tzs, abp_ack_tx,, ... are no longer channels but single events. The
validity of the proof obligations above is now implied by the validity of

Non-Blocking Proof Obligation 1’: For P| = app_tz — P| show that

Pl Cpp ESYS:\ (a(ESYSs) — {app_tz})

Non-Blocking Proof Obligation 2’: For P, = abp_tz — P} show that

Py Cpp ESYSy \ (a(ESYS,) — {abp_tz})

Non-Blocking Proof Obligation 3’: For P} = abp_ack_tx — P} show that

P} Cpp ESYS:\ (a(ESYS,) — {abp_ack_tz})

System ESYS, fulfills the requirements for the FDR model checker [27]: every sequential
process has only a finite number of states and works with finite alphabets only. Indeed,
model checking with FDR shows that the Non-Blocking Proof Obligations 1’ to 3’ hold for
system ESYS,, as was to be shown.
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2.6 Discussion and Future Work

In this chapter we have presented a re-usable and in parts standardised framework for the
development of dependable systems. Although the framework is based on the V-Model, it
may be adapted to other standards (for example, [22]) with only minor modifications, like
using other names for the documents and slightly different orderings of the items to be
described. This global applicability of the framework is an important aspect, because there
seems to be little chance for an internationally accepted development standard to emerge
from the various standards presently discussed. On the other hand, we do not consider
the formal method applied in this chapter to be universally applicable. It just served as
an example of a technique well suited for the specification and verification of dependable
systems possessing specific characteristics listed in 2.4.1.

The method used has its limitations which might be critical in other applications. For
example, you might want to

e specify complex data structures

e use explicit and implicit specification styles in combination (see Chapter 3)

e simulate the specification (see Chapter 4)

e perform a risk analysis based on formal specifications

e describe hybrid systems

e use generic specifications allowing re-use for different projects (see Chapter 5)
e describe tightly coupled shared memory systems

This list is by no means considered as complete; it just gives an impression how many features
might be desirable in the context of dependable systems development, but can never be
united in a single method (and certainly never be implemented in a single tool). For these
reasons, I do not believe that one universal method will emerge out of the (potentially non-
terminating) competition of (formal) methods. Instead, different techniques will be applied
to rather narrowly defined problem types, where they promise optimal efficiency. Indeed,
[ am convinced that a change of methods during the different development stages of one
project will become quite natural in the future.

The advantage of combining different methods and associated tools leads to two important
obligations:

e On the level of methodology it has to be ensured that objects described and results
derived in the context of one method are consistently transformed into the framework
of another method to be used in a further development step. Examples illustrating
this obligation will be discussed in Chapter 3.

e On the tool level it has to be ensured that the transfer of development objects (speci-
fications, code, test cases, proofs, ...) between different tools is not only “somehow”
implemented, but consistent with the semantic properties of the associated methods.
A specific problem is presented by the combination of semi-formal CASE tools with
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formal specification and verification techniques, because reasoning in the formal frame-
work requires precise semantics, and this is not a priori available for CASE tools in
general.

Making use of the results developed in the ESPRIT project ProCoS (Provably Correct Sys-
tems) [10], these obligations will be analysed in detail in the UniForM project [88], proposed
by the author in collaboration with ELPRO LET GmbH and the universities of Bremen
and Oldenburg, and supported by the German Ministry Bundesministerium fir Bildung und
Forschung BMBF. Further applications of the framework as described in this chapter are
planned in the context of the UniForM project (case study) and in the project [26] (large-scale
development of a “real-world” system).

The investigation of formal semantics for CASE methods [20, 37, 113, 114] has been exten-
sively investigated by the author in collaboration with de Roever, Hamer, Horcher, Huizing
and Petersohn [76, 79, 80, 81, 82, 84, 85]. Further notable efforts in this direction have been
presented by other authors in [12, 8, 35, 36, 43, 45, 54]. However, the combination of CASE
methods with formal methods is outside the scope of the topic of dependability. Therefore
we will not discuss this issue further in the context of the Habilitationsschrift.



3. Reliability and Availability Aspects:
Fault-Tolerance

3.1 Overview

In this chapter we present the design and the verification of a fault-tolerant client-server
configuration. Dependability of the server is achieved by means of a dual computer system
operating in a modified hot standby mode. The specification and verification covers normal
behaviour, recovery after failure and re-integration of a repaired component into the running
system. The results described are an extension of the work published in [73, 74, 75, 76].

In Section 3.2 a development project at Philips is sketched which originally motivated the
investigations presented here. The rest of this chapter is divided into two parts: Section 3.3
describes the development and the verification of the fault-tolerant system and Section 3.4
presents a formal justification of a proof method applied in the case study.

Fault-tolerant systems have been investigated by many authors (J. Rushby and F. Christian
present overviews in [102] and [15]) using different specification styles and verification ap-
proaches. To name some characteristic examples, Christian [13, 14] was one of the first to
introduce rigorous approaches for reasoning about fault-tolerance. Schlichting and Schnei-
der [105] first analysed the concept of fail-stop processors which is an important building
block for the design of fault-tolerant systems and also used as a prerequisite to the fault-
tolerant dual computer system introduced in this chapter. Jalote [49] uses informal presenta-
tion style, Dijkstra [23] introduced the technique of self-stabilising algorithms, He Jifeng and
Tony Hoare [51] presented a fault-tolerant master-standby solution verified purely by means
of algebraic reasoning in the CSP process algebra, Nordahl [70] and Schepers [104] applied
behavioural specifications and compositional reasoning and Zhiming, S¢rensen, Ravn and
Chaochen [118] used duration calculus in combination with probabilistic methods.

The objective of our contribution is twofold:

e Show the suitability of the framework of Chapter 2 by structuring the design and
verification steps according to the standardised development procedure.

e While the authors cited above mainly used a single style of reasoning, we wish to
demonstrate that the complex verification obligations that have to be mastered are
best solved by the application of several specification and verification formalisms.

To meet these objectives we proceed as follows: In Section 3.3.1 the requirements for the
faul-tolerant server system are described in an informal way. Section 3.3.2 presents the
details of the implementation. This will be helpful to understand the systematic top-down
development with accompanying correctness proofs in the sections to follow. In Section 3.3.3
the formal system requirements are specified. Section 3.3.4 describes the architecture on

26
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system level and introduces the normal and acceptable behaviour specifications of the sub-
systems created during this decomposition step. The verification on system level is performed
in Section 3.3.5. As an alternative to the techniques applied in Chapter 2, safety properties
and deadlock freedom are now shown in one step, using the compositional proof theory of
CSP in the failures-divergence model. In Section 3.3.6 the sub-system design is described. For
the dual computer, which is a sub-system of the complete server, another new technique for
top-down design and associated verification is introduced: We define two explicit sequential
CSP processes, modelling the normal behaviour and the acceptable behaviour of the dual
computer, as far as visible at interface level. For sequential processes, behavioural properties
can be verified by transforming the process into a sequential nondeterministic program and
proving certain invariant properties about the latter. This concept is based on a theory
of Apt and Olderog [5] and has already been informally applied in [74]. In Section 3.4
the complete formal justification will be presented, linking the denotational semantics of
the failures model of CSP with the operational semantics of sequential nondeterministic
programs. The technique is applied to prove that the two sequential processes satisfy the
normal and acceptable behaviour specifications introduced for the dual computer on system
level. In a second step the explicit internal process components of the dual computer are
verified by means of model checking against the two sequential processes. This proves that
the detailed design of the dual computer really meets its behavioural specification, making it
superfluous to associate behavioural specifications with the internal processes and to verify
them with the compositional techniques used on system level.

3.2 Related Industrial Projects

In 1984 Philips started the development of a distributed information and dispatching system
for German police forces. Due to the dependability requirements of the customer, the crit-
ical user information had to be managed on a fault-tolerant database server, guaranteeing
nearly non-stop availability for this data and its associated access and manipulation func-
tions. Though at that time many of the important concepts about distributed systems were
already available (see, for example, [55]), 1984 still has to be regarded as the “Stone Age”
of distributed systems: The computer manufacturer offered ETHERNET hardware to build
a local area network, but provided communication software only for the OSI layers 1 and 2.
Therefore my team at Philips was responsible for the development of a distributed operating
system on top of these layers, implementing the “essentials” of the OSI layers 3 to 6, which
were necessary for the application. In addition, our task was to design and implement the
fault-tolerance mechanisms for the database server, to be realised as a fault-tolerant dual
computer system.

The customer’s overall dependability requirements and the complexity of the application
software led to the following basic requirements for the dual computer system:

e [t should be unnecessary to incorporate specific software constructs in the application
software in order to react properly on the failure of one computer. The whole set
of control and synchronisation mechanisms needed to implement the dual computer
system should be encapsulated in a subordinate service layer.

e A crash of one computer should be tolerated without any data losses or specific recovery
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measures to be triggered on other computers in the network.

e The re-integration of a repaired computer should be possible without having to stop
the system.

A transient failure corrupting isolated data bytes in one computer was considered as non-
critical, because the data consisted mostly of natural-language texts. Therefore it was not
necessary to use a higher degree of redundancy and compare inputs and outputs by means
of voters.

These considerations led to the following design concept (for more details see [73]): Both
computers were implemented as independent nodes in the network, equipped with their own
local database. In normal operation, every job transmitted on the network to the database
server was received by both computers, making use of the multi addressing capabilities of
the ETHERNET. Transactions changing the database were executed on both computers. To
this end, the computers synchronised by means of an algorithm which guaranteed equivalent
serialisations of transactions on both local data bases. Read-only transactions were only
executed on one computer while the other stored the associated job until the result had been
successfully returned to the client. If several read-only jobs had to be processed in parallel,
they were distributed between both computers. This transaction-oriented synchronisation
concept reduced the amount of control messages to be exchanged, and the distribution of
read-only transactions made up for the overhead caused by the synchronisation mechanism.

If one of the computers failed, the other one could continue without delay, since it always
possessed the actual state of data in its local database. Therefore recovery measures only
consisted in the re-start of read-only transactions which had been started, but not completed
on the crashed computer. Both computers used dual-ported mirrored disks to store their
local database information. For re-integration, the active computer shared one of its disks
with the repaired component. Using an atomic read-write operation provided by the disk
driver, all disks could be brought into an consistent state without stopping the application.

The mechanisms for synchronisation and re-integration of computers were quite complex,
and first experiences with a prototype implementation implied that conventional testing and
inspection methods would be insufficient to ensure the correct operation of the dual computer
system. Therefore formal code verification was performed, using Hoare Logic for Pascal
programs. The work described below was a result of the efforts to verify the correctness of
the mechanisms on a more abstract level, ensuring that the algorithms applied could really
guarantee the fault-tolerance requirements. The practical application of formal specification
and verification methods indicated that it would be helpful if instead of a single formal
methods several methods could be applied on different sub-tasks and on different stages of the
development process. This motivated the combined use of CSP and verification techniques
for nondeterministic sequential programs described in [74] and formalised in Section 3.4.
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3.3 Case Study: Fault-Tolerant Server System With
Repair

3.3.1 Informal Problem Description

Normal Behaviour The objective of the case study is to develop a fault-tolerant server
system SYS for the client-server configuration depicted in Figure 3.1. The task of SYS is
to read inputs z from the CLIENT application on channel app_tr and return the result
of a computation y := f(z) on the receive channel app_rc. It is required that the normal
behaviour should satisfy

1. SYS returns results in the order of the corresponding inputs.

2. To guarantee predictable response time, every acceptable implementation of SYS de-
livers a result after a globally bounded number of internal events following the corre-
sponding input.

3. Analogously, SYS always accepts another input after a globally bounded number of
internal events following the preceding input.

In these requirements, “globally bounded” means that the response time determined by the
number of internal events between input and output is bounded by a constant which does
not depend on the specific executions performed®.

CLIENT

app_tx app_rc

Target System

SYS

fault-tolerant
Server

Figure 3.1: Client-server system.

Threat Analysis and Design Considerations [t is assumed that external threats may
be disregarded and that SYS is only threatened by internal hardware failure, provided that
the software has been implemented correctly. Furthermore we assume the availability of fail-
stop computers that either deliver a computation result correctly or stop completely?. We

!Note that this implies non-divergence of SY.S and is a stronger requirement than the predicate NODIV
introduced in [44, p. 125], stating that the internal events are bounded by a function of the number of visible
events already produced.

2Fail-stop components can be designed by means of duplicated synchronised CPUs, each using its own
local memory. The write operations of the CPUs are compared, and the system is stopped as soon as these
operations differ. Using this technique has the disadvantage that duplicated hardware is needed to construct
one fail-stop component, so at least 4-modular redundancy is needed to construct a fault-tolerant system.
Moreover, this only provides fail-stop functionality on hardware level and requires that the same software
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assume the fault hypothesis that the probability for the second computer to fail while the first
is still being repaired after a preceding crash may be neglected. Therefore a hardware plat-
form consisting of two fail-stop components will suffice to meet the reliability requirements
of the user.

Acceptable Behaviour For the acceptable behaviour SYS1Agys (at least one computer
operates normally) it is required that SYS1Agys shows the same behaviour as SYS at the
client interface. In addition to the requirements listed above this means that

1. a failure of one computer does not become visible at the interface to CLIENT,

2. a repaired computer may be re-integrated without visible effects at the interface to
CLIENT.

Specifically, it is required for acceptable behaviour that a globally bounded response time
can also be guaranteed in the presence of failures and re-integration activities.

3.3.2 Presentation of the Implementation

The presentation of a systematic top-down design with accompanying correctness proofs is
only useful after the design objectives have been completely understood. Therefore we will
now introduce an explicit solution of the informal design task stated above. The system-
atic top-down design and verification according to the framework for the development of
dependable systems introduced in Chapter 2 will be described in the subsequent sections.

The detailed design of the server system is shown in Figure 3.2. Before introducing the
components of SYS, let us introduce the alphabets of the processes involved:

a(CLIENT) = {| app_tz, app_rc |}

a(ABFTX) = { app_tz,a [}
a(ABFRC) = {| app_re, by, by |}

a(NETO0) = { ay, aga, by, o, c1, offy, ong [}
O[(NET].) = {| a17a127b127607cl70ﬁ170n1 |}

a(APPO) = {| ag, boa, do, di, offy, omg [}
a(APP1) = { ag, bia, dy, dy, off, omy |}

a(CP0) = a(APP0) U a(NETO)

a(CP1) = a(APP1)Ua(NET1)

a(DCP) = a(CP0) U a(CP1)

a(SYS) = a(ABFTX)U «(ABFRC) U «a(DCP)

versions run on both CPUs of the fail-stop component. The main advantage of this technique is that it does
not require to use complex voting protocols, because it may be safely assumed that the two CPUs never
produce the identical error in the same cycle. Ideally, fail-stop hardware is combined with formally verified
software.
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CLIENT
app_tx app_rc
ABFTX ABFRC
al b0 N
bl
DCP
CcPO CPO Target System
el SYS
NETO NET1
c0
a02 '|'02 al2 '\'12
dl
APPO | APP1
I do
off0 on0 off1 onl
T T ST - :
: DCP CONTROL |
|
|
___________________ 1

Figure 3.2: Full architecture of the fault-tolerant server system.

In these definitions, the channel alphabets are

Channel Channel Alphabet

app_tx, app_rc | DATA
at, by, by BIT x DATA
o2, boz, @12, b1z | DATA
Co, C1, do, dy SIGNAL

DATA denotes the set of application data to be exchanged between CLIENT and SYS.
Define BIT = {0,1} to identify the application data on channels ay, by, b;. SIGNAL = {¢}
consists of a single event only, to be used for the generation of synchronisation messages.

On sub-system level?, the server system SYS is decomposed into the dual computer system
DCP and two filter components ABFTX and ABFRC'.

SYS = (ABFTX || DCP || ABFRC)

In the detailed design of DCP introduced below it will become apparent that in the case
of the failure of one computer a duplicated message might be produced. To cope with such
situations the process ABFTX acts as an M-place buffer and associates an alternating bit

3See Section 2.3.2 for the terminology related to system decomposition.
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with each new input from the CLIENT, before passing the pair (z, bit) of channel a; to the
dual computer system. The representation of ABFTX as an explicit CSP process is

ABFTX = TX((),0)

TX (s,bit) = (#s < M)&app_te?z — TX (s ((z, bit)), 1 — bit)

1
(#s > 0)&aithead(s) — TX (tail(s), bit)

DCP delivers each computation f(z) together with the corresponding input bit on channels
by or b;. Evaluating the bits, a duplicated message is recognised by the filter process ABFRC
and discarded. The data part of valid messages is passed on to the client via channel app_rc:

ABFRC = RC(0)

RC(bit) = by?(y,b)— D(bit,y, b)

1

D(bit, y, b) = if bit = b
then app_rcly — RC (1 — bit)
else RC(bit)

It is assumed that ABFTX and ABFRC can be implemented on the client computer. There-
fore these filter processes will fail if and only if CLIENT fails. As a consequence, we may
simply assume that they always show normal behaviour.

On segment level, the dual-computer system DCP is structured as

DCP = (CP, || CPy || DCP_CONTROL)

The segments CP, and CP; denote the two fail-stop computers. Before explaining their
structure, we will discuss how to model the failure events in an appropriate way. An advan-
tage of using fail-stop components is that we do not have to distinguish between a regular
shutdown of a component and an unanticipated failure: In both cases the result will be that
the component ceases to produce any visible events at its output interfaces. As a conse-
quence we can model the crash situation just as a switch-off command given by an operator.
The activities of an operator are external to CPy and CP;, therefore they are modelled as
an auxiliary process DCP_CONTROL to be described in detail below, sending on;- and
offi-commands to the computers, where off; now stands both for the regular switch-off and
for the unexpected failure.

The basic design concept for the cooperation between CP, and CP; is a modified hot standby
relationship with master and standby computer. ‘Hot standby’ denotes that both computers
are active in normal operation, but only the master returns data to the client. In standard
hot standby design, both master and standby process everything in parallel. This has the
disadvantage that the redundancy does not increase the performance of the computer system
(static redundancy) [7]. In our modified hot-standby design, the slave will cooperate with
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the master only to an extent which is absolutely necessary for not losing any jobs in case
of a failure. Therefore some “spare CPU time” can be used to process non-critical jobs
on the standby computer (dynamic redundancy). These are simply interrupted, as soon as
the master fails. The modified hot standby concept needs more time for recovery than the
standard concept, because after a master failure certain jobs have to be re-started from the
beginning, but it will turn out during the top-down design and the associated verification
that the time required for recovery is globally bounded. Therefore our modified hot standby
design is also suitable for hard real-time applications, if the client can accept this upper
bound as the maximal response time.

The implementation of the modified hot standby concept will now be explained in detail. A
message on a; is broadcasted to both CPy and CPy, so that each job submitted by CLIENT
will be received by both fail-stop computers. The results are either delivered by CP, on
channel by or by CP; on channel ;. The two computers exchange control signals on the
channels Cp, C1, d(), dl.

Each computer CP,, CP; is decomposed into two software configuration items,
CP; = NET; || APP;

where NET; denotes an internal network layer and APP; an application layer, including the
mechanisms needed for control of the processes P; performing the computations requested
by the client.

Each network layer NET; is defined as

[
ci — NET;

[
on; — (NET“ I:I C; — NETM)

NET;; = NET;;"(offi = NET;)

NET;; = a;?(z,b) = (¢; = NET;
I

aiglx — blg?y — bl'(y, b) — c(l—i) — NETZQ)

The process state NET; models the situation where CP; has been switched off. In this mode
inputs cannot be refused (otherwise the crash of CP; might also block CP(_;!), but only
an on;-event leads to further activities, described by NET;s. Now each input a;.(z,b) is
processed as follows: If CP; acts as master, the data component z is passed via channel a;y
to the application layer. The result y received from APP; on channel b;, is again combined
with the bit value b of the associated job and the pair (y, b) is sent to the environment on b;.
Afterwards CP; sends a control signal on ¢ to CP_;) indicating that the job has been
successfully processed. The slave computer CP(;_;y only keeps the input message a,.(z, b)
until reception of the c(;_;-event. In normal operation, the communication on channel ag_;)
is blocked. The operation of NET;5 can be interrupted by an off;-event at any time, and the
passive state NET; is resumed. In this case the application layer APP,_;) of the former slave
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will accept a(;_;)2-inputs and start processing. As a consequence, a job that has been received
by both computers but not yet acknowledged on ¢;_;) will be automatically re-started by
CP_;) and afterwards transmitted on b _;. This is the situation when duplicated messages
might be produced: If the master CP; fails after a job (f(z), b) has been delivered on b; but
before the c(_;-signal has been produced, CP(;_;) will re-process this job and produce the
superfluous message (f(z), b) on channel b ;). However, since this message carries the same
bit as the previous one delivered by CP;, it will be discarded by the filter process ABFRC'.

The application layer APP; is structured as

0

Pi :PMA(Off;,—)APPl)

Pil = algr’x—)blg‘f(x)—)P,l

The data processing is performed in P;;, the other events serve to control the master-standby
relationship. Process state APP; corresponds to NET;, where the computer CP; is passive.
If CP; receives an event d; before the on;-event has been issued, it acts as slave, observing the
master by means of a watchdog mechanism, modelled by watchdog event event di_;: As long
as the master is active, d(;_;) is blocked, so CP; cannot activate its data processing component
P;. A failure of the master (modelled in the application layer by off;_; interrupting Pq_;);)
leads to acceptance of d(;_;), and P;; will start processing inputs on channel a;7z.

As indicated above, the admissible sequences of on;, off;, d;-events are specified by the auxil-
iary component DCP_CONTROL. With the techniques introduced in Chapter 2, we could
introduce behavioural specifications Spep_conrror(s) and Apcp_contror(S, s') describing
the normal behaviour and the acceptable deviations from normal behaviour, respectively.
We will, however, introduce an alternative technique which is suitable for verification via
model checking: The normal behaviour informally described in Section 3.3.1 corresponds to
a behaviour of DCP_CONTROL, where only the events ony, on; are produced and offy, off
are forever refused. Acceptable behaviour is modelled by a behaviour of DCP_CONTROL
allowing off;-events to occur in certain situations covered by the fault hypotheses.

Setting
Oé(DOP_OONTROL) = {| ay, bg, bl, oNygp, 0Ny, Oﬁg, Oﬁl, dg, dl |}

DCP_CONTROL = NORMALMACCEPTABLE

the two types of behaviour can be modelled explicitly as CSP processes. Since DCP runs
in parallel with DCP_CONTROL and synchronises over the events ay, by, by, ong, ony,
offo, offi, dy, di, only those sequences of failure events, watchdog signals, switch-on events
and application messages can occur that are accepted by DCP_CONTROL. Observe that
it is not our objective to implement DCP_CONTROL. Instead, the process models our
hypotheses about the possible sequences of events that may occur. Our goal is to verify
that SYS meets its normal behaviour and acceptable behaviour requirements, as long as the
hypotheses expressed by NORMAL and ACCEPTABLE are valid.
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We define

NORMAL = ong— di — ong — RUNya, 40,0,
M
ony — dy —> ong — RUN{|a1,b0,b1|}

This describes the behaviour where either CP, or CP; is switched on first to act as the master,
then the standby computer is activated, and afterwards the system is never switched off, i. e.,
it will never fail. Observe that the switch-on procedure requires that the second computer
CP; that is to act as standby will only be activated after the watchdog signal d; has been
produced. Otherwise a deadlock could occur in processes APP;, APP,, if both computers
tried to force each other to act as standby.

The acceptable deviations from normal behaviour are modelled by process ACCEPTABLE,
which is in turn decomposed into three parallel components, each expressing one aspect of
the fault hypotheses.

ACCEPTABLE = (FH1 || (ono — 011 —)FHQ I:I 0Ny — 0Ny —>FH2) || FHg)

a(FHl) = {Onﬂa ony, 0ff07 Oﬁla d07 dl}
O[(FHQ) - {| 0Ny, 01, OffO? Oﬁla ai, b07 bl |}
a(FHy) = { offo, off1, a1 [}

The fault hypothesis modelled by process FH; describes the appropriate causal relationships
between failure events and the re-integration of repaired components. Furthermore it controls
the master-standby relationship between both computers, which depends on the sequence of
failure events and re-integration.

FH, =ong— dy— ony — FHMS M ony — dy — ong — FHSM
FHMS = offy — dy — ony — FHSM 1 off, — ony — FHMS

FHSM = offy — ong — FHSM M offy — dy — ony — FHMS

FH, corresponds to the system initialisation performed by NORMAL. If CPy is switched on
first, the following acceptable behaviour is modelled by FHMS: CP, acts as master, CP; as
standby. If CP, fails (is switched off) in state FHMS while acting as master, the switch-on
ony must not occur before CP; has detected the failure and issued the watchdog signal dy
forcing CPy to act as standby after re-integration. Further control is then performed by
FHSM, describing the situation when CP; acts as master. Furthermore, FHMS expresses
that a second failure must not occur while one computer is still being repaired. Finally,
FHMS' specifies that after a failure of the standby computer CP; re-integration can take
place immediately, because the watchdog signal d; has already been issued before, and the
master-standby relationship is not changed after a standby failure. FHSM describes the
analogous situations for C'P; acting as master.

Process FH, is an extension of FHy, specifying the relationship between application messages
and failure events. If both computers are active, a failure may happen at any time without



9. nheliabuity and Avalablity ASpects: rault-lolerance

any jobs being lost. The situation is different, as soon as one computer has already failed. If
the master has started a job before re-integration takes place and the job is still active after
switch-on of the repaired component, the full reliability is only restored when this job has
been completed and delivered by the master. Formally speaking, our fault hypotheses for
acceptable behaviour require that sequences

. = offi = ar.(z, b) = ony — off i

will never occur. On the other hand, another failure of the re-integrated component can be
tolerated at any time, as long as the master continues its operation. These requirements
lead to the following lengthy, but simple structure for F'Hs:

FHy =z :{ ay [} — FHy [] offo — FHy [] offy = FHa [ 7 : {| bo, by [} — FH,

FHy =z :{ a\ |} = FHy [| offo = FHau [] offi = FHos [z : {| bo, b1 [} = FH,

FHyy =z :{ ay [} = FHay [J ong — FHy [ = {| bo, b1 [} = FHy

FHys; =2 :{ ay [} = FHys [J ony — FHy [ = {| bo, by [} = FHas

FHy =1 :{ ay |} = FHy [J ong— FHas [J 7 : {| o, by [} = FHo

FHy; =z :{ ay [} — FHys [| ony — FHyr [J 2 :{ bo, by [} = FHas

FHy =1 :{ a1 |} = FHy [] offo = FHau [z : { bo, b1 |} = FH,

FHy =1 :{ a |} = FHy [ offi = FHas [z : { bo, b1 |} = FH,
In process states FHs,, ..., FHy; only one computer is active, so a second failure must not
occur. States FHyy, FHy; model the situation when a job is processed while only one computer
is active. If switch-on of the repaired component takes place during that time, a state

transition into F'Hog or FHy7 takes place, so that only a new failure of the repaired component
is accepted, until the pending job has been delivered on by or b;.

Finally, FH; expresses that the frequency of failures and corresponding re-integration is low
enough to admit at least one application input between two crashes.

FH3 =7 {oﬁo, Offl}—>FH31|:|ZI) : {| a |}—>FH3

FH3 = x . {| a1 |}—>FH3

3.3.3 System Requirements

We will now present the server system SYS by means of a systematic top-down decomposi-
tion, following the concept introduced in Chapter 2.
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Operational Environment

The operational environment is given by process CLIENT operating in parallel with the
server system SYS and not restricted by any boundary conditions.

E(SYS) = (CLIENT || SYS)

CLIENT sat true

Application Requirements

The server system should show the normal behaviour Sgyg(s, R), which formalises the re-
quirements described in Section 3.3.2.

a(SYS\ Lsys) = {| app—tz, app_rc [}

E(SYS)\ Lgys sat Ssys(s, R)

Ssys(s, R) =4 SAFETRACE(s) A NOBLOCK (s, R)
SAFETRACE(s) =4 val*(s [{] app_rc [}) <V f*(val*(s[{ app—tz }))

NOBLOCK (s, R) =y
(#(s1{l apprc [}) = #(s [{] app—tz [}) N RO{] app_tz [} =0
V #(s1{ app_rc [}) < #(s[{l app—tz [}) A {| app_rc |} € R)

Note that in contrast to Chapter 2, we use behavioural specifications about traces and
refusals, because also the proofs about deadlock freedom on sub-system level will be carried
out using the laws of the failures-divergence model.

The first conjunct SAFETRACE(s) in specification Sgys(s, R) contains the safety properties
about traces of SYS\ Lsys. It states that the outputs on channel app_rc are the results of the
computation f(z) applied to the inputs received on channel app_tz. The level of buffering,
as far as visible on this interface is globally bounded by some N > 0. The second conjunct
NOBLOCK (s, R) summarises the requirements with respect to deadlock freedom: If SYS
has processed every input (#(s{{ app—_rc [}) = #(s{| app—tz [}), new inputs on app_tzr cannot
be refused. Conversely, as long as some outputs have not yet been delivered, communication
on app_rc cannot be blocked by SYS.

External Threat Analysis

As indicated in Section 3.3.2, external threats are not considered in this case study, the only
fault hypotheses being concerned with the dual computer system. Since DCP is a sub-system
of the complete server system SYS, these are regarded as internal threats.
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3.3.4 System Architecture

System Structure

On sub-system level, the detailed design depicted in Figure 3.2 looks as shown in Figure 3.3.
The meaning of the sub-systems ABFTX, DCP and ABFRC has already been described in
Section 3.3.2.

CLIENT
app_tx app_rc Cllent
: Computer System
Target System :
SYS
ABFTX ABFRC
O 7 S A\ Y S
bcp Server
: Computer System

Figure 3.3: Server system architecture.

a(SYS\ Lsys) = {| app—tz, app_rc [}
Lsys ={ a1, 00,01 } U Lpcp
OZ(DOP) = {| al,bo,bl |}ULDCP
a(ABFTX) = { app_tz,a; |}
a(ABFRC) = {| app_rc, by, by |}

SYS = Agys(ABFTX, DCP, ABFRC)
= (ABFTX || DCP || ABFRC)

Component Specifications

The implicit normal behaviour specifications of the sub-systems look as follows:

ABFTX sat ST)((S, R)

ST)((S, R) =
data* (s {| a [}) <M val*(s [{| app_tz [})
N
psH{la}) =sl{al
A\

#(sM{ o [}) = #(s{| app—tz }) A ROA| app_tz [} =0
V#sH a ) <#(sH{ app—te }) A o [} € R)
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Here we have re-used the functions p, data(z), bit(z) introduced in Chapter 2: p deletes
events carrying duplicated bits from traces on channels with alphabet DATA x BIT, data
retrieves the data component z from events c.(z, b) on such channels and bit retrieves the
bit component b.

According to Stx (s, R), process ABFTX copies the inputs received on app_tz to the data
component of channel a;, thereby associating bit values such that the filter p would not
discard any a;-event, i. e., the bits associated by ABFTX strictly alternate.

The receive component of the protocol is defined as

ABFRC sat Spc(s, R)

SRC(Sa R) =d
val*(s 4 app_rc [}) <" data*(p(s{| bo, b1 [}))
A\

(#(s [{ app—rc [}) = #p(s [{| bo, b1 [}) A RO b, by [} =0
V #(s[{l app—rc [}) < #p(s ] bo, b1 [}) A app_rc |}  R)

As implied by the definition of p, ABFR(C discards duplicated consecutive messages, identi-
fied by their identical bits.

The normal behaviour of the dual computer system DCP on interface level is

DCP\LDCP sat SDCP(S,R)

Spep(s, R) =4
s[{l o[} =()

A
val*(s[{ bo [}) <" ((f o data) x bit)*(s[{ a1 [})
A
#(sHl bo ) =#sH{la AR a =0
VA b ) <#(sHla)A{ b} R)

This reflects the situation where CP, acts as master. Since the master-standby relationship
is never changed in normal behaviour, DCP will always deliver results on channel by. In
these results, f has been applied to the data component of a; and the bit component of a;
is again attached to the return message on by.

Internal Threat Analysis

Our system design allocates ABFTX and ABFRC on the client computer. Therefore we
are not interested in the impact of their possible failure, since in such a case the client will
not have a chance to operate anyway. As a consequence it can be assumed that for these
protocol processes normal behaviour is guaranteed.

On sub-system level, the deviation of DCP \ Lpcp from normal behaviour can be specified
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as follows:

Apcp(s, s, R, R') =4
sl a b =sl{f af
VAN
val*(p(s'T{] bo, b1 [})) = val*(s [ { bo [})

({last(s"), last(front(s"))} C { bo, by |} =
last(front(front(s"))) € { o } AR N{ a1 [} = 0)

(last(s’) € {| bg, by |} = {| ai, bo, by |} Z RI)

(#p(s" Tl bo, by [}) < #(s T {l bo [}) = { bo, b1 [} £ R)

The inputs accepted on a; are the same as when showing normal behaviour. Outputs now
have to be expected from both channels by and b;. However, it can at least be guaranteed
that the sequence of by, b;-events filtered by p carries the same values as channel by in the
normal behaviour situation. The conjuncts involving refusals state that not more than two
consecutive by, bi-events may happen, and after these events another a;-input cannot be
refused. After one b;-event it is uncertain whether an a;-input will be accepted, but at least
the system will not block completely. If the filtered output sequence does not yet contain
the full sequence of processed inputs, DCP \ Lpcp will always be ready to deliver another
output.

Applying the threat introduction operator ? introduced in Chapter 2 and the consequence
rule, we derive a specification of DCP \ Lpcp in presence of threats as

((DCP\LDcp)ZADCp) sat (SDCPZADCP)(S, R)

(SperAper)(s, R) =4
psifla p)=sM{al=
(val*(p(s 14 bo, b1 [})) <' ((f o data) x bit)*(s1{ a1 [})
A\
({last(s), last(front(s))} C{ bo, by [} =
last (front(front(s))) € {{ as } ARN{ a1 [} = 0)

A
(l(lSt(S) - {| bg, b1 |} = {| ay, bo, b1 |} g R)

A\

(#p(sT{] bo, b1 [}) < #(s [{ a1 [}) = { bo, b1 [} € R))

3.3.5 Verification on System Level

We will now perform the verification steps required according to Chapter 2, in order to
prove that the normal and acceptable behaviour specifications of the sub-systems imply the
behavioural requirements for the full system SYS. Since acceptable behaviour is identical
to normal behaviour on system level, it has to be shown that both normal and acceptable
behaviour of the sub-systems implies specification Sgys(s,r)-
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In contrast to the techniques applied in Chapter 2 we will now verify the safety properties
as well as deadlock freedom in one step, using the proof techniques provided by the failures-
divergence model of CSP.

Normal Behaviour Verification

Theorem 1 (System Verification Obligation — Normal Behaviour) With the above
definitions of system architecture and normal behaviour specifications

ABFTX sat ST)((S,R)
ABFRC sat Spc(s, R)
DCP\LDCP sat SDCP(S,R)

(ABFTX || DCP || ABFRC) \ a(DCP) sat Ssys(s, R)

holds.
O

In this theorem observe that due to the system structure introduced for SYS in 3.3.4 the
expression (ABFTX || DCP || ABFRC) \ a(DCP) is equal to SYS \ Lgys. We skip the proof,
because it is an analogous version of the one presented for Theorem 2 below.

Exceptional Behaviour Verification

Theorem 2 (System Verification Obligation — Acceptable Behaviour) With the
above definitions of system architecture and exceptional behaviour specification of component
DCP\ Lpcr,

ABFTX sat Srx(s,R)
ABFRC sat SRc(S,R)

((DCP\LDcp)ZADCp) sat (SDCPZADCP)(S, R)
(ABFTX || ((DOP\LDCP)ZADCP) || ABFRC) \Oz(DC’P) sat SSYS(S,R)

holds.

Before presenting the proof of Theorem 2 we need two additional lemmas. The first one
presents a stronger proof rule about the specifications of parallel processes than the one
given in [44, p. 124]:

Lemma 6 The law

P sat Sp(s, R)
@ sat Sg(s, R)

(P||Q) sat (3X,Y e R=XUY A Sp(sla(P), X) A So(sTa(Q), Y))

holds in the failures-divergence model provided that

Div(P)N{s: Traces(P|| Q) ® s[a(P)} =0,
Div(Q)N{s: Traces(P|| Q) ® sTa(Q)} =0
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Proof.
From the semantics of || we know that [44, p. 128§]

Div(P|| @) = {s,t: (a(P)Ua(Q))" |
(sfa(P) € Div(P) A sla(Q) € Traces(Q)
V sla(P) € Traces(P) A s[a(Q) € Div(Q)) e st}

Therefore the premises of the lemma imply Div(P || @) = (). As a consequence, the semantics
of || implies [44, p. 131]

Fail(P|| Q) = {s: (a(P)Ua(Q))*; X :Pa(P); Y :Pa(Q) |
(sta(P),X) € Fail(P) A (s[a(Q),Y) € Fail(Q) o (s, X U Y)}

so every failure (s, R) of (P || @) has a refusal of the form R = X U Y. Since according to
the premises of the lemma every failure of P satisfies Sp and every failure of () satisfies Sq,
both Sp(s[a(P),X) and Sy(sla(@), Y) hold.

O

The second lemma to be used in the proof of Theorem 2 states that if a process does not
diverge after application of the hiding operator, the number of consecutive hidden events it
may perform must be bound by a function depending only the trace of visible events:

Lemma 7 For CSP process P and H C a(P) define

NODIV (H) =4
(36 :(a(P)—H)* > NeVs: Traces(P) e #(sH) < B(s[(a(P) — H)))

Then Div(P\ H) = 0 implies P sat NODIV (H).

Proof.

Suppose that P does not satisfy NODIV (H), so that the associated bounding function
does not exist. We will show that this implies divergence of P\ H. Let n € N. Define
Bn: (a(P)—H)* — Nby #,(v) =n-(1++#v). According to our assumption there exists a
trace u of P such that B,(u[(a(P)—H))=n-(1+#(ul(a(P)— H))) < #(u[H). Then u
contains at least one section of more than n consecutive H-events without any interleaving
events of («(P) — H). Since this construction is independent on n, there exists a mapping

v : N = Traces(P) such that v(n) = v w and w consists of at least n consecutive H-events
and v does not contain n consecutive H-events. The range of v is a subtree of Traces(P)
and therefore finitely branching. It is infinite since #(y(n)) > n and 7 is a total function
on N. Therefore application of K6nig’s Lemma [71, p. 118] yields the existence of an infinite
trace uy in ran . By construction of v, this trace must contain for each n € N a section of
at least n consecutive H-events, because otherwise ug would be finite. Now the semantics of
the hiding operator implies that P\ H diverges [44, p. 128], and this proves the lemma.

O

Proof of Theorem 2.

Our proof is structured as follows: Proof obligations 1 to 5 establish that the premises of
the theorem imply various aspects of non-divergence for ABFTX, ABFRC and



9.9 Lase otudy: rault-1olerant cerver oystem Witn hepair [

((DCP\ LpcpMApcp). This is used in proof obligation 6 to derive an auxiliary specification
satisfied by (ABFTX || (DCP\ LpcpApcp) || ABFRC)\{ a1, bo, by [}. This specification
is suitable to derive

(ABFTX || (DCP\ Lpep)tApep) || ABFRC)\ {| ar, bo, by |
sat SAFETRACE(s) A NOBLOCK (s, R)

using the consequence rule and conjunction rule. This derivation is performed in two steps,
the first proving trace safety SAFETRACE(s), the second deadlock freedom NOBLOCK (s, R).
Since Ssys(s, R) is equivalent to the conjunction of SAFETRACE(s) and NOBLOCK (s, R)
(see page 67), this establishes the theorem.

Proof Obligation 1. If ABFTX sat Syx(s, R) then Div(ABFTX) = 0.

Suppose s is a trace of ABFTX. In case #(s[{ a1 [}) = #(s[{ app—tz [}) specification
Stx (s, R) asserts that {| app_tz |} cannot be refused and in case #(s[{ a1 [}) < #(s[{
app—tz [}) it asserts that at least one element of { a; [} cannot be refused. Since Srx (s, R)
also guarantees that #(s[{| a1 [}) < #(s[{ app_tz [}), no additional cases are left. As a
consequence ABFTX cannot diverge after s, because otherwise ABFTX /s could refuse the
full alphabet a(ABFTX). This proves obligation 1.

Proof Obligation 2. If ABFRC sat Sgc(s, R) then Div(ABFRC) = ().
This is shown in analogy to obligation 1.

Proof Obligation 3. Under the premises of the theorem
Div(ABFTX || (DCP\ Lpcp)tApcp) || ABFRC) = () holds.

From the validity of proof obligations 1 and 2 we know that ABFTC and ABFRC do not
diverge. Inserting this information into the failures-divergence semantics of || ([44, p. 128])
yields

Div(ABFTX || (DCP\ Lpcp)iApcp) || ABFRC) =
{s,w: (a(ABFTX)Ua(ABFRC)U a((DCP\ Lpcp)tApcr))* |
sla(ABFTX) € Traces(ABFTX) A s[a(ABFTX) € Traces(ABFTX) A

sla((DCP\ Lpcp)lApcp) € Div((DCP\ Lpep1Apcp) ® s w}

that is, only ((DCP \ Lpcp)MApcp) can contribute to a divergence of the three cooperating
processes.

Now let u € Div(ABFTX || ((DCP\ Lpcp)!Apcp) || ABFRC), such that

front(u) ¢ Div(ABFTX || ((DCP\ Lpcp)lApce) || ABFRC). Since u[a(ABFTX) is a trace
of ABFTX and this process is assumed to satisfy Srx, it follows that p(u[{| a1 [}) = ul[{ a1 [}
As a consequence u [ «((DCP\ Lpcp)lApcp) = u[{ a1, by, b1 [} satisfies the premise of
specification (SpepltApcp), S0
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val*(p(ul{] bo, by })) <" ((f o data) x bit)*(u[{ a [})
A

({last(ul{ a1, bo, b1 [}), last(front(u[{] a1, bo, b1 [}))} € {| bo, b1 [} =

last (front(front(u[{ ar, b, b1 }))) € ar fAX N & [} =0)
A
(last(u T a1, bo, b1 [t) € {| bo, b1 [} = { a1, bo, b1 [} € X)
VAN

(#o(ul{ bo, b [}) <#(u{ ar [}) = { bo, b1 [} € X)

holds, where X is an arbitrary refusal of ((DCP \ Lpcp)1Apcr)/(ul{| a1, by, by [}). Specifi-
cally, this predicate holds for X = {| a1, bo, by [}, because ((DCP \ Lpcp 1A pcp) diverges after
u{ a1, by, by [} and therefore the full alphabet is also a refusal. As a consequence none the
premises of the last three conjuncts may be valid, because each consequence states that X
is a proper subset of the alphabet {| ai, by, b; |}. Suppose therefore that u [{ a1, bo, by |}
neither satisfies {last(u [{ a1, bo, b1 [}), last(front(w [{ a1,b0,01 [}))} € {| bo, b1 [} nor
last(uw 4 a1, b0, b1 [}) € { bo, b1 [}. Then last(u[{ ai,bo,b1 }) € { a1 [}. The first con-
junct of the above predicate yields

#(o(ul{l bo, by [})) < #(ulfl a1 [})

As a consequence

#(p(ul{] bo, b1 [}))
[last(uT{] a1, bo, by [}) € {| a1 [}]
= #(p(front(u[{] a1, bo, b1 [}) I{] bo, b1 [}))
[above predicate also holds for front(u[{| a1, by, b1 [})]
< #(front(ul{] ar, bo, b1 })[{ a1 [})
[last(uT{] a1, bo, by [}) € {| a1 [}]
<#(ul{ o [})
Therefore the premise of the last conjunct in the above predicate is valid, a contradiction.
As a consequence, X = {| a1, by, by [} cannot be a refusal of ((DCP\ Lpcp)tApcr)/(ul{

a1, by, by [}) and therefore ((DCP \ Lpcp 1A pcp) does not diverge after u[{ a1, by, by [}. This
proves obligation 3.

Proof Obligation 4. Under the premises of the theorem
(ABFTX || ((DCP \ LDC’P)ZADC’P) || ABFRC) sat NOD]V({| ay, b(), b1 |}) holds.

From proof obligation 3 we know that (ABFTX || ((DCP \ Lpcp)!Apce) || ABFRC') does not
diverge. Therefore the semantics of || ([44, p. 131]) implies

sla(ABFTX) = s[{ app_tz,a, [} € Traces(ABFTX)

and

sla((DCP\ Lpcp)lApcp) = s[{ a1, bo, b1 |} € Traces((DCP\ Lpcp N Apcp)
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Since specification Syx holds for ABFTX, this implies

#(s 1 o [}) < #(s [l app—te [})

Moreover, the validity of Srx implies p(s{] a1 [}) = s[{ a1 [}, so the premise of specification
(SpcptApep) is fulfilled. This results in

{last(s T{ a1, bo, by [}), last(front(s[{ a1, b0, b1 [}))} C{ bo, b1 |} =
last (front(front(s[{ a1, b0, 01 }))) €{ an fARN{a [} =0

As a consequence the estimate

#(s [l bo, b1 [}) <2-#(s 1l ar [t) < 2-#(s[{| app—tz [})

and therefore

#(s 14 av, bo, by [}) = #(s 1{] aa [}) + #(s [{] bo, b1 [}) < 3-#(s[{| app—tz [})

holds. This shows that NODIV ({| a4, by, b1 [}) holds with bounding function G(s[{| app_tz, app_rc |
}) =3-#(sl{ app_tz [}), and this proves obligation 4.

Proof Obligation 5. Under the premises of the theorem
Div((ABFTX || ((DCP\ Lpcp)tApcp) || ABFRC) \ {| a1, by, b1 [}) = 0 holds.

According to the semantics of \ we have

Div(P\ H) =
{s:a(P)*; t:(a(P)—H)*|se€ Div(P)V
(Vn:NeJu:H*en<#uAs" uc Traces(P)) o (s[(a(P) — H)) "t}

[44, p. 128]*. Since proof obligations 3 and 4 hold, (ABFTX || (DCP\ Lpcp)!Apcr) || ABFRC)
neither diverges nor engages into an unbounded number of consecutive {| ay, by, b [}-events,
so Div(P\ H) is empty for P = (ABFTX || (DCP\ Lpcp)Apcp) || ABFRC) and H = {
a1, by, b1 [}. This shows the validity of proof obligation 5.

Proof Obligation 6. Under the premises of the theorem

“Observe that this could be simply, but less intuitively, written as Div(P\ H) = {s : a(P)*; t : (a(P) —
H*|(Vn:NeJu: H*en < #u A s"u € Traces(P)) o (s|(a(P) — H))"t}: If s is a divergence of P,
s u € Traces(P) follows for any sequence u of events, so s always possesses an unbounded continuation of
consecutive H-events.
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(ABFTX || ((DCP\ Lpep)Aper) | ABFRC)\ ] ai, by, by |} sat S'(s, R)

S'(s,R) =4
(Fu:{ app_tx, app_re, a1, by, by [}
Ry P app_tz |}; RTX,, : P{ a1 [};
RDCP,, : P{ a; [}; RDCPy, : P{ by |}; RDCPy, : P{| by |};
RRCy, : P{ by [}; RRCy, : P{ by [}; Rpe: P{ app_rc [} o
wl{| app_tz, app_rc [}

s =

A

R =Ry UR,
A

R

TX, URDCP, ={ o |}
2DCP,,0 URRCy, =1 bo |}
/}\QDOP,,I U RRCy,{ b1 [}
/LS\’TX(U | app—tz,a; [}, Riy U RTX,,)
(AspcpzADCP)(u 14 ar, bo, b1 [}, RDCP,, U RDCP,, U RDCPy,)
/LS\’Rc(u I{ bo, b1, app_rc [}, RRCy, U RRCy, U R..))

holds.

The validity of proof obligations 1,2 and 3 implies that the premises of Lemma 6 are fulfilled
for each process pair

(P, Q) € {(ABFTX, ABFRC), ((ABFTX || ABFRC), ((DCP\ Lpcrp A por))}
Applying the || -law of Lemma 6 to each of these pairs yields the assertion
(ABFTX || (DCP\ Lpcp A pcp) || ABFRC) sat S”(s, R)

S”(S,R) =dr
(X :P{ app_tz,a [}; Y :P{ ai,bo, b1 [}; Z :P{| bo, b1, app_rc |} @

R=XUYUZ
A
Stx (s 1{ app—tz, ar [}, X)
A
(SpeptApep) (514 a1, bo, by [}, Y)
A

Skc(s{ b, br, app_rc |}, Z))

From the validity of proof obligation 4 follows that the law [44, p. 125]
P sat S(s,R)
P\ H sat (Ju:a(P)*es=ul(a(P)—H)ANS(u,RUH))

[ NODIV (H) ]
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holds for P = (ABFTX || ((DCP\LDCP)ZADCP) ||ABFRO) and H = {| a,l,b[),bl |} and
S(u,RUH) = S"(u, RU {| ar, bo, by [}).

Application of this law with the corresponding substitutions in S” results in

(ABFTX || (DCP\ Lpep)tApep) || ABFRC)\ {| ai, by, by [} sat S"(s, R)

S"(s,R) =45
(Fu:A{ app_tz, app_re, a1, by, by [}
X P{ app_tz,a [}; Y : P{ a1, b, b1 [}; Z : P{| bo, b1, app_rc |} @
s = ul{ app_tz, app_rc [}
A
RU{| (ll,b(),bl |}:XU YuZz
A
Strx (ul{ app—tz, ar [}, X)
A
(SpeptApce)(ul{] ar, bo, b1 [}, Y)
A

Src(ul{] bo, by, app_rc |}, Z))

Next we re-write the specification S”'(s, R) using disjoint refusal subsets decomposed ac-
cording to the channels involved: The set X in S”(s, R) may be decomposed into X =
Ry, URTX,,, where Ry, is of type P{| app_tz [} and RTX,, of type P{| a; [}. Using analogous
decompositions for R, Y, Z results in

S"(s,R) =
(Fu:A{ app_tz, app_re, a1, by, by [}
Ry P app_tx |}; RTX,, : P{ a1 [};
RDCP,, :P{ a1 |}; RDCPy, : P{| by [}; RDCPy, : P{| by [};
RRCy, : P{ by [}; RRCy, : P{ by [}; Ryc: P{| app_rc |} o
ul{| app_tz, app_rc [}

S =

A
R:thUch
A

Rta: U ch U {| ay, bg, bl |} —
Riy U RTX,, U RDCP,, U RDCP,, U RDCPy, U RRCy, U RRCy, U Ry

A

Stx (ul{] app—tz, ar [}, Riy U RTX,,)

A

(SDCPZADCP)(U r{| ay, b(), b1 |}, RDCPal U RDCPbO U RDCPbl)
A

Sre(u | bo, b1, app—rec |}, RRCy, U RRCy, U R,.))

Exploiting the type information about the refusal subsets shows that

th U ch U {| ap, bU? bl |} =
Ris U RTX,, U RDCP,, U RDCP,, U RDCPy, U RRCy, U RRCy, U Ry,
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is equivalent to

RTX, URDCP, ={ a, [} A RDCP,, U RRCy, = { by [} A RDCP,, U RRCy, = { b, |}

Inserting this into the above predicate results in S (s, R) = S'(s, R) and proves obligation 6.
Proof of Trace Safety. Under the premises of the theorem

(ABFTX || ((DOP\LDCP)ZADCP) || ABFRO) \{| ay, bg, b1 |} sat SAFETRAOE(S)

holds.

Applying the consequence rule for each assertion, the premises of the theorem yield

ABFTX sat Sfhy(s)
Stx(s) Zqp data (s ax [) <M wal*(s[{] app—ta [) A p(sI{l ar [}) = s1{ a [}

ABFRC sat Spq(s)
Sho(s) =4 val*(s 1] app_re [}) < data™(p(s [ bo, b1 [}))

((DCP\ Lpcp A pcp) sat (SpeptApep)'(s)
(SpeptAper)'(s) =4
psH{af)=s{al} =
(val*(p(s 14l bo, b1 [})) <" ((f o data) x bit)*(s[{] a1 [}))

Applying the assertion established in proof obligation 6 to specification parts not involving
refusals results in

(ABFTX || ((DOP\LDCP)ZADCP) || ABFRO) sat S,(S)
with

S'(s) =t Sty (s(ABFTX)) A
(SDCPZADCP)I(S rOé((DCP \ LDCP)ZADCP)) A S;%C(S rOé(ABFRO))
= Spx(s ] app—te, ai [}) A
(SportApce)' (s ar, bo, b [}) A Ske (s bo, bi, app—re [})

where the free variable s is of type {| app_tz, ay, by, b1, app_rc [}*.

From Shy(sTa(ABFTX)) the premise p(s[{| a1 [}) = s[{ a1 [} of specification
(SpcptApep)' (s 14 bo, b1, app—re [}) follows. Therefore S’(s) implies

val*(s{| app—rc [})
[validity of Sk (s T4 bo, b1, app_rc [})]
<! data*(p(s1{] by, b1 [}))
[validity of implication in (SpcptApcp)’ (s 14 a1, bo, b1 [})]
<! (f odata)*(s[{ a [})
[validity of STy (s[4 app—tz, a; [})]
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<M f*(val*(s 1{ app—tz [}))

Now let w be a trace of (ABFTX || ((DCP\ LpcpApcp) || ABFRC)\ { a1, by, by }. From
the validity of proof obligation 5 we know that this process does not diverge. Therefore the
semantics of the hiding operator [44, p. 131] implies that w must be a restriction of a trace
s of (ABFTX || (DCP\ Lpcp)iApcr) || ABFRC), that is, w = s[{ app_tz, app_rc [}. The
above inequality established for s implies

val*(w [{| app_rc [}) = val*(s 1{ app_rc |})
<MH2) = (pal* (s [{| app_tz [})) = f*(val*(w [ {| app_tz }))

As a consequence SAFETRACE (w) holds for N = M +2 and this proves the safety property
required for the traces of (ABFTX || ((DCP \ Lpcp)1Apcp) || ABFRC)\ {| a1, bo, b [}

Proof of Deadlock Freedom. Under the premises of the theorem
(ABFTX || (DCP\ Lpecp A pcp) || ABFRC)\ {| a1, by, by [} sat NOBLOCK (s, R)

holds.

Let (s, R) be a failure of (ABFTX || (DCP\ Lpcp)tApcr) || ABFRC)\ {| a1, by, by [}. From
the validity of proof obligation 6 we know that S'(s, R) holds. We have to show that

S'(s,R) = NOBLOCK (s, R)

Since it has already been established that the process satisfies SAFETRACE(s), we know
that #(s[{ app_rc [}) < #(s[{| app—tz [}). Therefore the proof can be devided into the

cases “=" and “<”. The trace u and the refusal subsets R,,,... are used below as in the
definition of S'(s, R).

Case 1. Suppose #(s [{| app—rc |}) = #(s[{| app—tz |}). Then the inequality

val*(ul{] app-re [}) <* (f o data)*(u{] @ [}) <M f*(val* (u[{] app—tz [}))

established above in the proof of trace safety implies that #(u[{ a1 [}) = #(u[{] app—tz [}).
Since S'(s, R) implies Srx(u [{ app—_tz,a; |}, R;z U RTX,,), the definition of Srx implies
Ry = 0. Since R = Ry, UR,. and also R,.N{ app_tz [} = 0, it follows that RN{| app_tz [} = 0,
and this is what we had to show for the validity of NOBLOCK (s, R) in case 1.

Case 2. Suppose #(s[{ app_rc [}) < #(s1{ app—tz [}). To prove consistency with
NOBLOCK (s, R) it has to be shown that { app_rc [} € R. We will instead assume

{| app—re [} C R and prove that this implies #(s[{| app—rc |}) = #(s [{] app—tz |}).

{ app_rc [} CR
[definition of R,., S'(s, R) holds]
= {l app_rc [} = Ry
[S'(s, R) implies Sge(u[{ bo, b1, app—rc [}, RRCy, U RRCy, U R,.)]
= #(ul{ app_rc |}) = #p(ul{ bo, by [}) A RRCy, U RRCy, = ()
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[S'(s, R) implies RDCP,, U RRCy, = {| b; |}]
— RDCPy, U RDCPy, = {| by, by |
[S(s, R) implies validity of specification]
[(SpertApep)(ul{ a1, by, by [}, RDCP,, U RDCPy, U RDCPy, )]
= RDCPo, =0 A #p(wl{] bo, by [}) = #(u [ { a1 [})
[S'(s, R) implies RTX,, U RDCP,, = { o |}]
= RTX,, ={ a |}
[S’(s, R) implies validity of specification Syx (u[{ app—tz, ai [}, Riz U RTX,,)]
= #(ulfl o ) = #(ul{ app—tz [})
[#p(ul{l bo, by [t) = #(u [ { apprc[}) A
[#p(ul{l bo, b1 [}) = #(u T { & [}) A]
#(wl{ a [}) = #(ul{ apptz [}) ]
= #(ul{l app_rc }) = #(ul{] app—tz [})

This completes the proof of deadlock freedom.

Together with the conjunction rule, the proofs of trace safety and of deadlock freedom imply
that

(ABFTX || ((DCP \ LDC’P)ZADC’P) || ABFRC) \{| a, bg, b1 |} sat
SAFETRACE(s) AN NOBLOCK (s, R)

This completes the proof of Theorem 2.
]

3.3.6 Sub-System Design

ABFTX, ABFRC are ready for implementation according to their explicit representation as
given in Section 3.3.2. To prove that these explicit representations fulfill the specifications
Stx (s, R), Spc(s, R) the technique described in Section 3.4 is applied. We skip the proofs,
because this verification technique will be explained by means of the further decomposition
of DCP.

3.3.7 Process Design of DCP

This is the last decomposition step of the development procedure for DCP, using the archi-
tecture

DCP = Apcp(NET,, NET,, APPy, APP,, DCP_CONTROL)
= (NET, || NET\ || APP, || APP, || DCP_CONTROL)

with the explicit process representations and alphabets introduced in Section 3.3.2. The
normal behaviour is represented in its explicit form by using DCP_CONTROL = NORMAL,
and the acceptable behaviour is reflected by the case DCP_CONTROL = ACCEPTABLE.
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3.3.8 Verification of Process Design for DCP

A procedure analogous to the techniques applied for verification on system level would as-
sociate behavioural specifications for each process NET,, ..., APP;, DCP_CONTROL and
prove that with the architecture Apcp the component specifications imply the behavioural
specifications of DCP given above. However, we will now introduce a new technique allowing
us to perform a larger portion of the correctness proofs by means of model checking. To this
end, two explicit representations DCPy and DCPAy of sequential CSP processes in normal
form (cf. Section 3.4) will be presented. Using the techniques introduced in 3.4, it will be
shown that DCPy satisfies the normal behaviour specification Spop(s, R) and DCPAy the
acceptable behaviour specification (SpcplApep)(s, R) of the dual computer system. Then
we can use the explicit process specifications NETy, ..., APP,, DCP_CONTROL to prove
by means of model checking that

DCPy Cpp Apcp(NET,, NET,, APPy, APP;, NORMAL)
and

DCPAyx Crp Apcp(NET,, NET;, APP,, APP,, ACCEPTABLE)

The first refinement relation implies that the detailed design of DCP satisfies the normal be-
haviour specification Spcp(s, R), and the second refinement relation satisfies the acceptable
behaviour specification (SpcptApcr)(s, R).

Normal Behaviour Verification
The sequential normal form process satisfying Spcp(s, R) is given by

DCPy = state := —1;
*((state = —1)&ay?(x, b) — state := 0; SKIP

Etate = 0)&bo!(f(z), b) — state :== —1; SKIP)
Theorem 3 (Sub-System Verification Obligation — Normal Behaviour)
DCPy sat Spcp(s, R)
a

We will skip the proof, because the concept will be better illustrated by the acceptable
behaviour verification below.
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Exceptional Behaviour Verification
The sequential normal form process DCPAy is defined by

DCPAN = state := —1;
*((state = —1)&a1?(z, b) —
if true — state := 0; O true — state := 1; fi; SKIP

(state = 0)&bo!(f (), b) —
if true — state := —1; O true — state := 3; fi; SKIP

(state = 1)&b!(f(z),d") —
if true — state := —1; O true — state := 2; fi; SKIP
1

(state = 2)&bo!(f (z), b") — state := —1; SKIP

1

(state = 3)&b!(f (x), b") — state :== —1; SKIP)

We will now prove that DCPAy really satisfies the acceptable behaviour specification
(SpeptApep)(s, R).

Theorem 4 (Sub-System Verification Obligation — Acceptable Behaviour)

DCPAy sat (SpeptApep)(s, R)

Proof.
The proof will be conducted as follows:

1. Transform DCPAy into its associated nondeterministic sequential program v(DCPAy)
as defined in 3.4.3.

2. Prove that v(DCPAy) sat «((SpcrtApcr)(s, R)) where this satisfaction relation for
sequential programs is defined in 3.4.4.

3. Apply Theorem 6 to deduce that (2.) implies DCPAy sat (SpcptApcp)(s, R).

According to the definition in 3.4.3, the nondeterministic sequential program associated with
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DCPAy is
A(DOPAY) = siote := —1; sy = {); Ry =1 bo.bu
do
(D(z’,b’)ea(al) (state = —1) —

(z,b) := (z',0');
if true — state := 0; O true — state := 1; fi;
Sy := 8y (ay.(z',0"));
Rv = {| ai, bOa bl |}_
(if state = 0 then {by.(f(z),b)} else {b1.(f(z),b)}))
O (state = 0) —
(269, bby) == (f(2), b);
if true — state := —1; O true — state := 3; fi;
Sy = Svm<b0.(zbl, bb1)>;
RU = {| ay, b07 bl |}_
(if state = —1 then {| a1 [} else {b1.(f(z),0)}))
O (state =1) —
(261, by, ) == (f(2), b);
if true — state := —1; O true — state := 2; fi;
Sy ‘= Svf\(bl.(zbl, bb1)>;
Ry = { a1, by, by [}—
(if state = —1 then {| a1 [} else {by.(f(2),0)}))
O (state = 2) —

(zbo’ bbo) = (f(x)a b)7

state := —1;
Sy = sv/\(bo.(Zbl, bb1)>’
Ry :={ bo, b1 [}

O (state = 3) —

(zbn bb1) = (f(x)a b)7

state := —1;
Sy = Svﬁ<b1-(zb17 bb1)>’
Ry :={ bo, b1 [}

od

By the definition given in 3.4.4 and by application of the proof theory for sequential non-
deterministic programs, establishing v(DCPAy) sat ((SpcptAper)(s, R)) is equivalent to
proving that

Iy=4 (YU : PR, ® (SpcplApcp) (v, 1y))
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is an invariant of the do ... od-loop of ¥(DCPAy). We will instead prove that

I=yp(ssl{a})=s{alt =
(val*(p(sy [{] bos b1 [})) <" ((f o data) x bit)*(s, [{] a1 })
A
({last(sy), last(front(sy))} C {| by, b1 |} =
last (front(front(s,))) € { a1 } A Ry N { a1 [} = 0)

>

—~

last(sy) € {| bo, b1 [} = {| a1, 0,01 |} £ Ry)
#p(so [{ bo, b1 [}) < #(so [{l a1 [}) = { bo, b1 [} € Ry)

state € {—1,0,1,2,3}
A
(state = —1 = val*(p(sy [{] bo, b1 [})) = ((f o data) x bit)*(s, [{ a1 [}))
A

(state € {0,1} = last(sy) = a1.(z, b) A
val*(p(sy [{] bo, by [})) = front(((f o data) x bit)*(s, [{] a1 })))
A

(state = 2 = last(s,) = by.(f(z),b) A
val*(p(sy [{] bo, b1 [})) = ((f © data) x bit)* (s [{] a1 [}))
A

(state = 3 = last(s,) = by.(f(z),b) A
val*(p(sy [{] bo, b1 [})) = ((f © data) x bit)"(sy [{] a1 [})))

is an invariant, which obviously implies I.

>0 >

Trivially, I holds after the initialisation state := —1; s, == ( ); R, := { 0bo, b1 [}; of
v(DCPAy). We will now show for each branch of the do ... od-loop that, provided I
holds on entry, it will also hold on exit of this branch.

Case state = —1. We fix sy as the pre-state of s, on loop entry and assume the validity of
I. Then I[sy/s] A state = —1 holds on loop entry, which implies

val* (p(so [{] bo, b1 [})) = ((f © data) > bit)*(so [{] a1 [})

Applying the proof rules for assignment, sequential composition and the if ... fi-statement
results in the post condition

post—1y = val*(p(so 1| bo, b1 [})) = ((f o data) x bit)*(so[{| a1 [})
A
Sy = S0 {ar.(z, b))
A
(state =0 A Ry ={ a1, bo, by [} — {bo.(f(2),0)}
V state =1 A R, = {| a1, bo, by |} — {b1.(f(z),b)})

on exiting the branch state = —1. Now post_;) implies
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val* (p(s, 1] b, by ) = vl (50 Car- (o, D)) H] B, b )
= val*(p(so [{ bo, b1 [}))
= ((f o data) x bit)*(so[{ a1 [})

= front(((f o data) x bit)*((so” (a1.(z, 0))) [{| a1 [}))
= front(((f o data) x bit)* (s, [{ a1 [}))

Since the after-state of R, implies {| by, b1 |} € R,, the validity of I on exiting the (state =
—1)-branch is established.

Case state = 0. Again, s is fixed as the pre-state of s, on loop entry and the validity of
is assumed, so that I[so/s] A state = 0 holds, which implies

last(so) = ay.(z, b) A val*(p(so 14 bo, b1 [})) = front(((f o data) x bit)*(so[{] a1 [}))

Applying the proof rules for assignment, sequential composition and the if ... fi-statement
now results in the post condition

posty = last(sy) = a1.(z, b)

VAN

val*(p(so [{] bo, b1 [})) = front(((f o data) x bit)*(so [{ a1 [}))
VAN

sy = 50" (bo.(f(2), D))

VAN

(state = —1 A Ry = {] b, b1 |}
V state =3 A R, = {| a1, bo, by |} — {b1.(f(z),b)})

on exiting the branch state = 0.

We assume that p(s, [{ a1 [}) = s, [{ a1 [} holds, for otherwise there is nothing to prove
about I. Then also p(so[{] a1 [}) = so[{] @1 [} is valid, and therefore the second conjunct in
posty implies

bit(last(p(so [{] bo, b1 |}))) = bit(last(front(sol{ a1 [})))

f zit(last(so a1 [})

Therefore, by definition of p, we can calculate

val*(p(sy [{ bo, b1 [})) = val*(p((s0™ (bo-(f (2), 6)}) I{] o, b1 [}))
= val*(p(so 1] bo, b1 [}) " (bo-(f (2),D)))
= front(((f o data) x bit)"(so[{| a1 [})) " ((f(z), b))
= ((f o data) x bit)*(s, [{ a1 [})

This establishes I for state € {—1,3}, which are the possible after-states of state in this
branch.

Case state = 1. In analogy to case state = 0.
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Case state = 2. In analogy to case state = 3.

Case state = 3. Again, s is fixed as the pre-state of s, on loop entry and the validity of
is assumed, so that I[sy/s] A state = 3 holds, which implies

last(so) = bo-(f(z), b) A val*(p(so{] bo, b1 [})) = ((f o data) x bit)*(so[{ a1 [})

Applying the proof rules for assignment, sequential composition and the if ... fi-statement
now results in the post condition

posts = last(sg) = bo.(f (), )

A

val*(p(so T{| bo, b1 [})) = ((f o data) x bit)*(so [{] a1 [})
A

so = S0 (b1.(f (), b))

A

(state = —1 A R, = {| bo, by |})

on exiting the branch state = 3.
This time post; and the definition of p implies
val* (p(sy [{] bo, b1 [})) = val*(p((front(se) ™ (bo.(f (), b), bo-(f (), 0))) [{] bo, b1 [}))

= val*(p(so [{| bo, b1 [}))
= ((f o data) x bit)*(so[{ a1 [})

This establishes I for the new value state = —1.

This completes the proof of the assertion v(DCPAy) sat ¢((SpcptApcp)(s, R)). Now The-
orem 6 shows that also DCPAy sat (SpeptApcp)(s, R) holds, and this completes the proof
of the theorem.

O

The verification process is now completed by

Theorem 5 The explicit process representations NET;, APP;, i = 0,1, NORMAL and
ACCEPTABLE defined in Section 3.5.2 satisfy

DCPN EFD ADCP(NET(), NETl, APPO, APPl, NORMAL) \ (&(DCP) - {| a, bg, b1 |})
and

DCPAN EFD ADCP(NETO, NETl, APP(), APPl, ACCEPTABLE) \ (&(DCP) - {| a, bg, b1 |})

Proof.
By model checking using FDR [27].
([l
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3.4 Verification of Behavioural Properties for
Sequential Processes

Following the specification and verification concept for dependable systems introduced in
Chapter 2 it is necessary to switch from implicit specifications to explicit process represen-
tations, as soon as the refinement process has reached the stage where implementable units
are generated. In this section a technique for the verification of the refinement steps turning
implicitly defined black boxes into explicit representations as sequential CSP processes is
introduced. Given a specification P sat S(s, R) in the failures model and a specific explicit
representation (to be introduced in 3.4.2) of P as a communicating sequential process, we
can use a proof theory about nondeterministic sequential programs to establish that the ex-
plicit representation of P really satisfies S(s, R). The method was already introduced and
motivated in an intuitive way in [74]. We will now present its formal justification.

3.4.1 Sequential Nondeterministic Programs

We will use the syntax and semantics of Sequential Nondeterministic Programs S as intro-
duced by Apt and Olderog [5, pp. 107]. S has the syntax

Su=skip|u:=1t]|5;% |
if B then S else S, | while B do S; od |
if D?:lBi —)SZ fi | do D?:lBi —)SZ od

The operational semantics of assignment and deterministic sequential control structures is
standard [5, p. 60]. if O | B; — S; fi is the nondeterministic alternative command: If the
guard (i. e., boolean expression) B; evaluates to true, the branch S; may be executed. If
several guards are true, the decision is nondeterministic. If all guards evaluate to false, the
command fails. In our context the nondeterministic repetitive command do OF_, B; — S; od
is of specific importance, since it is directly related to the normal form structure of sequential
CSP processes to be introduced in 3.4.2. Its operational semantics is given by the transition
axioms

< do Dlnlei_%S’i Od,O' > —< Si; do Dlnlei—)Si Od,O' >
ifo = B;and i€ {1,...,n} and
< do O ,B; =S od,c >—<E o>

if o = AL, - B;: If a guard B; evaluates to true in the actual state o, the corresponding
branch S; may be executed, and the resulting change of the state o will be as induced by
the operational semantics of S;. As in the interpretation of the nondeterministic alterna-
tive command, several guards evaluating to true lead to a nondeterministic decision. The
command will be repeated, as long as at least one guard evaluates to true at the beginning
of the loop. If all guards evaluate to false in state o, the repetitive statement terminates
without changing the state (E denotes the empty program). By SN we denote the set of all
sequential nondeterministic programs.

In addition to the assignment of a formal semantics, Apt and Olderog have developed a sound
proof theory for sequential nondeterministic programs allowing to reason about programs by
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means of proof rules over pre- and postconditions [5, pp. 114]. One of the main advantages
of the correspondence between CSP processes and sequential programs to be established
in the subsequent sections consists in the possibility to use this proof theory and the tools
supporting such “sequential reasoning” in order to verify behavioural properties of CSP
processes. However, we will only use the transition axioms of the semantics to define and
prove the relationship between CSP processes and sequential programs.

3.4.2 Sequential CSP Processes in Normal Form

Let us now turn to sequential CSP processes P with local variables, as introduced by
Hoare [44, pp. 171]. We say that P has a (second) normal form in the sense of Apt and
Olderog [5, 2, 4], if it can be written as

P:=5;
(V(c,i):F[NUFOUT Bc,i) * ( D(c,i):F,N(Bc,i&C7$c,i — Sc,i ; SK]P)
I:I(cai):FOUT (BC,i&C!xCﬂ; - Scai ’ SK]P)) ’
SKIP

In this syntactic expression, Sy and S.; are sequential nondeterministic program parts in
the syntax and interpretation as defined in 3.4.1. They operate on local variables of P,
but do not access any CSP channels. B x @ is the loop construct introduced by Hoare [44,
p. 186] for sequential CSP processes: As long as the boolean expression B evaluates to true,
the sequential CSP process @) will be repeated after each termination. If B is false, the
construct terminates, producing the termination event /. The externally visible actions of
P are channel events produced on input channels ¢ € IN and output channels ¢ € OUT,
with IN N OUT = (), so that the alphabet of P is «(P) = Uegnvuouvri ¢ |} Bei&c?z.; and
B, ;&clz. ; denote guarded communications with boolean expressions B, ; and defined by the
syntactic equivalence

B.i&c?z,;— S. i SKIP =4 if B, ; then c?z.; — S, ;; SKIP else STOP

The set I';y comprises the pairs (¢, i) where ¢ is an input channel of P, appearing in a
guarded communication B, ;&c?z. ;. Analogously, I'oyr is defined for the output channels
of P. Observe that a channel ¢ may appear more than once in the alternative command at
the beginning of the loop, if more than one guard B, ; is associated with c.

With these explanations in mind, the structure of P may be motivated as follows: An execu-
tion of P starts with an initialisation phase S; assigning values to local variables, including
guards. Then P will perform a loop (the main loop), where possible communications with
other processes may only occur at the beginning of each loop entry. P refuses to communicate
on a certain channel c, if all associated guards B, ; evaluate to false. If more than one guard
is true and the corresponding channels are not refused by the environment, the result of the
alternative command is nondeterministic. If an output c!z.; takes place, the communication
partner receives the value o(z.;) of the local variable z.; according to the after-state o of
the previous cycle or the initialisation phase, respectively. An input event associated with
expression in7z;, ; has the effect of assigning the value passed by the communication partner
over channel in to the local variable z;, ; of P. After a communication c.z.; the correspond-
ing sequential program part S, ; is executed locally without further communications.
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Sc,i may read and change all local variables, including the guards and output variables z. ;.
If all guards evaluate to false after the initialisation or after the last cycle, P will terminate.
We consider SKIP as a normal form process, equivalent to SKIP; (false) * SKIP; SKIP

While being more restrictive than the general sequential CSP processes covered by the proof
system developed by Apt, Francez and de Roever [3], distributed programs consisting of
processes in second normal form have the advantage of a simpler proof theory and of a more
obvious correspondence to nondeterministic sequential programs (see [5, 2, 4]). Normal form
processes are also of specific interest from a practical point of view, because the technique of
isolating external communications at the beginning of a main loop is a widely adopted style
for parallel programming.

For the remaining part of this chapter, we will consider CSP processes P over a fixed alphabet
A= «a(P).

Our next objective is to relate a state 7 € X(P) of local variables of P to the communication
behaviour. To this end, let X(P,s) denote the collection of all variable states possible
in process state P/s, when evaluated before entering the main loop or, if last(s) = +/,
on termination. Applying the semantic rules for sequential CSP processes in combination
with the semantics of the nondeterministic sequential program parts Sy, S ;, the set can be
inductively defined by®

S(P,()) ={r,7:3%(P)| < Sy, T>—*< E, 7" >e7'}

Y(P,s"(cw))=if c€ IN
then {7 : X(P,s); 7" : X(P) |
(FieTEB. )N <z :=v; SeiyT>—*<E, 7> e7'}
else {r:X(P,s); 7 :X(P) |
(FJieT =B i ANT(%i) =0) A< SeiyT>—*< E, 7" > o7’}

(P, s (V) ={T: 5(P,s) | T (Acwermwuropr 7 Bei) @ T}

In this definition, —* is the reflexive and transitive closure of the state transition relation
—: < Sp,0 >—*< S’ 0’ > indicates the existence of a sequence of state transitions,
starting with Sy in the state o and reaching S’ in the new state o’. X(P,( )) is the set of
possible after-states of Sy (recall that E denotes the empty program). In the definition of
Y (P, s (c.v)) observe that the communication c.v can only take place if the corresponding
guard B, ; evaluates to true before entering the main loop. This is expressed by the require-
ment 7 = B, ;, where 7 is a pre-state on main loop entry. The effect of the input c.v is the
assignment of value v to the corresponding channel variable z. ;. Therefore the elements of
(P, s (c.v)) are the possible after-states of the program z.; := v; S.;. If c.v is an output
event, this presupposes again the existence of a corresponding guard evaluating to true in
the pre-state 7. Additionally, the output variable z.; must have value v is this state. Since
output does not change the local variable state, we now collect the after-states of < S.;, 7 >

in X(P, s (c.v)). P terminates if and only if all guards evaluate to false in the actual state

Recall that we use the Z notation for set comprehension: {z : T | cond(z) e expr(z)} is the set of all
elements defined by the expressions expr(z), where z ranges over all elements of type T, satisfying condition
cond(z).
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7 on main loop entry. In this case no further assignments take place, so that such a 7 is also
a valid final state.

Making use of the definition of X(P, s), the following lemma describes the relationship be-
tween traces, refusals and local variable states:

Lemma 8 Let s € Traces(P) and last(s) # /. Then
1. The set [P/s]® of events possible in process state P/s is given by

[P/s]® = {7 :3(P,s); (in,i):Tin; y:a(in)| 7 Bp,®iny} U
{7 :3(P,s); (out,i):Tour | 7 & Bouti ® 0ut.7(Tou i)} U
{7:2(P,s) |7 E (A(C,i)EFINUFOUT - Be;)e /}

2. The refusals of P/s are given by

Ref(P/s) = Uryp,s)(if 7 E (Aieryuropr = Bei)
then P(A — {/})
else P(A — (U(inj){(c.i)Tivir=B,. 31 in [} U
Utout,):{(c,i)TovrlreBow.s} L 0WE-T(Tout i) })))

Proof.
Part (1.) follows directly from the semantics of the main loop construct and the semantics
of guarded communications.

For part 2, observe that the behaviour of P/s is nondeterministically defined by its internal
states 7 € (P, s), because each 7 determines the evaluation of the communication guards.
Since the internal variable state cannot be influenced by the environment, P /s can be written
as an internal choice ranging over the possible states 7:

P/s = Mrxp,s)(init(7);
if (/\ (c,i))eTnUTopr Bc,z’)
then SKIP
else (( I:I(c i):Trn (Bc z&C Lej— SC i SK[P)
Doyt ove (Beibeclte; — Ses; SKIP));
(v(c i):T'vUl oy Bc z)*
( I:I (e,1) F[N(Bc i&c? ZTei— S Jis SK[P)
I:I(C,l)-FoUT(Bc,z&C Tei — Sc,za SK]P)),
SKIP))

In this expression, init(7') denotes the sequence of assignments z := 7'(z) for each variable
z of P. If all the guards evaluate to false, P/s will terminate. Otherwise, the main loop will
be executed at least once, as shown in the else-branch.

Observe that STOP is a unit of [], so that branches with guards evaluating to false do not
contribute to the alternative construct. Therefore we calculate
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Ref (P) =

U,

U

U,

U,

U

U,

U,

U

U,

Ar:2(P,s)|TE

Ar:2(P,s)|TE

H{rX(P,s)|T'E

{1 X(P,s)|TE

[Ref (SKIP) =P(A — {\/}), semantic rules for M and []]
:{T,:E(P’SNT,‘:(/\(C,i)GF[NUFOUT = B.i)} ]P(A - { \/})
H{rX(P,s)|T! ‘:(V(C,i)GF[NUFOUT Bc,i)}

(Nin gyt (eriyT v jr=be.y Bef (in?3i j — Sin j; SKIP) 0
n(out,j):{(c,i):FOUT\T':Bc,i} Ref(OUt!T(xout,j) — Sout,j; SK[P)) =

[semantic rules for choice and prefixing]

-y P(A={V})

(/\(Cai)QF[NUFOUT

Venerpur oy Bei)d
(ﬂ(sz){(Caz)F[Nh":BC’,} P(A - {| Z’n: |}) m
Neout,j):{(c,i)Tovrlreb.} P(A — {0ut.T(Tour ) }) =
laws on P, U, N|

- Bci)} ]P(A - { \/})

(/\(c,i)eI‘[NUI‘OUT

(V(c,i)eI‘[Nur‘OUT B.:)}
(P(A = (Uting)-t(eyrmlren.y{ in U
U(OUt,j)i{(C,i)TOUT\T':Bc,i}{OUt~T($gut,j)})))

The last line is equal to the expression used in part (2.) above. This completes the proof of
the lemma.

O

3.4.3 Mapping Normal Form Processes to Sequential Programs

Let CSPgyr denote the set of all sequential CSP processes represented in the second normal
form introduced above. Let SN be the set of all nondeterministic programs introduced
in 3.4.1. We will now define a mapping

V. OSPSNF — SN

associating with P € CSPgyr a nondeterministic program v(P) which allows to reason about
the semantic properties of P by means of the semantics and proof theory valid in SN.

Given

P

= Sp;
(v(c7i):F[NUFOUT chi) * ( I:I(C,i)ZF[N (BC,Z&C?:I;C,z — SC,i; SK[P)
Oyt ovs (Beibeclae s — Sei; SKIP));
SKIP



9. nheliabuity and Avalablity ASpects: rault-lolerance

we set
v(P) == Sy; sy :=(); Ry :=7r(Ciwv,Tour);
do
D(c,i):FzN,ZJCEa(c)(Bc,i_>Ic,i = Ye, Sc,i; Sy 1= Svr\<c-yc>; Rv = T(FIN7FOUT))
Oe,iyrovr (Beyi = Zeyi '= Te,is Seyis So = 8y (C-2c,i); Ry := 1w, Tour))
od
Sy =58, (\); Ry = A.
where

sy A% Ry i PA; 2., afc)

are fresh local variables of v(P), nowhere accessed in the sequential program parts Sy, Sc.i,
and y. are constants ranging over the channel alphabet a(c). In the assignment of R, we
used the abbreviation
T’(FIN, FOUT) n=if (/\ (c,i):TnUTopr
then (A—{/})
else (A — (U(ing){(c,iy0oy (B3 in [} U
Utout.i):{(e,)Tour! Bow 11 0t ot j 1))

Bc,i)

In correspondence with the P, the do ... od construct is called the main loop of v(P).
Note that consistent with the general definition of v, the trivial normal form process SKIP
is mapped to

v(SKIP) = s, :=(); Ry :=A—{V}
do false — skip od;

sy =8y (V); Ry = A.

Before formalising and verifying the relationship between P and v(P), let us indicate the
intuition behind the construction of v(P): The program starts an execution with the same
initialisation Sy as P, additionally assigning initial values to (s,, R,). Obviously, the variable
sy corresponds to the trace s = s, of P: If P/s can perform the communication c.z, ;, the
corresponding guard B.; will be true. In v(P) c.z.; is replaced by an assignment, and
the communication is “recorded” in variable s,. At each beginning of the do ... od-loop,
variable R, coincides with a maximal refusal of P in state P/s: If all guards evaluate to
false, expression r(I';y, [ opr) denotes the maximal refusal of SKIP, which is the set of all
events except /. Otherwise r(I'jy, opr) denotes the maximal subset of A which does not
contain any event where the corresponding guard is true.

As a first step towards the precise description of these relationships, we will relate the sets
Y(P,s) of P-variable states to corresponding v(P)-variable states. Let X (v(P)) denote
the set of all variable states o of the sequential nondeterministic program v(P). Since the
sequential program fragments Sy, S.; in P and v(P) are syntactically equal and both are
interpreted in the same semantics, the only difference between their state functions consists in
the additional variables s,, R,, z.; occurring in v(P). Therefore a variable state o € X(v(P))
can be expressed as

o=17U{sy > u, Ry = U,yc—> ..., 2, ...}



9.4 vVeriication o1 behavioural rroperties 10or sequential r'rocesses

with a variable state 7 of ¥(P). Given o € X(v(P)), we use mp(c) € X(P) to denote the
domain restriction of o to the variables occurring in P. For a sequence of events s € A*
define

Y(v(P),s)={o,0 :X(w(P)); S'":{E, S} |
<v(P),0 >—*< 80 > AN0d'(s,) =senp(c)}

In this expression Sy, is an abbreviation for the program fragment
do ... od; s, :=5,"(V/); R, :=A.

starting with the main loop of v(P). X(v(P),s) is the collection of all variable states o’
“recorded” during an execution of v(P) either on main loop entry or on termination, such
that the variable s, has the value s in this state. Note that the termination event 4/ is only
appended to s, on termination of v(P). Therefore

last(s) # / =
Y(v(P),s) ={o,0": S(v(P)) |
<v(P),0 >—"< 8,0 > No'(s,) =semp(a')}

last(s) = / =
Y(v(P),s) ={o,0": S(v(P)) |
<v(P),0>—*< E, 0’ > Nd'(s,) = s e wp(c’)}

The following lemma shows that the collection of sets X(v(P), s) is prefix-closed with respect
to s in the following sense:

Lemma 9 If o' is a state contained in S(v(P),s) and s" < s, then there erists o €
Y(v(P)); o" € S(v(P),s"); §', 8" € {E, S} such that

<v(P)yo>—"< 8" 0" >—"< S50 >
A

O_Il(sv) — S”

Proof.

Each assignment to s, in v(P) appends a single entry to the pre-state of s,. Therefore,
using induction over s, and the semantic rules for sequential nondeterministic programs, it
is easily established that

I =4 #0'(sy) > 0=
(Jo € X(v(P)); 0" € B(v(P),s"); §',8" € {E,S;} o
<v(P)yo>—"< 8" 0" >—*< 8 0 >
A
0" (sy) = front(s))
holds on each main loop entry and on termination of v(P). Repetitive application of I yields

the assertion of the lemma.
O

The following lemma establishes the relationship between the sets X(P,s) and X(v(P), s).
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Lemma 10 If P is a sequential CSP process in normal form and v(P) the associated se-
quential nondeterministic program, then

1. If s € Traces(P), then X(P,s) = X(v(P), s).
2. If s € A* — Traces(P), then X(v(P), s) = 0.

Proof.
Proof of Part 1. We use induction over the length of traces s.

Proof Obligation 1.1. Assertion (1.) of the lemma holds for s = ().

We calculate

(P, () =
[definition of P and X(P, s)]
{r, 7" :E(P) | < So,7>—" "< E, 7" >
o7} =
[interpretation of Sy is the same in P and v(P)]
{o,0" : Z(v(P)) | <v(P),o0 >—"<s,:=(); R, :=r(Cv,Tour); Sp,0" >
o 7p(0")} =
[sy, R, are not contained in the domain of states 7 € X (P)]
{o,0" : 2(v(P)) | <v(P),o0 >—*<s,:=(); Ry:=r(Civ,Tour); Sp,0" >
o mp(0" @ {sy = (), Ry = o"(r(Civ, Tour))})} =
[semantic rules for assignment and sequential composition]
{o,0" : 2(v(P)) | <v(P),o >—*< 8,0 > Nd'(s) = ()
e p(0')} =
[definition of v(P) and X(v(P), s)]
Y(w(P), ()
This shows the validity of proof obligation 1.1.
Proof Obligation 1.2. Assume that assertion (1.) of the lemma holds for all traces s with
0 < #s < n. Then the assertion also holds for all s (e) satisfying e € [P/s]°.
Case 1.2.1: Assume s” (e) € Traces(P) with e = /.
Then
2(P,s7(V)) =
[inductive definition of (P, s)]
{7:5(P,s) | 7 = (Aepermoropr 7 Bei) @ 7} =
[induction hypothesis]
{o,0" : Z(v(P)) |
<v(P),0>—="<8,,0" > N0"(sy) =5 No" = (Ae,iyermurovr — Bei)

e mp(0")} =
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[semantics of nondeterministic repetitive command]
{o,0" : Z(v(P)) |
<v(P)yo>—"<s,:=38"(V); Ry:=rCw,Tovr)., 0" >Nd"(s,) =s
o Tp(o")} =
[$y, R, are not contained in the domain of states 7 € X (P)]
{o,0" : Z(v(P)) |
<V(P),0>—*<s,:=38,"(V); Ry =7(Cw,Tovr).,0" > Nd"(sy) =s
o mp(0" @ {5y = s (V) By = "(r(Civ, Tour))})} =
[Lemma 9, semantic rules for assignment and sequential composition]
{o,0" : 2(v(P)) | <v(P),0 >—*< E,0' > Nd'(sy) = s (/)
e (o)} =
[definition of X(v(P), s)]
S (P), s (V)

This shows the validity of proof obligation 1.2 in case 1.2.1.
Case 1.2.2. Assume s (e) € Traces(P) with e = in.y;, and in € IN, y;, € a(in).
Then

Y(P, s (in.ym)) =
[inductive definition of (P, s)]
{r:3(P,s); T":%2(P) |
(i o7 = Bini) N < Tini = Yin; Sin,isT>—>"< E, 7' >e7'} =
[induction hypothesis]
{" :2(v(P),s); 7" :X(P) |
(i o 7" = Bini) A < Tini := Yin; Sin,i, 7" > — < E, 7' > o7’} =
[definition of X(v(P), s), interpretation of |
[Zin.i *= Yin; Sin,i is the same in P and v(P) |
{o,0",0" : E(v(P)) |
<v(P),0 >—*< 80" >Nd"(sy)) =s A
(i 00" = Bini)) N < Tin,i = Yin; Sin,i»0' >—"< E,0' > e7p(c')} =
[semantics of nondeterministic repetitive command]
{o,0",0" : E(v(P)) |
<v(P),o >
—" < Lini = Yins Sinyis So i= Su  (.Yin); Ry :=r(Civ.Tour); Sp,0" > A
0"(sy) = $ N< Tin;i *= Yin; Sin,is0' >—"< E, 0" > e 7p(c')} =
[Lemma 9, semantics of assignment, |

[sy, R, are not contained in dom 7p(c’)]
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{o,0',0" : S(v(P)) |
<v(P),o >
—" < Tin,i = Yin; Sm,z'; Sy = 8uf\<m-ym>; R, = T(FIN-FOUT); Spy o’ > A
" (sy) = s A
< Tini = Yin; Sm,z'; Sy = Sv/\<7;n~yin>; R, = T(FIN-FOUT),U" >
—F < E, o @ {Sv — SA(in.yC), RU — O'I,(T'(F[N.FOUT))} >
e mp(0’ @ {s, = s (in.y.), Ry — " (r(Tiy.Tour))})} =
[semantics of sequential composition]
{o,0",0" : Z(v(P)) |
<v(P)yo>—*< 8,0 ®{sy = s (in.ye), Ry —= " (r(Tin.Tour))} > A
0" (sy) = s
o Tp(0’ & {s, = s (in.y.), Ry = o"(r(Ciy.Touvr))})} =
[Lemma 9]

{o,0" : 3(v(P)) |
<v(P),o>—"<Sp,0" > Nd'(sy) = s (in.yin)

o 7p(0')} =
[definition of X(v(P), s)]

This shows the validity of proof obligation 1.2 in case 1.2.2.

Case 1.2.3. Assume s (e) € Traces(P) with e = out.v and out € OUT: in analogy to
case 1.2.2.

This shows the validity of proof obligation 1.2 and completes the proof of part (1.) of the
lemma.

Proof of Part 2. Suppose
o € X(w(P),s" " (in.yin)) N s" € Traces(P) A s" " (in.yy) ¢ Traces(P)
Application of Lemma 9 implies the existence of o,0” € X(v(P)) such that
<v(P),o>—"<S,0">—"< 5 0" >NAN0"(s) ="

Application of the semantic rules for the nondeterministic repetitive command, assignment
and sequential composition implies the existence of a guard Bj,; such that ¢” = Bj,;.
Application of part (1.) of this lemma yields the existence of a state 7" = 7wp(c”) € (P, s")
so that 7" = B, ;. Application of Lemma 8, (1.) yields the contradiction in.y,, € [P/s"]°.

Therefore L(v(P), s” " (in.yin)) = 0 follows. The cases o' € X(v(P),s" ™ (out.zou,i)) and

o € X(v(P),s" " (4/)) are treated analogously. This completes the proof of part (2.).
]
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3.4.4 Mapping Behavioural Specifications to Invariants

In addition to the explicit process representation, it is also possible to map behavioural
CSP specifications S(s, R) interpreted in the untimed failures model Myp to predicates
interpreted over the variables s,, R, for programs in ran v C SN: Let SPECyr be the
collection of specifications S(s, R) over the fixed alphabet A, and INV (s,, R,) the set of
all predicates over the free variables s,, R, with type s, : A*, R, : PA. Then we define a

mapping

t: SPECyp — INV (s, R,)
by

(S (5, R)) =ap S(s0, o)

The mapping ¢ just replaces the free variables s, R denoting trace and refusal in a CSP
specification by the free variable s,, R, denoting program variables of sequential programs
contained in ran v. This replacement is well-defined since the traces s and variables s, have
the same type A* and the refusals R and the variables R, have the same type P A.

Following this correspondence between CSP specifications S(s, R) and predicates ¢(S(s, R))
over program variables s,, R,, we write

v(P) sat «(S(s,R)) =4
(Vo,0" : S(v(P)); S":{E, S} e
<v(P),o>—*< 8 0 >= (' =(NU:PR, e S(sy, U))))

where 3(v(P)), E, Sy, are defined as in the previous section. Informally speaking, the asser-
tion v(P) sat 1(S(s, R)) expresses that +(S(s, R)) is an invariant of the main loop of v(P)
and also holds in every final state, if v(P) terminates.

3.4.5 Mapping Sequential Programs into the Failures Model

We will now define a mapping £ from sequential nondeterministic processes in the range of
v into the untimed failures model M yr of CSP.

g:SN—%MUF

dom & =ran v

For a sequential program S € ran v we define

£(S)={o,0 :3(S5); §":{S,E}; U:PA|
<S,0>—="<8,0>NUCR,) e (0(s), U)}

£(S) defines the set of all pairs (u, U) such that u is the value of the program variable s,
and U a subset of the value of R,, “recorded” at specific states ¢’ during an execution of S.
The “recording” takes place at the beginning of each main loop cycle (program state Sg). If
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S terminates (program state F), also the values of s, and R, in the termination state are
added to £(S5).

¢ is obviously well-defined as a mapping into A* <+ P A, the set of all relations between A*
and P A. It still has to be shown that ran £ C M yp. This is a consequence of the following
lemma, exhibiting the relationship between v, £ and the semantic mapping [ e [ ;%

Lemma 11 If P € CSPsyr is a sequential CSP process in second normal form, then
[Py =&ov(P)

Proof.
From Lemma 10 and the definition of £ we get

Traces(P) = {u: A* | S(v(P),u) # 0 o u}
={o0,0" : Z(v(P)); S':{E,SL} | <v(P),0 >—"< 85,0 >e0d'(s,)}
={u:A* U:PA|(u,U)€&ov(P)eu}
As a consequence it remains to be shown that

Ref(P/s)={U :PA|(s,U)elov(P)e U}

holds for all traces s € Traces(P).

To this end we calculate

Ref(P[s) =
[Lemma §|
UT:2(P,S)(if T ): (A(C,i)GFINUFOUT B BC,i)
then P(A - {/})
else P(A — (Ugnyy: (et 0 U
U(OUt’j):{(Cai):FOUT‘T':Bout,i}{OUt'T(xOUtJ)}))) -
[Lemma 10]

Ua’:E(u(P),s)(if o' ): (/\(C,i)EFINUFOUT - Bc,i)
then P(A —{\/})
else P(A — (Ufin.j):{(ciyT o' =Bi. 31 0 [} U
Uout,){(c,i)Tourlo’ EBow, i L 08-0" (Zout,j) 1)) =
[definition of R, = r(T';x, Coyr)]
Us:sw(p),s) PT(Ry)) =
[definition of &]
{U:PA|(s,U)€tov(P)e U}

|

6Since we are considering processes P over a fixed alphabet A, [P]l;r = (4, F) is determined by the
failures set F': A* <+ P A associated with P. Therefore we drop the A-component of [ e ] 5.
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3.4.6 Establishing Behavioural Properties of Normal Form
Processes

We are now ready to prove the main theorem. It expresses the fact that the proof theory
of Apt and Olderog [5] for sequential nondeterministic programs can be used to show that a
CSP process in normal form satisfies a specification on traces and refusals.

Theorem 6 If P € CSPgsyr is a sequential CSP process in normal form, interpreted in the
untimed failures model M yr, then

P sat S(s,R) iff v(P) sat «(S(s,R))
O

Proof. To establish the desired relationship, consider the following diagram:

L

SPECyp INF (s,, R,)
triangle 1
sat sat
sat triangle 4 Muyr triangle 2 sat
[elyr 3
triangle 3
CSPsnr U ran v C SN

The triangles 1,2,4 commute because of the definition of sat , triangle 3 commutes because
of Lemma 11. Therefore the following transformations of predicates are valid:

P sat S(s,R)
[definition of sat in untimed failures model]
& (V(s, R) : [P]yp ® S(s, R))
[Lemma 11]
& (Y(s, R) : £(v(P)) ® 5(s, R))
[definition of &]
& (V(s,R) : {o,0 : E(w(P)); S": {SL,E}; U:PA|
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<v(P),o0>—*< 8,0 >ANUCd(R,) e (0'(sy),U)} ®S(s,R))
[set theory, semantics of nondeterministic sequential programs]
& (Vo,0 :X(w(P)); S":{S,,E} e
<v(P),o>—*< S 0 >= (c'E=ENU:PR, e S(s,, U))))
[definition of sat for nondeterministic sequential programs]
< v(P) sat «(S(s, R))

This completes the proof of Theorem 6.
O

3.5 Discussion and Future Work

In this Chapter we have presented a case study, describing the design and verification of
a fault-tolerant dual computer system. The case study was presented in the formal frame-
work introduced in Chapter 2. This time we demonstrated on system level how lifeness
properties can be verified by means of reasoning about behavioural specifications in the
failures-divergence model, without using the abstract interpretation techniques applied for
the case study in Chapter 2. Another new proof technique was introduced, allowing to verify
behavioural properties of explicit sequential CSP processes in the failures model by means
of reasoning about sequential nondeterministic programs. The proof method was formally
justified by constructing a mapping from normal form CSP processes into sequential non-
deterministic programs and proving that behavioural specifications of the former could be
equivalently expressed as invariants of the latter.

With an explicit process representation at hand which is known to be consistent with the
implicit specifications developed during the preceding design stages we have two possibilities
to reach implementable processes:

e [f the sequential CSP process representation is sufficiently “close” to the executable
language of the target system, source code can be produced by means of syntactic
transformations. For example, the processes ABFTX, ABFRC introduced in Sec-
tion 3.3.2 could be implemented in OCCAM in a rather straightforward way. Such
techniques have been investigated in the ProCoS project [10] with the objective to
generate OCCAM code for the Inmos Transputer [46]. In the UniForM project [88]
a similar approach will be undertaken to generate PLC code from normalised CSP
process representations.

e [f the sequential CSP process P still represents rather an abstract view on the system,
possibly not yet showing all the relevant implementation details, further explicit CSP
refinements @)y, 2, ()3, ... may be produced and verified by means of model checking
with FDR [27]. Such refinements can introduce new parallel processes showing ad-
ditional channels and other implementation details, so that the refinement condition
would be P C @; \ L(Q;), where L(Q;) denotes the new local events of @; introduced
in the refinement step. This technique has been applied in the verification of the com-
ponents of the dual computer system, where the associated higher-level sequential CSP
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process only served as an auxiliary component “closing the gap” between behavioural
specifications and explicit processes.

The relation between CSP processes and nondeterministic sequential programs described
above is not the only one: It is well-known that also ||- and ||| -combinations of sequen-
tial normal form processes can be transformed into equivalent sequential programs. This
Sequentialisation Theorem has been proven by Apt and Olderog for their operational CSP
semantics [5, p. 336]. For the denotational CSP semantics a proof is currently worked out in
the UniForM project, as a generalisation of the proof presented above. However, this theorem
is not essential in the development framework for dependable system described in Chapter 2:
Having established the behavioural properties of isolated sequential processes with the help
of Theorem 6, the properties of their ||- or ||-combination can be derived applying the laws
of the compositional CSP proof theory for these operators.

It should be noted that from today’s point of view, the fault-tolerant dual computer system
should be regarded as a “toy-example”. It would have been possible to verify the full system
mechanically in a single step, using the FDR model checker. Nevertheless the mechanisms
of the hot standby design show the crucial properties necessary for a “real” fault-tolerant
server implementation, like the one described in [73]. Moreover, I am convinced that the
method to apply different verification formalisms, as demonstrated in the case study, is
very helpful for the development of “real-world” systems: It allows to benefit from the
theoretical results and the tool support available in one formalism (in our case, sequential
nondeterministic programs) to establish properties about objects defined in another (in our
case, CSP processes).

Besides using combinations of different techniques, a promising approach to facilitate the
verification process is to use a “library” of verified “generic” specifications, so that new
concrete solutions could be verified to be “instantiations” of certain specifications of the
library. Such techniques help to avoid verifying each new development from the most abstract
level down to the detailed design. A first effort in that direction has been undertaken
by the author in [76], where a modified version of the dual computer was proven to be
consistent with the system presented above, using the algebraic proof theory of CSP. For a
successful application of such an approach it is essential to investigate the basic paradigms
of fault-tolerance, in order to decide which abstract specifications are the best candidates
for a generic library. An initial investigation of these paradigms has been performed in the
NWO project “Fault Tolerance: Paradigms, Models, Logics, Construction” [103]. The hot
standby concept described above seems to represent such a paradigm. Further candidates for
generic specifications are stable storage [103], n-modular redundant computers with voting
mechanisms [104] and fault-tolerant communication protocols like the one used in Chapter 2.



4. Safety Aspects: Test Automation for
Reactive Systems

4.1 Overview

This chapter focuses on the problem of test automation for reactive systems. Its relationship
to the safety aspect of dependability is twofold:

e The concepts described have been applied in practice for the test of safety properties
in a tramway control system, and I expect that the main future applications will also
be in the field of railway control, where safety properties play a dominant role among
the dependability aspects.

e When comparing safety properties to liveness, especially fairness properties, the latter
are less suitable for an analysis by means of testing: At least theoretically, a violation
of fairness criteria can only be detected in infinite executions, while the objective of
testing in practice is to find errors within a finite number of execution steps. As a
consequence, the important properties of hard real-time systems and safety-critical
systems will mostly be specified as safety properties.

For these reasons, the testing approach described in this chapter is mainly intended for
the verification of dependable systems with emphasis on the safety aspect. Nevertheless
you will notice that it is based on specifications where no explicit reference is made to
normal and exceptional behaviour or external and internal threats, according to the notion of
dependability introduced in Chapter 1. This has been justified in Chapter 2: At each stage
of the development process for a dependable system it is possible to transform the collection
of normal behaviour requirements, dependability requirements and fault hypotheses into
“ordinary” design obligations, containing the dependability aspects as integral parts of the
transformed specification. Such a transformed specification is the input document for the
associated test procedure, and, as motivated above, it will contain mostly safety properties.

We describe the formal framework for the test system VVT-RT (Verification, Validation
and Test for Reactive Real-Time Systems) developed by the author, which supports the
automated test generation, test execution and test evaluation for reactive systems. VVT-RT
constructs and evaluates tests based on formal CSP specifications [44], making use of their
representation as labelled transition systems generated by the CSP model checker FDR [27].
A main objective of the present chapter is to provide a sound formal basis for the development
and verification of high-quality test tools: Since, due to the high degree of automation offered
by VVT-RT, human interaction becomes superfluous during critical phases of the test process,
the trustworthiness of the test tool is an issue of great importance. Therefore it is intended
to perform a verification suite for VVT-RT so that the tool can be certified for testing safety-
critical systems by the responsible authorities in the fields of avionics and railway control
systems. The present chapter represents the starting point of this verification suite, where
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the basic strategies for test generation and test evaluation used by the system are formally
described and verified. VVT-RT has been designed to support automation of both untimed
and real-time tests. The present chapter describes the underlying theory for the untimed
case, which has also been published in [91, 93, 92]. Exploiting these results, the concepts and
high-level algorithms used for the automation of real-time tests are described in a technical
report which is currently prepared [89].

Section 4.2 describes the practical applications in industry that motivated the theoretical
work presented here. In Section 4.3, we motivate and introduce the basic concepts of test
automation in an informal way. In Section 4.4, some testing terminology used in industry is
introduced together with explanations of the intuitive meaning of the corresponding terms.
Several of these definitions will be formalised in the sections to follow. Section 4.5 provides
a formal description and correctness proofs of the test generation and test evaluation mech-
anisms for untimed specifications, as implemented in the VVT-RT system. The main results
are summarised and further research activities are described in Section 4.6.

4.2 Related Industrial Projects

Software Test for Avionic Software My practical work in the field of test automation
started in 1990 with DST, when I was manager of a project carried out for Airbus Industries
with the task to develop application and operating system software for the A330/A4340 Cabin
Communication Data System (CIDS) [1]. Since the hardware was developed in parallel with
the software, we constructed a software simulation of the operating system layer and the
system interfaces, to perform unit and integration testing for the application software in a
UNIX environment. This Soft Testbed used a formal syntax for the generation of simulated
system inputs and for recording the outputs stimulated by the application software.

While the tests performed in the soft testbed were much more effective and less time con-
suming than the system tests performed with the target system at a later stage, the test
activities were still much too expensive. Moreover, experience showed that the test eval-
uation was not sufficiently trustworthy, since errors were sometimes overlooked during the
manual analysis of the test output. These experiences motivated the test generation and
automated test evaluation concepts based on the Z notation. In [85] a Z specification of a
CIDS application function is described by Ute Hamer and myself, which served both for reli-
able software design and test design. Together with Hans-Martin Horcher and Erich Mikk I
investigated techniques for systematic test generation and automatic test evaluation against
Z specifications [83]. This activity is still continued by Horcher and Mikk in the context of
a research project at Kiel University [41, 63].

Hardware-in-the-Loop Test for an Aircraft Engine Controller From 1992 to 1994
[ managed a project at DST carried out for BMW-Rolls Royce. The task consisted in the
development of a hardware-in-the-loop test system for the real-time test of the FElectronic
Engine Control Computer of the BR700 aircraft engine. In this system a powerful test
language was used, allowing to define both digital and analog input data, stimulating the
target system by means of hardware actors and receiving sensor outputs evaluated in the test
system. A real-time simulation built of both software and hardware components implemented
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the environment behaviour as it was to be expected during real operation. A combination
of manual and automatic analysis techniques supported the test evaluation process.

While the test system provided a considerable automation support, the test suite was based
on structured, but informal requirements specifications. As a consequence, test procedures
could not be generated in an automatic way. For the same reasons, the automatic test eval-
uation procedures could not be formally verified to be consistent with the specification, and
it was not possible to calculate a formal measure for the test coverage achieved. These expe-
riences motivated the investigation of test automation techniques based on formal methods
suitable for the description of concurrent reactive systems!.

Hardware-in-the-Loop Test for a Tramway Crossing Control System The work
presented in this chapter was initiated in 1993, when I started a cooperation with ELPRO
LET GmbH in the field of railway and tramway control systems (see also Section 2.2).
Our joint activities focused on the improvement of Verification, Validation and Test (VVT)
methods for such systems with the objective to increase the trustworthiness and improve
the cost/benefit ratio of VVT activities by means of new methods and tools allowing to
automate parts of the VVT process, thus far performed in a manual way. A first analysis of
the different types of VVT activities to be performed for the development of safety critical
systems resulted in the decision to tackle first the automation of hardware-in-the-loop tests?.
For this type of test, the complete target system consisting of both software and hardware is
analysed by a separate computer, the hardware-in-the-loop test driver. This driver connects
to the target system using its operational interfaces and optionally some auxiliary channels
to access internal system data. The driver stimulates the target system by sending data
to its input channels and controls the system responses by monitoring the outputs. While
exercising the tests on the target system, the test driver simulates the behaviour of the target
environment, so that the hardware-in-the-loop test configuration behaves as close to the true
operational conditions as possible. In this field the greatest benefit was expected, because

e hardware-in-the-loop tests can be used to prepare the final acceptance test which is
the most critical VVT activity with respect to the success of the project,

e the most severe errors were expected in the interplay between software and hardware,
so that they could not be detected by means of isolated unit tests or integration tests
performed in a simulation environment?.

These considerations motivated the development of the VVT-RT system together with its
underlying theory described in this chapter. The first application which has recently been

However, I am not convinced that a fully automated test against a formal specification would have been
possible in the BMW-Rolls Royce application: The formal specification language would have been a language
suitable for the description of hybrid systems, and the possibilities to simulate such specifications are still
restricted. Moreover, the relationship between formal hybrid system descriptions and testing still remain to
be investigated.

2Further improvements of the development process and the VVT process are currently investigated in
the UniForM project [88].

3This assessment of error criticality is consistent with with the estimates described bei Wegener et
al. in [115]: The authors state that from their experience with the evaluation of total testing expenses
in projects performed at Daimler-Benz AG the main costs are caused by system testing in combination with
the examination of software-hardware interfaces (38%). 34% of the total expenses are spent on unit testing,
and 27% for integration testing.
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completed was the hardware-in-the-loop test of a tramway crossing control computer devel-
oped by ELPRO LET GmbH and based on PLC hardware [25, 86, 87, 90, 92]. The task
of this system is to detect trams approaching the crossing by means of electro-mechanical
sensors and switch traffic lights and signals according to an algorithm assigning priority to
trams, at the same time guaranteeing time intervals when pedestrians and vehicles may pass
the crossing. Dependability issues consist in a combination of safety and availability require-
ments: To provide safety, the system must never allow signals and traffic lights to be in state
“green” at the same time and observe time intervals where the crossing is completely blocked
before granting access to trams or road vehicles. In case of a system failure, a stable safe
state is assumed by switching off the signals and turning the yellow lights into flash mode,
which indicates that every vehicle passing the crossing has to do so on its own responsibility.
To increase the reliability, redundant hardware is used in signals, traffic lights and their elec-
tronic interfaces. The software of the control system detects failures concerning the current
and voltage of these peripherals. It implements a switching concept ensuring that in case
of a component failure either spare components can be activated or the system performs a
transition into the stable safe state.

The test was executed on a hardware platform developed by ELPRO, consisting of a PC
implementing a test driver and a PLC system acting as interface between PC and the target
system PLC. The formal specification of the target system, the test generation and evaluation
were performed by myself. The test results were considered as successful [90] for the following
reasons:

e Two errors were found by means of VVT-RT, after the target system had been thor-
oughly tested in a manual way and passed the official acceptance test performed by
the certification authorities.

e The number of tests performed and documented automatically by VVT-RT resulted in
about 3600 pages of test documentation® which would otherwise have to be manually
produced to document the same degree of test coverage without tool support.

e Though the test procedure using VVT-RT was performed for the first time, the total
costs of the automated tests were less than 30% of the costs estimated for an equivalent
manual test.

4.3 Test Automation for Reactive Systems —
Mbotivation and Basic Concepts

4.3.1 Motivation

Design, execution and evaluation of trustworthy tests for safety-critical systems require con-
siderable effort and skill and consume a large part of today’s development costs for software-
based systems. It has to be expected that with conventional techniques, the test coverage
to be required for these systems in the near future will become technically unmanageable
and lead to unacceptable costs. This hypothesis is supported by the growing complexity of
applications and the increasingly strict requirements of certification authorities with respect

4This corresponds to 98% branch coverage of the transition graph representing the specification.
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to the verification of safety issues. For these reasons methods and tools helping to automate
the test process gather wide interest both in industry and research communities. “Serious”
testing — not just playing around with the system in an intuitive unsystematic way — always
has to be based on some kind of specification describing the desired system behaviour at
least for the situations covered by the test cases under consideration. As a consequence,
the problem of test automation is connected to formal methods in a natural way, because
the computer-based design and evaluation of tests is only possible on the basis of formal
specifications with a well-defined semantics.

Whereas it may be argued that the test of software code may become superfluous in the
future, because programs may be derived from formal specifications by means of stepwise
refinement accompanied by formal verification or by means of formally verified transforma-
tional techniques, I am convinced that testing will always remain mandatory for the analysis
of behaviour on system level:

e Formal development and verification procedures will never cover the full range of soft-
ware and hardware components, at least for medium-sized and large systems.

e As Brinksma points out in [11] in the context of conformance testing, manufacturers
will not always disclose the implementation details of their products if external groups
perform the product evaluation. As a consequence, (black-box) testing will be the only
means to investigate the correctness properties of such a system:.

e While the correctness properties of formally verified software will not “wear out” dur-
ing system operation®, hardware components initially functioning correctly may fail
after a period of operation which is only statistically predictable. As a consequence,
safety-critical systems have to be analysed in regular intervals using tests designed to
detect “local” failures before they can impair the system functionality required by the
user. For example, critical computer components in airborne systems have to perform
continuous testing in all flight phases using their Built-in Test Equipment (BITE) [22].

e A psychological, but nonetheless even more important reason is that customers prefer
to see a system in operation before paying the bill. An acceptance test with the
real system will never be replaced by a document review of all the formal verification
activities performed during system development.

Just as it is impossible to build theorem provers for the fully mechanised proof of arbitrary
assertions, the general problem of testing against arbitrary types of specifications cannot be
solved in a fully automated way. The situation is much more encouraging, however, if we
specialise on well-defined restricted classes of systems and test objectives. This strategy is
pursued in our approach, where we will focus on the hardware-in-the-loop test of reactive
systems.

The idea to apply the theoretical results about testing in process algebras to practical prob-
lems was first presented by Brinksma, with the objective to automate testing against LOTOS
specifications. His concept has been applied for the automation of OSI conformance tests;
see [11] for an overview. Today, testing against different types of formal specifications has
gained wide interest both for engineers responsible for the quality assurance of safety-critical

5As long as the requirements remain constant over time!
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systems and in the formal methods community: To name a few examples, Gaudel [30] inves-
tigates testing against algebraic specifications, Horcher and Mikk in collaboration with the
author [83, 41, 41, 63] focus on the automatic test evaluation against Z specifications and
Miillerburg [68] describes test automation in the field of synchronous languages.

The objective of our contribution presented in this chapter and in [89] is not to present a
new testing theory, but to create “implementable instantiations” of well known theoretical
results with the objective of dependable tool construction. Our approach is based on the
untimed CSP process algebra and uses Hennessy’s testing methodology [39] as a starting
point. In [89], we expand these results into testing against timed CSP specifications, with an
emphasis on the investigation of timed safety properties, based on the semantics presented
by Davies [18]. The full specification will be separated into timed and untimed components,
where the interpretation of the latter is consistent with Hoare’s untimed CSP [44], but must
representable as finitely generated transition systems.

4.3.2 Formal Methods for Tool Qualification

While the availability of a test automation tool offers the possibility to increase the number
of test executions by a substantial amount, it has to be taken into account that this will
also lead to situations where at most a small subset of the test definitions and results may
be checked in a manual way. Indeed, the full scale of advantages offered by the tool can
only be exploited if users can trust the correct operation of the tool completely, without
manual inspection of the test procedures and results. This problem has been recognised by
several authorities responsible for the certification of safety-critical systems. For example,
the development standard [22] requires all tools to be verified and certified according to strict
evaluation procedures, as soon as they automate any development or verification activity in
a way making human interaction superfluous. Due to these strict evaluation requirements,
the number of tools certified for the automated development or verification of safety-critical
systems is very small. Furthermore, it is often criticised that the tools will be out-dated before
the evaluation and certification suite has been completed. This situation may be considerably
simplified, if a tool is developed from the beginning with the intention to allow evaluation and
certification. The starting point of such a development process should always be a precise
specification of the application range intended for the tool, followed by a description and
verification of the techniques used to implement the specified services. Such a starting point
is provided by this chapter: We present formal specifications for the notion of trustworthy
test tools and mathematical proofs for the correctness of test drivers performing automatic
test generation and test evaluation.

4.3.3 Logical Building Blocks of a Test Automation System

To tackle the full task of tool qualification in a well-organised way, let us look at the logical
building blocks of a complete test automation system (Figure 4.1)°.

The Test Generator is responsible for the creation of test cases from specifications. The gen-
erator is called trustworthy, if for each possible implementation error violating the specified

6Figure 4.1 is not intended to suggest a system architecture for a test system, it only represents logical
components that should be present.
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Figure 4.1: Logical building blocks of a test automation system.

requirements a test case will be created which is capable of detecting this error. Observe
that in the context of reactive systems, a test case is not simply a sequence of inputs and
expected outputs: Since the target system may behave nondeterministically on the interface
level, the same sequence of inputs may stimulate different responses of the target system,
or may even be refused during repeated executions. Therefore we rather define a test case
as a description of execution rules, specifying the full set of possible sequences of input and
output events, together with real-time assertions which should be met when exercising the
test case on the target system.

The Test Driver interprets the test cases provided by the test generator and controls their
execution by writing data on input channels of the target system and collecting system out-
puts. In general, the target system is only required to behave according to the specification,
as long as the operational environment also behaves correctly. A test driver is therefore
called trustworthy, if it exactly simulates the behaviour of the “real” environment during
test execution.

The Test Evaluator verifies the observed test execution against a specification and decides
whether the execution was correct. The specification document used for test evaluation, say,
SPEC, is not necessarily the same as the specification SPEC] used for test generation: For
example, SPEC; may be an explicit CSP specification, because the possibility to interpret
explicit CSP processes is suitable for test generation. For test evaluation, it may be preferable
to use trace assertions in SPEC,. Moreover, it will not always be the case that every
behavioural property reflected by SPEC) will also be checked by SPEC;. Conversely, it may
be the case that SPEC] is an incomplete description of the required behaviour, which is just
suitable for the generation of certain test cases, while SPEC; is a stronger specification, valid
for the evaluation of other classes of test cases as well. For the test evaluator trustworthiness
means that, given the results of a test execution, it will be detect every violation of the
specified requirements.

The Test Monitor observes each test execution in order to decide whether

e a specific test case has been performed for all relevant executions that are possible for
this case, when exercised on the target system,
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e the full set of test cases executed so far suffices for the required level of test coverage.

In many applications, these tasks of a test monitor cannot be performed based on the black-
box observations of the system interface alone. Instead, additional channels must be created,
providing internal state information about the target system for the monitor.

4.4 Testing Terminology

In this section some testing terminology, as presently used in industry is introduced. The def-
initions have been taken from the international standard DO-178 B [22] for the development
of software in airborne systems. Verbatim quotations from [22] are displayed as emphasised
text.

The term Validation will denote the process of determining that the requirements are the right
requirements and that they are complete. Since the system requirements specification is the
“initial” document describing the system behaviour desired, no other document exists which
could serve as a reference to prove that the specification is complete and really describes
the customer’s demands. Therefore validation can never be performed by means of formal
proofs alone, but must also rely on informal techniques like simulation or — if the customer
and the supplier will risk an a posterior: validation — system testing. Verification denotes
an evaluation of development products (specification documents, design documents, code
etc.) with the objective to ensure their consistency with respect to the reference documents
applicable for the products. So in contrast to validation, the verification process can rely
on other documents specifying (at least in theory) completely how the product should look
like. If the reference documents are written using a description language with a precisely
defined semantics and verification is performed by means of mathematical reasoning, the
term Formal Verification will be used”.

In our context Testing means execution of implemented system components providing specific
data at their (input) interfaces, while monitoring the component behaviour. The objective of
testing is to verify that the component satisfies the specified requirements for the set of input
data applied. To avoid confusion we will use the term Simulation for the symbolic execution
of a specification with specific (abstract) input data, though this is nothing else than testing
on an abstract level.

A Test Case is a set of test inputs, execution conditions, and expected results developed for
a particular objective. A test case does not necessarily define the complete set of input and
output data to be used in an explicit way. Instead, the test case can consist of a specification
describing how to construct the explicit test data, starting with initial inputs and deriving
consecutive data values and expected results during the test execution. The objective of
expected results is to provide an unambiguous characterisation of correct system behaviour,
as it may be observed during an execution of the test case. Since “correct” behaviour is
defined by the specification document, the expected results — if developed in the correct way
— should be consistent with the specification.

"Observe that this definition of verification differs from that normally used in the formal methods com-
munity, where it is always supposed to be the formal verification process. In the context of this chapter,
verification subsumes all formal and informal techniques applicable for a posteriori insurance of product
system correctness, i. e., reviews, audits, walk throughs, test, formal verification etc.
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A Test procedure is a detailed instruction for the set-up and execution of a given set of test
cases, and instructions for the evaluation of results of erecuting the test cases.

We will use the term requirements-driven testing if the specification serves as the input
document to construct the associated test cases. If the test cases are derived from the
implementation, e. g. from the software code, the term implementation-driven testing will
be used. Note that implementation-driven testing also requires a specification document,
because otherwise it cannot be decided whether the results are correct.

Tests may be exercised on the complete system as well as on isolated system components.
In practice, strategies for a combination of tests on system level and tests on component
level are developed, in order to cope with the overall complexity of the test process. The
term Unit Testing will be used to denote the test of one isolated system component, if no
smaller unit of this component will be tested separately. Depending on the granularity used
for the test of a specific system, a unit may denote a block, a function, a thread, a task
or any other coherent software unit. Integration Testing applies a strategy of successively
adding new components to those already tested and then performing a test of the resulting
configuration. System Testing denotes the test of the complete target system. For system
testing, the environment used for the tests will be the “real” operational context or at least
a simulation implemented according to the hypotheses about the operational environment
behaviour at the interface level of the target system.

Tests influencing and monitoring only the interface behaviour of the component to be tested
will be called Black-Box Tests. If internal states or internal execution sequences of the
component are also monitored or even influenced, this will be denoted as White-Box Tests.

If a component is not tested in the operational environment of the system but within an
“artificial” context, the software and hardware implementing this context will be called a
Test Driver.

As pointed out for example by Hennessy [39], test cases for reactive systems cannot be
simply described by means of a pre-state, test inputs and the expected state “after program
execution”. Since a reactive system interacts continuously with its environment, test cases
also have to verify the correct causal relationships between inputs and outputs, the readiness
to engage into specific actions, real-time requirements etc. Therefore in the context of
reactive systems a (Black-Box) Test Ezxecution denotes a Trace observable at the interface
between the test driver and the component under consideration. In our context a trace is
a finite sequence of Events (t,c,v). Here ¢ denotes an input- or output interface channel
observable by the test environment. We do not impose any restrictions about one-to-one or
multi-way communication. Value v is passed over channel c¢. Time stamp t records the point
in time, when the communication took place.

A test case for reactive systems consists of the following information:

1. wnput data and causal execution conditions: This is a specification referring to the
channels of the component to be tested. It describes initial inputs and consecutive
inputs depending on the reactions of the target system. The specification may be
defined by means of a predicate or by an explicit process characterising the behaviour
required of the test driver during test execution.

2. timed execution conditions: a specification defining time-dependent conditions when
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to stimulate a certain input

3. (timed) expected results: a specification characterising the traces which are regarded
as correct executions of the test case. In the case of deterministic reactive systems
without timing requirements, this specification may explicitly define the sequence of
inputs and outputs which is required. However, as soon as timing requirements exist
or tolerances for data values are acceptable or the system reaction to a sequence of
inputs may be nondeterministic, correct system behaviour can only be specified by
more general assertions or processes.

In specific situations, where the systems to be verified can only assume a very limited number
of different states and use only restricted ranges for variable values, we may test every possible
execution performable by the system. If this complete number of tests is reached, the process
will be called exhaustive testing.

4.5 Trustworthy Testing — Untimed Case
4.5.1 Motivation and Conceptual Background

The objective of this section is to investigate methods for the automated tests of systems
against specifications expressible in untimed CSP as defined by Hoare [44]. The basic idea
for the automation process is:

e Automated test generation is performed by mechanised analysis of the specification,
which results in a choice of traces and acceptance sets to be exercised as test cases on
the target system.

e Automated test evaluation is performed by observing traces and readiness of the target
system and checking mechanically, whether this behaviour is correct according to the
specification.

Obviously, these tasks are fundamentally connected to the problem of mechanised simulation
of the specification. How to find an implementable solution for this problem, is indicated by
the following well-known theorem (see, e. g., [39, p. 94]):

Lemma 12 (Normal Form Theorem) Let P be a CSP process, interpreted in the failures-
divergence model.

1. If () ¢ Div(P), then
P = N gepeg(py (@ 2 (PO\ R) = P/(z))
2. If Div(P) =0, then P/s = P(s) with
P(s) = M gerer(pys)(x : ([P/s]"\ R) = P(s™(z)))

3. For arbitrary P, P Cgp P(()) holds.
]
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Here the notation [P/s]° = {e: a(P) | (3u € Traces(P/s) ® head(u) = e)} has been used
and P/s denotes the process P after having performed a trace s.

Interpreting this result shows how trustworthy simulators — i. e., simulators really imple-
menting what is expressed by the specification — could be constructed: At each step P/s of
a symbolic execution, choose a valid refusal set R at random and engage into any one of the
remaining events e € [P/s]®\ R. After some e has been chosen, continue in state P/s™(e).
Given an implementation of a simulator, the problem of test generation can be related to the
task of finding executions performable by the simulator. Test evaluation can be performed
by determining whether an execution of the real system is also a possible execution of the
simulator.

With these general ideas in mind, the initial problem to solve is how to retrieve the semantic
representation — i. e., the failures (traces plus refusals) and divergences — of a specification
written in CSP syntax. This has been solved by Formal Systems Ltd and implemented in
the FDR system [27], for the subset of CSP specifications satisfying

e The complete CSP specification only uses a finite alphabet. As a consequence, each
channel admits only a finite range of values.

e Each sequential process which is part of the full specification may be modelled by
means of a finite number of internal states.

e The CSP syntax is restricted by a separation of operators into two levels: The lower-
level process language describes isolated communicating sequential processes by means
of the operators —, M, [],;,X = F(X). The composite process language uses the
operators ||, ||, ~, \,f* to construct full systems out of lower-level processes.

Under these conditions the CSP specification may be represented as a Labelled Transition
System (LTS) [64] which may be encoded by means of a Transition Graph with only a finite
number of nodes and edges. Basically, the nodes of this directed graph are constructed from
Hennessy’s Acceptance Tree representation [39] by identifying semantically equivalent nodes
of the tree in a single node of the transition graph. The edges of the graph are labelled with
events, and the edges leaving one node carry distinct labels. Therefore, since the alphabet
is finite, the number of leaving edges is also finite. A distinguished node represents the
equivalence class of the initial state P of the process. A directed walk through the graph,
starting in the initial state and labelled by the sequence of events (e, ..., e,) represents the
trace s = (ey,..., e,) which may be performed by P, and the uniquely determined node
reached by the walk s represents the equivalence class of process state P/s. The labels of
the edges leaving P/s define the set [P/s]® of events that may possibly occur in state P/s.
In the failures model of CSP a state P/s is characterised by [P/s]?, together with the set
of associated refusals Ref (P /s). Since the alphabet is finite and the collection of refusals is
subset-closed, Ref (P/s) is uniquely determined by the set refMaz (P /s) of mazimum refusals:
Ref(P/s) ={X :Pa(P) | (IR : refMaz(P/s) e X C R)}.

The LTS representation of P by means of a finite transition graph is possible, because any
CSP process constructed by communicating finite-state sequential processes using the com-
posite process language is also finite-state. Therefore, though P may be a non-terminating
process, only a finite number of processes P/s and P/u will be distinct, and an infinite
acceptance tree representation of P may be encoded as a finite graph by identifying the
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nodes P/s and P/u, if the corresponding processes are identical in the failures model. So,
if two directed walks s and u lead to the same node in the transition graph, this means that
P/s = P/u holds in the failures model.

Encoded in this way, the transition graph therefore allows to recover the complete failures
set of a process P, consisting of all pairs (s, X), where s is a trace of P and X a refusal
of P/s. Together with the alphabet, this is the representation of P in the (denotational)
failures semantics. The possibility of divergence for a process = P\ H may be detected
by finding a cycle in the transition graph of P using only events contained in H.

Formal Systems’ FDR tool compiles CSP specifications into their corresponding transition
graph. As a consequence, any evaluation of the specification semantics may be implemented
by means of programs analysing this finite graph.

The problem of automatic test evaluation is now rather trivial: A test execution results
in a trace performed by the implementation. Evaluating the transition graph, it may be
verified whether this execution is correct according to the specification. The problem of
“trustworthy” test generation is much more complex: Theoretically, the transition graph
defines completely the acceptable behaviour of the implementation and — by taking traces
and refusals not occurring in the graph — the incorrect behaviour of an implementation. For
non-terminating systems, this involves an infinite variety of possible executions. Therefore
the problem how to find “relevant” test cases and how to decide whether “a sufficient amount”
of test executions has been exercised on the target system has to be carefully investigated.

4.5.2 CSP, Refinement and the Relation to Testing Methodology

In this section some well-known properties about the relation between testing and refinement
will be summarised and re-phrased for the context of this chapter. Intuitively speaking, a
testing procedure should be called “trustworthy”, if the associated collection of test cases
“converges” to some kind of “correctness proof” with each additional successful test execu-
tion. In order to define these informal notions in a precise way, at first we have to decide
about an appropriate definition of “correctness”.

Correctness Definitions for Implementations

Since we are concerned with the test of an implementation IMP against its specification
SPEC, it is natural to choose a relation between SPEC and IMP to define the correctness
of the implementation. We assume that both SPEC and IMP may be expressed as untimed
CSP processes. In this case the intuitive understanding of implementation correctness in
the context of safety-critical systems may be formally expressed by means of different types
of CSP refinement relations. To this end, it will be required that o(SPEC) = a(IMP), so
specification and implementation are both restricted to the set of events that are “relevant”
for the decision of implementation correctness. This does not mean, that specification and
implementation have to be completely constructed on the basis of the same set of events:
In general SPEC = X \ (a(X) —I) and IMP = Y \ («(Y) — I), where X and Y contain
specification and implementation details using different alphabets. However, we assume that
the correctness of IMP with respect to SPEC may determined by observing I-events only.
This will be investigated in the context of tests for reactive systems in Section 4.5.3.
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The relation between intuitive correctness notions and their formal CSP equivalents can be
described as follows:

1. Safety: The implementation should only perform executions pre-planned in the spec-
ification. This is can be expressed by demanding that the trace space of the imple-
mentation should be contained in that of the specification, i. e.

Traces(IMP) C Traces(SPEC)

2. Requirements Coverage: After having performed an initial execution s which is
possible both for specification and implementation, the implementation should never
refuse a service which is not refused by specification. Formally speaking,

Vs : Traces(SPEC) N Traces(IMP) e Ref (IMP/s) C Ref (SPEC/s)

Since () € Traces(SPEC) N Traces(IMP), this implies that a trace which can never be
refused by SPEC will also be performed by IMP. However, if Traces(SPEC') contains

s (e) but may refuse e after s, it is not guaranteed that the implementation will be

able to perform s7 (e): Sufficient requirements coverage allows to refuse a service in
the implementation completely if it may be refused according to the specification.

3. Non-Divergence: Apart from blocking a service, non-availability may be caused by
performing an infinite sequence of internal events invisible to the outside world, or by
showing completely unpredictable system behaviour. This is denoted by divergence,
and the implementation should diverge — if at all — only after traces where the specifi-
cation also diverges.

Div(IMP) C Div(SPEC)

4. Robustness: If it is required that every trace pre-planned in the specification should
also be performable in the implementation, we need

Traces(SPEC) C Traces(IMP)

This definition of robustness, introduced in [11], has not received much attention in the
literature about CSP refinement, though it is a common requirement in practical ap-
plications: For example, robustness covers the situation where the specification process
contains nondeterminism for exception handling. Failures refinement only requires that
every guaranteed behaviour of the specification process will also be performed by the
implementation. Robustness additionally requires that nondeterministic exceptional
behaviours described by the specification process are also covered by the implementa-
tion.

Example 4.1 Let SPEC = a—b—STOPMc¢—d— STOP Then IMP, = a— STOP
is a safe implementation of SPEC, but does not provide requirements coverage. IMPy =
a—b— STOP [] e— STOP provides requirements coverage but is neither robust nor safe.
IMP; = a—b— STOP[] c = d— STOP is safe and provides requirements coverage and
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robustness.
O

These correctness properties will now be related to the notions of trace (T)-refinement
Cr, failures (F)-refinement Cp, failures-divergence (FD)-refinement Cpp and failures-
divergence-robustness (FDR)-refinement Cppg . Recall that (see [44, 27, 69])

1. SPEC Ty IMP = Traces(IMP) C Traces(SPEC)

9. SPEC Cp IMP = Fail(IMP) C Fail(SPEC)

3. SPEC Cpp IMP = SPEC Ty IMP A Div(IMP) C Div(SPEC)
4. SPEC Cppr IMP = SPEC Tpp IMP N IMP Ty SPEC

The following table describes the correspondence between the correctness properties intro-
duced above and these refinement notions (‘e’ means that the property is implied by the
refinement relation):

Property Cr | Er | Erp | Erpr
safety ° ° ° °
requirements coverage . ° °
non-divergence ° °
robustness .

Apart from this obvious correspondence to the intuitive correctness notions, there is another
reason to focus on these refinement concepts when investigating methods for test automa-
tion: As described in the next section, Hennessy’s testing methodology introduces types of
test cases uncovering exactly those implementation failures which violate one of the above
refinement relations. As a consequence, the compositional proof theory associated with the
refinement concepts may be consistently used in parallel with the testing process: Critical
components may be formally verified to fulfill the refinement relation desired. At the same
time tests may be performed for less critical components, and these tests may be regarded
as “approximations” of refinement proofs or “incomplete formal verifications”. In specific
cases to be investigated during the next sections, it is even possible to perform ezxhaustive
testing with a finite number of test executions, so that the test activities represent a valid
substitute for the corresponding refinement proof.

In some applications one might prefer to specify the correct behaviour of an implementation
!

by means of an assertion IMP sat S(h, R) where S(h, R) is a predicate with trace h and
refusal R as free variables. However, this concept of correctness is — at least theoretically
— covered by our definition: If predicate S(h, R) can be satisfied by a CSP process at all,
then there exists a most nondeterministic process SPEC such that SPEC sat S(h, R) [100].
As a consequence, verifying whether IMP satisfies the assertion can be viewed as the proof
obligation SPEC Cpgrp IMP. We prefer to work with the T correctness concept only,
because in order to allow automatic generation of test cases in the VVT-RT system, SPEC
will have to be represented as an explicit CSP process.
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Hennessy’s Testing Methodology

As shown by Hennessy and de Nicola [39, 69], trace (T)-, failures (F)-, failures-divergence
(FD)- and failures-divergence-robustness (FDR)-refinement are closely related to testing.
The results summarised below hold in an even wider context as it is needed for the purpose of
this chapter, see [40]. Extending Hennessy’s original concepts, several terms and definitions
to be used for the classification of tests in the subsequent sections are introduced. These
definitions are not essential if the testing methodology is applied only for the characterisation
of process algebra semantics, but they are useful for the practical applications of the testing
methodology in the context of reactive systems.

Hennessy introduced ezperimenters as processes U with a(SPEC) = a(IMP) C a(U) and a
specific event w € a(U) — a(SPEC) denoting successful execution of the experiment which
consists of U running in parallel with a process possessing alphabet a(SPEC). Experi-
menters coincide with our notion of Test Cases, so we will only use the latter term. As
pointed out in Section 4.4 an execution of the test case U for the test of some system P is
a trace s € Traces(P || U). The execution is successful if s (w) € Traces(P || U). Depend-
ing on the specification of U and P, three cases may be distinguished with respect to the
outcome of test executions:

1. There exists at least one successful execution of (P || U).
2. Every execution of (P || U) must lead to success.
3. No execution of (P || U) is successful.
This observation leads to the following formal definition:
Definition 1 For a process P and an associated test case U we say
1. Pmay U = (3s: Traces(P) ® s (w) € Traces(P || U))
2. Pmust U= (3Q e (P U)\ (V) —{w}) =w—Q)
]

The definition of P must U requires some explanation: If every execution of (P || U) leads
to success, this is equivalent to the following conditions:

e (P || U) may never block before having produced a success indication w.
e (P || U) may never engage into an unbounded sequence of events not containing w.

After success has been indicated, we do not care about the further behaviour of (P || U).
This situation is precisely reflected by (P || U)\ (a(U) — {w}) = w— @, where “=" de-
notes equivalence in the failures-divergence model. This algebraic definition is equivalent to
Hennessy’s definition [40] of must -tests, requiring that every computation of (P || U) should
indicate success.

Note that we cannot demand that test cases should indicate failure in addition to success,
because the failure may materialise as a situation where the test execution is blocked or
diverges, so that it can only be “communicated” by refusing to indicate success. This situa-
tion is simplified when studying real-time testing for safety-critical systems: Here expected
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events should always occur within a bounded amount of time, so deadlock or livelock can be
detected by means of timeouts.

If a test execution refuses to indicate success, this information will only be of practical
value, if it can be determined what actually went wrong. The correctness notions defined by
T,F,FD,FDR-refinement allow a precise classification of the failures in an implementation
IMP when compared with its specification SPEC'. This classification leads to the following
definition:

Definition 2 Let U be a test case.
1. U detects a safety failure s iff (V P ® P must U = s ¢ Traces(P))

2. U detects a requirements coverage failure (s, A) iff (VP o Pmust U = (s,A) ¢
Fuail(P))

3. U detects a divergence failure s iff (VP o P must U = s ¢ Div(P))
4. U detects a robustness failure s iff (VP o P may U = s € Traces(P))
|

For practical reasons it is useful to restrict the class of admissible test cases: If the execution
is successful we want to be sure to be informed about this “at once”. Moreover, the indication
of success — if possible — should not allow an unbounded trace of other events to be executed
before the “success situation” arises. Since test cases will be executed by test drivers which
must know when a test execution has been successfully completed, we require a well-defined
termination event after having signalled success, and it is not necessary to indicate success
more than once. Finally, we restrict ourselves to test cases which are successful as must -tests
for at least one process. This leads to the following definition:

Definition 3 An admissible test case for the test against SPEC is a CSP process U satis-
fying

1. o(U) = a(SPEC)U{w,v}, w ¢ a(SPEC)

2. U sat Sy(s, R) with

SU(S, R) =
welU/s]P=wg RA#s<nA-({w)in s) A U/s™(w) = SKIP
where n € N is a constant not depending on s or R.

3. There exists a process P such that P must U.

([l

The following examples illustrate the intuition standing behind the above definition by pre-
senting test cases that are not admissible.

Example 4.2 The test case U = a — SKIP [|b — (w — SKIP M U) would not be admissible
in the sense of Definition 3, because it is uncertain whether success will be indicated after
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event b.
O

Example 4.3 The test case U = a — w — SKIPT1 STOP would not be admissible in the
sense of Definition 3, because no process can satisfy U as a must -test.
O

Example 4.4 The test case

U= HH;NU(TL)
U(n)=(n>0)&a—U(n—1)[](n=0)&w— SKIP

would be well-defined in the infinite traces model of Roscoe and Barret [99], and P must U
holds for process P = a — P. Moreover, if success w is possible after U/s it will never be
refused. However, U would not be admissible in the sense of Definition 3, because no global
upper bound exists after which every execution of (P || U) would show success.

O

Hennessy defines four types of test cases which are essential for the verification of T, F,FD, FDR-
refinement properties:

Definition 4 The class of Hennessy Test Cases is defined by the following collection of
admissible test cases:

1. For s € a(SPEC)*, a € a(SPEC), define Safety Tests Us(s, a) by

Us(s,a) =if s = ()
then (w — SKIP [] a— SKIP)
else (w — SKIP [] (head(s) — Us(tail(s), a))

2. For s € a(SPEC)*, A C o(SPEC), define Requirements Coverage Tests Uc(s, A) by

Uc(s,A) =if s = ()
then (a : A— w— SKIP)
else (w — SKIP [| head(s) — Uc/(tail(s), A))

3. For s € a(SPEC)*, define Divergence Tests Up(s) by

Up(s) = if s = ()
then w — SKIP
else (w — SKIP [] head(s) — Up(tail(s)))

4. For a sequence of events s € a(SPEC)*, define Robustness Tests Ug(s) by

Ur(s) =if s = ()
then w — SKIP
else head(s) — Ug(tail(s))
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Definition 4 is motivated by the following lemma:

Lemma 13 In the sense of Definition 2, the Hennessy Test Cases detect the following fail-
ures:

1. Us(s,a) detects safety failure s (a).
. Ue
U

2 s, A) detects requirements coverage failure (s, A).
3.
4

(s,
p(s) detects divergence failure s.
)

. Ugr(s) detects robustness failure s.

O

Note that the Hennessy test classes even characterise the associated failure types: If s (a) ¢
Traces(P) then P must Ug(s, a) follows. Analogous results hold for Uq (s, A), Up(s), Ug(s).
In our context s € Div(P) means P/s = CHAOS in the sense of [44], that is, P/s may
both diverge internally (livelock) and produce and refuse arbitrary external events. The
tests Up(s) have been designed by Hennessy to detect internal divergence only. Conversely,
the tests Us(s,a) and Ug(s, A) detect external chaotic behaviour but cannot distinguish
internal divergence from deadlock. However, using the three test classes together enables us
to distinguish deadlock, livelock and external chaotic behaviour. Note that P must Us(s, a)
also implies s ¢ Div(P), because divergence along s would imply that every continuation of
s, specifically s (a) would be a trace of P. P must Ug(s, A) implies s ¢ Div(P), because
divergence along s implies the possibility to refuse every subset of a(P) after s. These
observations are summarised in the following lemma:

Lemma 14 Let P a CSP process, A C a(P) with A # 0, a € a(P), s € a(P)*. Then
1. P must Ug(s,a) iff s”(a) ¢ Traces(P).

s, A) iff (s, A) ¢ Fail(P).

P must Up(s) iff s ¢ Div(P).

2. Pmust Up

3.

4. P may Ugr(s) iff s € Traces(P).
5.

6.

(
(
P must Us(s, a) implies P must Up(s).

P must Uq (s, A) implies P must Up(s).
O
Now Hennessy’s results about the relation between testing and refinement can be re-phrased

for our context as follows:

Theorem 7 The classes Ug(s, a), Uc(s, A), Up(s), Ur(s) of test cases are related to T, F,
FD, FDR-refinement as follows:

1. If SPEC must Us(s, a) implies IMP must Us(s, a) for all a € a(SPEC), s € a(SPEC)*,
then SPEC T4 IMP.

2. If SPEC Ty IMP and SPEC must Uq(s, A) implies IMP must Uc(s, A) for all s €
a(SPEC)*, A C a(SPEC), then SPEC Ty IMP.
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3. If SPEC' Ty IMP and SPEC must Up(s) implies IMP must Up(s) for all s € a(SPEC)*,

4. If SPEC' Cgp IMP and SPEC may Ug(s) implies IMP may Ug(s) for all s € a(SPEC)*,

Proof.
The theorem follows directly from Lemma 14 and the definition of T, F, FD, FDR-refinement.
O

The implications in this theorem become equivalences if additionally Div(IMP) C Div(SPEC)
holds. Theorem 7 shows that “in principle” only requirements-driven test design is needed:
It is only necessary to execute test cases that will succeed for SPEC. On the other hand,
the properties covered by Theorem 7 cannot be verified by means of black-box tests alone,
because they require the analysis of every possible execution. If IMP is nondeterministic,
it may possibly refuse in every test execution to engage into the trace leading to the de-
tection of an error which could be uncovered by the test cases Ug(s, a), Uc(s, A), Up(s).
Conversely, for the test of robustness, the refusal to engage into trace s in a test execu-
tion does not prove that s ¢ Traces(IMP). Therefore in general, a test monitor collecting
internal IMP-information about the executions performed will be mandatory to determine
whether “sufficient” test executions have been performed. Note that this is no disadvantage
of the defined classes of tests but inherent in every testing approach that is sensitive to
nondeterminism.

Trustworthy Collections of Test Cases

When performing a test suite to investigate the correctness properties of a system, a crucial
objective is to exercise “as few test cases as possible”. Therefore the main result (Theorem 8)
of this section is devoted to the characterisation of subsets of Hennessy test cases which still
suffice to establish the refinement properties implied by Theorem 7. Theorem 9 shows
that the sets defined for Cy- and Cp-test in Theorem 8 are even minimal. For non-
terminating processes, minimal sets of test cases investigating divergence and robustness
properties cannot be defined. However, Theorem 8 shows that they can at least be chosen
considerably smaller than the collection used in Theorem 7.

Before presenting the theorems, two additional definitions for the classification of test cases
are introduced:

o Meaningful collections of test cases against a given specification SPEC are those which
succeed when executed in parallel with SPEC itself. Since in most applications ex-
haustive testing will be impossible, it would be misleading if test cases U not fulfilled
by SPEC were executed, because they would add nothing to the question of imple-
mentation correctness while giving users the impression that — in case of successful
execution — “some progress” had been made.

e Trustworthy collections of test cases have the additional property to establish a refine-
ment relationship between SPEC and its implementation IMP, when exercised com-
pletely and successfully on IMP. Conversely speaking, trustworthy collections contain
for each implementation error a test case which is able to uncover this error.
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Definition 5 A collection U of admissible test cases is called

1. meaningful for the may -test against SPEC, iff

(VU :U e s (w) € Traces(U) = s € Traces(SPEC))

2. meaningful for the must-test against SPEC, iff it is meaningful for the may -test and

(VU :U o SPEC must U)

O

Observe that “meaningful for the may -test against SPEC” requires more than just (Vu : U e
SPEC may U): The tests of a meaningful collection may only show success after executions
that can also be performed by SPEC.

Example 4.5 Let

SPEC = a— STOP
IMP = b— STOP
U=a—w—SKIP[]b— w— SKIP

Then SPEC must U, but U is not meaningful for the test against SPEC, since it also
signals success when exercised on implementations IMP violating the safety requirement
SPEC Cr IMP.

O

The notion of Trustworthiness is now defined by

Definition 6 Let U be a set of admissible test cases for the test against SPEC with U =
UrUUr UUrp UUR, such that U, Ur,Urp contain meaningful must -tests and Uy contains
meaningful may -tests.

1. U 1s called trustworthy for C g -tests iff

(VU :Up o IMP must U) = SPEC Ty IMP

2. U s called trustworthy for T g -tests iff it is trustworthy for T -tests and

(VU :Up  IMP must U) = SPEC CTp IMP

3. U is called trustworthy for Cpp -tests iff it is trustworthy for Cp -tests and

(VU :Upp ® IMP must U) = SPEC Cpp IMP

4. U 1is called trustworthy for Cpppg-tests iff it is trustworthy for Crp -tests and

(VUZ/{ROIMPmay U) = SPEC Tprppr IMP
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O

Definition 5 defines a considerable reduction of the test classes, when compared to the
preconditions of Theorem 7: In the theorem, the Hennessy Test Cases were selected for
every sequence s € a(SPEC)* and every set A C a(SPEC) of events. However, the following
theorem characterises the subset of Hennessy Test Cases introduced above which is “relevant”
for the verification of refinement properties. It shows that the substantial restrictions of the
test cases to be executed according to Definition 5 are really sensible. A more detailed
interpretation of the theorem is given at the end of this section.

Theorem 8 For a given specification SPEC, define collections of test cases by
1. Hs(SPEC) = {Us(s,a) | s € Traces(SPEC) — Div(SPEC) A a ¢ [SPEC/s]°}

2. Ho(SPEC) ={Uc(s,A) | s € Traces(SPEC) — Div(SPEC) A
A C[SPEC/s]° A
(VR : Ref(SPEC/s) e A € R) A
(VX:PA—{A} e (IR : Ref(SPEC/s) e X CR))}

3. Hp(SPEC) ={Up(s) | s € Traces(SPEC) — Div(SPEC) A
(Vu : Traces(SPEC) — Div(SPEC) e
s <uA[SPEC/u]>=0=s=u)}

4. HRr(SPEC) = {Ug(s) | s € Traces(SPEC) A
(Vu: Traces(SPEC) o
s <uA[SPEC/u]=0=s=u)}

Then
1. Hs(SPEC) is trustworthy for Ty -tests.
2. Hs(SPEC)UHc(SPEC) is trustworthy for Cp -tests.
3. Hs(SPEC)UHc(SPEC)UHp(SPEC) is trustworthy for Cpp -tests.
4. Hs(SPEC)UHc(SPEC)UHp(SPEC)UHR(SPEC) is trustworthy for Crpg -tests.

Proof.

We prove 2, the other cases are shown analogously. The proof is structured as follows: Our
first objective is to show that the test cases Ucx(s, A) € Ho(SPEC) are meaningful for the
must -test against SPEC in the sense of Definition 5. By definition of H(SPEC), these
test cases only execute traces of SPEC before successful termination, so they are obviously
meaningful for the may-test against SPEC. It remains to show that SPEC must Uc (s, A)
for these test cases. This is demonstrated in Proof Obligation 2.1. Next, we wish to show
that the test cases in Hg(SPEC)UH o (SPEC) are powerful enough to detect every possible
violation of Cp -refinement. From Part 1 of the theorem we know that the tests of Hg(SPEC)
suffice to detect every violation of C ¢ -refinement. It remains to show that the tests of
Hc(SPEC) detect missing requirements coverage. Now Theorem 7 implies that the test
Uc(s,A) are at least capable for this task if we consider all traces s € «(SPEC)* and
sets of events A C a(SPEC). We will therefore prove that whenever an arbitrary must -
test Ug(s, A) satisfied by SPEC fails for an implementation IMP, there will also be a test
contained in Hqo(SPEC) which fails for IMP, too. Now the collection of all test cases
Uc(s, A) for which SPEC must Ug(s, A) holds can be divided into two groups, depending
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on whether s is a trace of SPEC or not. The former case is handled by Proof Obligation 2.2,
the latter by Proof Obligation 2.3.

Proof Obligation 2.1. For Ug(s, A) € H¢, show that SPEC must Uc (s, A).

According to the definition of H ¢, we have s € Traces(SPEC) — Div(SPEC). Moreover, the
definitions of H ¢ and Ug(s, A) imply that every execution of (Uq(s, A) || SPEC) is a prefix
of some u™ (w), where u is a prefix of s (a) with a € A.

Case 2.1.1. Suppose, an execution of (Ug(s, A) || SPEC) does not reach last(s). Since
neither Ug(s, A) nor SPEC diverge along s, the same holds for (Uq (s, A) || SPEC), there-
fore SPEC must block before last(s) is reached, and as a consequence (Uq(s, A) || SPEC)
is ready to produce any event not contained in a(SPEC). Since the only event not con-
tained in a(SPEC) and executable in this state is w, this leads to successful execution of

(Uc(s, A) [| SPEC).
Case 2.1.2. Suppose last(s) is reached in an execution of (Uq (s, 4) || SPEC). Since SPEC
does not diverge along s, application of the Normal Form Theorem 12 yields
SPEC /s = M g.res(sprcys)( : ([SPEC/s]°\ R) — SPEC /s ™ (z))
Since A C [SPEC/s]® and A € R holds for every refusal R of SPEC /s, we get
(VR : Ref(SPEC/s) @ (Hag : A e ap € ([SPEC/s]°\ R)))

Together with the normal form representation, this shows that SPEC /s cannot refuse all
events of A. As a consequence the execution also yields success w. Case 2.1.1 and 2.1.2
prove that SPEC must Uq(s, A). This shows the correctness of Proof Obligation 2.1.

Proof Obligation 2.2. Show that for all s; € Traces(SPEC)
(VA; : Pa(SPEC) e

SPEC must Ug(s1, A1) A = (IMP must Uc(s1, A1) =
(FA:Pa(SPEC) e Ux(s1,4) € He A = (IMP must Ug(s1, A1))))

holds. This means that whenever IMP contains a requirements coverage failure (s;, A;) with
s1 € Traces(SPEC) and arbitrary A;, it will also contain a requirements coverage failure
(s1, A) which can be detected by a test Ug(s1, A) € He.

Assume
s1 € Traces(SPEC) A SPEC must Ug(s1, A1) A Ug(s1, A1) ¢ He A = (IMP must Ug(s1, Ay))

Then, because of the structure of Ucx(s1, A1), two situations may be the cause for the failure
of IMP:

1. s; € Div(IMP)
2. 81 € Traces(IMP) — Div(IMP) A (3R : Ref(IMP/s,) @ Ay C R)

In both cases we have s; € Traces(IMP). Because

s1 € Traces(SPEC) N SPEC must Uc(s1, Ay)
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A, N [SPEC/s]® cannot be completely contained in any of the R € Ref(SPEC/s). Let
A C A, N[SPEC/s]° be one of the smallest sets such that (VR : Ref(SPEC/s) « A € R).
Then Uq(s1,A) € He and SPEC must Uc(si, A).

Case 2.2.1. If s; € Div(IMP) is the cause for = (IMP must Uc(s1, A1)), then also
= (IMP must Uc(s1, A)), because divergence along s; will lead to an execution of
(Uc(s1, A) || IMP) where any visible event is refused before success w could be signalled.

Case 2.2.2. If s; € Traces(IMP) — Div(IMP) A (3R : Ref(IMP/s,) ® A; C R) is the cause
for = (IMP must Ug(s1, A1)), then also A C Ay will be contained in such an R. This yields
once more — (IMP must Ug(s1, A)), because an execution of (Ug(si, A) || IMP) will block
A-events after s;, and Ug (s, A)/s can signal success w only after having first engaged into
some a € A.

Proof Obligation 2.3. Show that for all s; ¢ Traces(SPEC)

(VA : Pa(SPEC) e
= (IMP must Uc(s1, A1)) =
(s : Traces(SPEC); a : a(SPEC) @ Us(s,a) € Hs A = (IMP must Us(s, a))))

holds. To understand the objective of this proof obligation, recall that SPEC must Uc (s, A1)
holds for s; ¢ Traces(SPEC) and any A;: SPEC cannot diverge after a prefix u of s; because
otherwise any extension of « would be contained in Traces(SPEC). As a consequence, SPEC
will block after a prefix u of s; and Ug(sy, 41)/u is forced to take the branch w — SKIP.
Conversely, = (IMP must Uc(s1, A1)) implies that s; € Traces(IMP).

Since s; ¢ Traces(SPEC) there exists s11, 12 such that s; = 51177812 A 811 € Traces(SPEC) A
head(s12) ¢ [SPEC /s11]°. As a consequence, SPEC must Us(s,1, head(s2)), but

$1 € Traces(IMP) implies = (IMP must Us(s11, head(s12)). Since Us(si1, head(s12)) € Hs,
this proves Obligation 2.3 and completes the proof of 2.

O

The following Theorem shows that the collections Hg and H ¢ are minimal:

Theorem 9 The collections Hg, He of test cases defined in Theorem 8 are minimal in the
following sense:

1. If H C Hg there exists a process P satisfying P must U for all U € H but not refining
SPEC in the trace model.

2. If Us(s,A) € He and B C A then = (SPEC must U (s, B)).

3. If H C H there exists a process P satisfying P must U for all U € Hg U H but not
refining SPEC in the failures model.

Proof.
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Proof of 1. Suppose that Us(s,a) € Hg and H = Hg — {Us(s, a)}. Define

a(P) = a(SPEC)
Traces(P) = Traces(SPEC)U {s"(a)}

Plu=ifu=s
then (z : [SPEC /u]®— P/u"(z)[] a — STOP)
else (z : [SPEC /u]® = P/u"(z))

The P must U holds for all U € #, but P violates the safety requirement s (a) ¢ Traces(P).

Proof of 2. Suppose Ug(s,A) € He and B C A. The definition of H¢ implies the
existence of a refusal R € Ref(SPEC/s) such that B C R. As a consequence there exists
an execution (Ug(s, B) || SPEC) blocking and consequently failing after trace s. Therefore,
= (SPEC must Uc(s, B)) holds, which proves (2).

Proof of 3. Let {Uc(s, A1),..., Uc(s, An)} C He be an enumeration of the must -tests in
H o to be executed for fixed trace s. Suppose H = He — {Uc(s, A,)}. Then define a CSP
process P by

a(P) = a(SPEC)
Traces(P) = Traces(SPEC)

Plu=if u=s
then (z : ([SPEC/u]’\ A,) = P/u"{(z)[] ((z : Apn — P/u"(z)) N STOP))
else (z : [SPEC /u]® — P/u"(z))

Since Traces(P) = Traces(SPEC) by construction, P must U holds for all safety tests in
Hgs. For traces u # s, P must Ug(u, A) holds for all tests in H ¢, because P/u never refuses
an event that might be accepted by SPEC/u. For u = s, observe that the sets A; are
minimal in the sense of part (2) of the theorem, and therefore A4; \ 4, # 0 holds for all
i=1,...,(n—1). As a consequence, [SPEC /u]®\ A, contains at least one A;-event for all
i=1,...,(n—1). This implies P must Us (s, A;) for i =1,...,(n —1), so P must U for all
tests U € H. However, P/s may refuse A, completely, while SPEC'/s will always accept at
least one A,-event. As a consequence, P does not refine SPEC in the failures model.

]

Interpretation of Theorem 8 and Theorem 9 Let us first state the obvious: For
terminating systems, refinement properties can be verified by means of a finite number of
tests, because the trace space is finite and we always assume finite alphabets, hence the sets
Hs,He, Hp, Hr will also be finite.

The definitions of Hg, H ¢, Hp indicate further that it is not necessary to perform any tests
for traces s after which SPEC diverges®, since in such a case SPEC /s will allow chaotic

80f course, it is questionable if specifications allowing divergence will be used in practice at all.
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behaviour which does not restrict the admissible behaviour of IMP/s. For the test of safety
properties, the definition of Hg states that we only have to use those test cases Us(s, a),
where s is a trace of SPEC, but SPEC /s does not admit event a. For the requirements
coverage tests Ug(s, A), H ¢ indicates that only the smallest sets A, such that SPEC /s can
never refuse A completely, have to be tested. As a consequence, it is unnecessary to exercise
any tests Uq(s, A), if SPEC /s may refuse the full alphabet, e. g., if SPEC'/s = P STOP.
For implementation purposes it is useful to observe that since Ref (SPEC/s) is always finite
and subset-closed, we only need to evaluate the mazimal refusals R € refMax(SPEC/s) to
compute the sets A satisfying (VR : Ref (SPEC/s) e A L R).

The definitions of Hp and Hpy are motivated by the fact that for the test of divergence and
robustness properties we only have to analyse mazimal traces: If SPEC terminates or blocks
after a trace u, the tests corresponding to proper prefixes of u are covered by Up(u) and
Ugr(u), so only the latter are contained in Hp and Hp respectively.

Observe that the collections of tests introduced in Theorem 8 completely characterise the
refinement relations between SPEC and IMP: Any IMP refining SPEC must satisfy all cor-
responding Hennessy tests Us, Ug, Up, Ug, and the collections Hs, Hc, Hp, Hr are subsets
of these Hennessy tests.

Theorem 9 shows that Hg and H ¢ are indeed minimal sets for 7- and F'-tests against SPEC":
If one test Us(s, a) is removed from Hg, a process with safety failure s (a) could be con-
structed, for which all the remaining tests would succeed. For each Ug(s, A) in H¢, the set A
cannot be reduced, otherwise the test would no longer succeed for SPEC. Moreover, remov-
ing a test Ug(s, A) from H ¢ would admit processes P satisfying the remaining tests without
refining SPEC in the failures model. Hp and H g, however, cannot be defined as minimal
sets, as soon as SPEC describes a non-terminating system: If comp = (s(1), s(2), s(3),...) is
an infinite computation of SPEC, Hp and Hx must contain infinitely many tests associated
with prefixes s; < so < s3 < ... of comp, and each infinite subset of these tests would suffice
to verify correct behaviour along comp. At least we can state that any H}, C Hp satisfying

(Vu : Traces(SPEC) — Div(SPEC) @ 35 : H), o u < s)
is sufficient to detect divergence failures against SPEC and any H% C Hp satisfying
(Vu : Traces(SPEC) — Div(SPEC) @ 35 : HY @ u < )

is sufficient to detect robustness failures.

4.5.3 Trustworthy Test Drivers
The Concept of Test Drivers

Test Drivers are hardware and software devices controlling the executions of test cases for a
target system. To formalise this notion, recall that a context is a CSP term C(X) with one
free identifier X, so every context can be regarded as a continuous function mapping CSP
processes X to CSP processes C(X) (see [71, p.160]). Apart from the free identifier X, C(X)
may contain other CSP processes as parameters.
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Definition 7 A Test Driver for the test against SPEC is a context D(X) using admissible
test cases U; satisfying a(SPEC) = a(U;) \ {w} as parameters.
]

Example 4.6 Every admissible test case U can be regarded as a test driver X — (U || X)
executing only a single test case.
O

Example 4.7 We will focus on test drivers of the form

D(X) = (i :==0); *(U; || X~ (w — monitor?next
— (if next then i := i + 1; SKIP else SKIP)));

with admissible test cases U;. A test driver of this type will execute the test cases in a
certain ordering Uy, Us,...; one test case at a time and with only one copy of the target
system X = IMP running. As soon as a test case signals success w, the execution will be
interrupted. An input monitor?next will be required from a process monitoring the test
coverage achieved so far with the actual test U;. If the monitor signals next = true, the next
test case U;,q will be performed, otherwise U; will be repreated. If U; is a may -test, next is
always set to true. The problem how to determine test coverage can be separated from the
task of test generation, execution and evaluation. In principle, the monitor could also be a
person, manually interacting with the test driver.

(I

The minimum requirement for a trustworthy test driver is given by the following definition:

Definition 8 A test driver D(X) is meaningful for the test against SPEC, iff the test cases
U; appearing as parameters of D(X) are taken from a collection U of meaningful may - and
must -tests against SPEC in the sense of Definition 5.

O

Definition 8 requires that the test driver should only perform executions of test cases which
may succeed for SPEC. This will ensure that each successful test execution performed by
D(IMP) will at least indicate that the implementation “can perform something which is
correct according to the specification”. However, this minimum requirement does not ensure
that any kind of “progress” is made during the test: D(IMP) might perform always the
same test execution, so that an additional success indication would not contribute any new
insight about the implementation. Therefore we introduce

Definition 9 Let D(X) be a meaningful test driver for the test against SPEC, performing
test cases of a collection U in the order Uy, Uy, Us,.... Let CT€ {Cr,Cp, Cpp, Crpg }-
Then D(X) is called trustworthy for C -test against SPEC, iff the following conditions hold:

e U contains a subset U which is trustworthy for T -test against SPEC according to
Definition 6.

e For every safety-, requirements coverage-, divergence- or robustness-failure violating
C, there exists an n € N such that U, € Ug detects this failure in the sense of
Definition 2.
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O

Definition 9 covers the intuitive understanding of trustworthiness in a formal way: whenever
IMP may perform a failure, this can be uncovered by a test case which is guaranteed to be
chosen by the driver after having selected a finite number of other test cases.

Example 4.8 A test driver performing Hennessy Test Cases U, (s, ...) according to a depth-
first ordering of the traces s is mot trustworthy in the sense of Definition 9: For recursive
implementations the test case selection may follow an infinite sequence of events, so that an
infinite number of test cases may precede a test case which could detect a failure by following
a “neighbouring” trace.

O

Theorem 10 Fvery test driver

D(X) = (i :==0); #(U; || X~ (w — monitor?next
— (if next then i := i + 1; SKIP else SKIP)));

applying the Hennessy Tests
U; € Hs(SPEC)UHc(SPEC)UHp(SPEC)U Hi(SPEC)

according to Theorem 8, ordered by the length of the defining traces, is trustworthy for Cgpg -
test against SPEC'.

Proof.

Since a(SPEC) is finite, every [IMP/s]° is also finite. As a consequence, Traces(IMP)
contains only a finite number of traces with fixed length n € N. Since also refMaz(IMP/s)
is always finite, the number of Hennessy Tests U; € ‘H with defining trace of length less or
equal n will also be finite.

Since according to Theorem 8 the test cases of H detect every type of failure and every
failure occurs after a finite trace, the theorem follows.
(I

Analogous results hold for E¢, Cp, Cpp -test.

Test Drivers for Reactive Systems

The testing methodology presented so far in this chapter will now be specialised on the
development of test drivers for the automated test of Reactive Systems.

Separation of Environment and Target System In the context of reactive systems it is
useful to distinguish between the target system and its operational environment in an explicit
way, when investigating properties of a specification SPEC and implementation IMP: The
very purpose of reactive systems is to interact continuously with their environment. In many
applications certain hypotheses are made about the environment behaviour. This means that
the target system is not expected to act properly in every context. Indeed, the objective
of the test suite is to ensure the correct behaviour of the target system when running in an
operational environment satisfying these hypotheses. Therefore test drivers should
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e simulate the environment behaviour
e test the target system behaviour in the simulated environment

To formalise the notion of an operational environment we will consider expressions of the
type

SPEC = £(ASYS)\ (a(E(ASYS)) — I)

with the following interpretation: £(X) is a context and ASYS is the abstract specification
of the target system to be developed. The processes appearing as parameters in £ represent
the operational environment. The correctness of a reactive system implementation will only
be decided with respect to a subset I of observables considered as relevant from the point
of view of the application. Therefore the specification consists of £(ASYS) with all events
apart from I concealed. The implementation will be denoted by

IMP = E(SYS)\ (a(E(SYS)) — I)
where SYS is the target system “plugged into” environment £. It is natural to demand that
I CalE(ASYS)) Na(E(SYS)).

Note that the alphabets of the abstract specification ASYS and the implementation SYS of
the target system may be distinct, though — as required according to the preceding sections —
a(SPEC) = a(IMP). Of course, the verification obligations for IMP with respect to SPEC
remain as introduced above, using T,F,FD,FDR-refinement.

In many applications, the configuration of a reactive system and its environment will be
appropriately described by the following definition:

Definition 10 A standard configuration (E, ASYS, SYS, I) (for reactive systems) consists
of CSP processes E, ASYS,SYS and a set of events I such that
I =a(E)Na(ASYS) =a(E) Na(SYS)
For a given standard configuration, the context Eo(X) = (E || X) is called the environment.
SPEC = Ey(ASYS) \ (a(Eg(ASYS)) — 1)
1$ called the specification,

IMP = £4(SYS) \ (a(£0(SYS)) — I)

the implementation. For C€ {Cr, Cp, Cpp, Cppr }, a standard configuration is called
C -correct, if SPEC' T IMP holds.
[l

Note that it is not a severe restriction to require that the set I of observables should be
identical to the set of events shared between environment and target system: Since in the
context of reactive systems the tester or any other observer is a part of the environment,
any observable event generated by the target system must be shared with the environment.
Moreover, if we wish to observe environment events e during test execution that do not
occur at the interface to the target system, but “inside” the environment, the standard
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configuration (E, ASYS,SYS,I) can be re-arranged, such that the new target system is
extended by auxiliary system components RUN,, running in interleaving mode with the
“real” target system and sharing e with the environment without ever refusing its occurrence:
The new configuration would be defined by

(E', ASYS', 8YS', I') = (E, (ASYS || RUN,), (SYS || RUN,),I U {e})

We will use the abbreviation P; = P\ (a(P) \ I). Note that in a standard configuration
(E||ASYS); = (Er|| ASYS;) and (E || SYS); = (E; || SYSr) holds, because the hiding op-
erator distributes through ||, if none of the interface events shared between the parallel
components are concealed [44, p.112].

A Characterisation of Meaningful Test Drivers for Reactive Systems The follow-
ing theorem characterises the trace behaviour of tests used by meaningful test drivers for
reactive systems. An interpretation of its intuitive meaning is presented after its proof.

Theorem 11 Let D(X) be a test driver for the test against SPEC in a standard configura-
tion (E, ASYS,SYS,I) of reactive systems. Define

Dy = Dy(( ))
Do(8) = M geref(y/s)(x = ([Er/s]° \ R) = Dy(s, z))

Dy(s,z) =if z € [ASYS;/s]°
then (Dy(s™{(z)) Mw — SKIP)
else /s (z)

Then

1. If D(X) is meaningful for the test against SPEC in the sense of Definition 8, then
every test case U appearing as a parameter of D(X) satisfies Dy Cr (U || Er).

2. If Dy Cr (U || Er), U is admissible and s~ (w) € Traces(U) implies s € Traces(Ey)
for every test case U, then D(X) ist meaningful for the may -test against SPEC.

Proof.
Proof Obligation 1: We show that [Dy/s]’ \ {w} = [E;/s | I]° for all traces s of Dy, so
that, as a consequence, Dy Cq FEj.

The definitions of Dy(s) and Dy(s,z) show that for every s we have either [Dy/s]° =
UR:Ref(E,/er)([EI/SV]O\R) or [DO/S]O = {w}UUR:Ref(EI/s[I)([EI/SH]O\R)‘ Since () € Ref (E;/s)
this yields [Dy/s]’ = [Er/sI]° or [Dy/s]® = {w} U[E;/s[I]°, which proves Obligation 1.

Proof of Part 1. Let D(X) be meaningful for the test against SPEC and U be a

test case occurring in D(X). We show that Dy Cp (U || Er), which is is equivalent to
Traces(U || Er) C Traces(Dy):

Case 1.1. Let s € Traces(U || E;) A = ((w) in s). Then the definition of the parallel
operator implies that s € Traces(E;). From Obligation 1 s € Traces(Dy) follows. This
proves part 1 in Case 1.1.
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Case 1.2. Let s (w) "~ u € Traces(U || E;). Since U is an admissible test case in the

sense of Definition 3, = ((w) in s u) and u = () follows, so s contains I-events only, and
s € Traces(Dy) follows as in Case 1.1. Since U is meaningful in the sense of Definition 8, we
have s € Traces(SPEC), because U indicates success after s. Inserting the reactive system
structure for SPEC implies s € Traces(E; || ASYSr). The ||-law implies s € Traces(ASYSr).

Then the definition of Dy(front(s), last(s)) implies w € [Dy/s]°. Therefore we have s™(w) €
Traces(Dy). This shows Case 1.2 and completes the proof of part 1 of the theorem.

Proof of Part 2. Let Dy C¢ (U || E;) and (Vs @ s (w) € Traces(U) = s € Traces(Ey))
be valid for every test case U appearing as a parameter in D(X). We show that D(X)
performs meaningful may -test executions against SPEC"

Let s (w) € Traces(U). We have to show that s € Traces(SPEC). According to the
assumptions, s is a trace both of U and Ej, therefore the law about || yields s (w) €
Traces(U || Er). Since (U || Ey) refines Dy in the trace model, s (w) € Traces(Dy) follows.
According to the definition of Dy(front(s), last(s)), this implies s € Traces(ASYS;). As a
consequence, s € Traces(Er) N Traces(ASYS), so since SPEC = (E; || ASYS), this results

in s € Traces(SPEC'). This completes the proof of part 2 of the theorem.
O

Interpretation of Theorem 11 Since any test case U in the reactive system config-
uration runs in parallel with Ej, it is ensured that only traces of E; may be performed.
Therefore there is no need for Dy to admit other traces than those contained in Traces(FEj).
A meaningful test case will only indicate success, if the trace performed so far is also a valid
trace according to the specification ASYS of the target system. The length of the trace
performed before the indication of success depends on the test case U. Due to these initial
considerations, process D is designed as a simulation of the environment E as far as it is
relevant for the investigation of correctness properties of the target system, i. e., F projected
onto the events contained in I. D, performs a trace s of I-events, such that s is also a trace
of E;. At each execution step, Dy chooses a refusal of E;/s at random and then engages
into any event that would not be refused by Fj in this situation. If the next event z is also
valid according to the specification of the target system, i. e., z € [ASYS;/s]°, Dy will non-
deterministically either continue with the next execution step or indicate success w. If z is
not contained in [ASYS;/s]°, this represents a safety failure. After having indicated success,
Dy does not produce further events, in accordance with the fact that admissible test cases
terminates after w. After a failure Dy will admit any trace that might be performed by Fj.
This is necessary to allow the test cases U compared against Dy to terminate at an arbitrary
(finite) trace after failure. Observe that Dy itself is not an admissible test case, since an
occurrence of w may be refused. As a consequence, the refinement relation Dy Co (U || Ey)
assumed for the second part of the theorem does not allow to conclude the admissibility of
the test case U.

A Trustworthy Cpp-Test Driver for Reactive Systems After the general charac-
terisation of trustworthy test drivers presented above, our objective is now to introduce a
specific test driver with the following properties:
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e The test driver is trustworthy for Cpp -test, against associated standard configurations
(E,ASYS,SYS,I).

e The test driver is implementable in a “straightforward” way, if the specifications of the
abstract target system ASYS and of the environment process F are available in the
transition system representation described in 4.5.1.

e The test driver simulates the environment process F, so that only the target system
SYS must be provided for a test execution.

The test driver will use test cases derived from the Hennessy Test Cases according to Theo-
rem 8.

Given a fixed standard configuration (E, ASYS,SYS,I) of a reactive system, we will now
introduce a test driver which is trustworthy for Cpgp -test.

Theorem 12 Let (E, ASYS,SYS,I) be a standard configuration of a reactive system. De-
fine a collection U = {U(n) | n € N} of test cases by:

U(n) =U(n,())

U(n,s) =
(#s=nV A(s) = 0)&(w — SKIP)

1
(#s < n)&(e: ([Er/s]”\ [ASYS;/s]°) — 1 — SKIP)

I
(#5 < n— 1A R(s) # 0)&(M penoy Un, s, [(E | ASYS);/s]° \ R))

I

(#s=n—1N A(s) # 0)&(M Rirefptaz(mr /5),4:405) U (1, 5, A\ R))
Un,s, M)=e: M — U(n,s"(e))
where

A(s)={A:PI|AC[(E|ASYS);/s]°
A (VR : Ref((E||ASYS);/s) ¢ AZ R)
ANNVX:PA—{A} e (IR: Ref((E| ASYS);/s) e X C R))}

and

R(s) ={R : Ref(E;/s) | [(E ]| ASYS):/s]" \ R # 0}.

Then

1. If Traces(Er) N Div(ASYS;) =0
then ASYS; must U(n) for all test cases U(n) € U.

2. The following statements are equivalent:
(a) SYS; must U(n) for all test cases U(n) € U.
(b) Traces(Er) N Div(SYSr) =0 and (E || ASYS); Crp (E || SYS);.
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Interpretation of Theorem 12 Each test case U(n) explores the behaviour of the target
system for traces s of length #s < n. The basic idea of the structure of U(n) is to simulate
the environment E; with respect to traces and refusals while exercising a combination of
test cases Ug(s,a) and Ug(s, A) on the target system. U(n) uncovers all trace failures up
to length n — 1 and detects all requirements coverage violations occurring in the next step
after having run through a trace of length n — 1. This means that the tasks of the test
oracle are integrated in the test cases and performed during their execution. This is called
on-the-fly test evaluation. U(n,s) represents the state of a test execution where trace s
has already been successfully performed. At each execution step, U(n,s) will detect any
event e € ([E;/s]’\ [ASYS;/s]°), which is acceptable according to the environment but
corresponds to a trace failure of the target system SYS. This will be indicated by a special
event T, signalling failure of the test, if the target system does not diverge before indication
becomes possible.

Aslong as #s < n —1, U(n, s) will behave as E;/s with respect to the refusal of events: In
the third []-branch an arbitrary refusal R € R(s) may be selected, and every event outside
R that may be performed by (F || ASYS);/s is offered to the target system. R(s) is the
set of all Ey/s-refusals that do not block further operation of (E || ASYS); completely. If
the target system SYS; may “legally” block in environment E; after trace s because the
same holds for ASYS;, this situation is reflected by A(s) = 0. Now the first []-branch offers
successful termination because such a deadlock may occur nondeterministically, but does not
indicate failure. At the same time the third []-branch still offers events [(E || ASYS);/s]
for further successful execution, so that full trace coverage can be reached if every possible
execution of (U(n) || SYS) is carried out. Since Ref(E;/s) is subset-closed, R(s) is empty
iff [(E]| ASYS);/s]° =0, that is iff (E || ASYS); always deadlocks after s.

For #s = n, U(n,s) will only admit events contained in a minimum set A € A(s) that
cannot be completely refused by (E || ASYS);/s. Therefore U(n) can detect requirement
coverage failures of SYS occurring after traces of length n, when running in environment
E. There is a subtle difference between the third and the fourth ALT-branch: To detect
requirement coverage failures in the forth branch it obviously suffices to select the mazimum
refusals R in the expressions A\ R. If (E || ASYS),;/s = P11 STOP for some process P, the
maximum refusal is the full alphabet I and A(s) is empty, so there is nothing to investigate
about non-blocking properties. In contrast to that it has to be ensured in the third []-branch
that every possible continuation after s is inspected. Therefore also smaller refusals in R(s)
have to be selected, so that the possibility to enter the P-branch in process P STOP will
be provided for the target system.

The internal choice operators (M) used in the definition of U(n,s) show where internal
decisions with respect to the control of the test executions may be taken: At each execution
step U(n, s) the refusals R or the sets A may be selected according to a test coverage strategy
implemented in the test driver. Since there are many possibilities for suitable strategies, these
are hidden in the definition of U(n). Any strategy covering all possible executions of U(n)
is valid.

Using LTS representations for the CSP specifications of E; and ASYS;, test U(n) is imple-
mentable in a straight forward way: U(n) is determined by the traces and refusals of E; and
ASYS;, and these are contained in the corresponding LTS representations.
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Part 1 of Theorem 12 states that the test cases U(n) are complete in the sense that they will
always execute successfully when the target system and its abstract specification process
ASYS show identical behaviour at the system interface. This is only ensured when the
abstract specification process ASYS; of the target system does not diverge in environment
E. We do not consider this a severe restriction to the theorem’s usability, since explicit
incorporation of divergence into abstract specifications occurs very rarely in practice. The
implication of part 2, (a) = (b) states the soundness property that successful execution of
the tests implies failures-divergence refinement when operating in environment £. Moreover,
since the U(n) never diverge by construction, the successful execution ensures that the target
system will never diverge in this environment. Conversely, if the refinement relation has been
already established and it is ensured that the target system will not diverge in its environment
E, we can be certain that all tests U(n) will succeed for SYS;.

Before presenting the proof of the Theorem 12, we will introduce a lemma about Hennessy
Tests of type Ucg(s, A) in the context of reactive systems.

Lemma 15 Given P, Q with a(P) = «(Q), s € a(P)* and A C «(P) with A # 0. Then
1. (P|| Q) must Ug(s, A) A s € Traces(P || Q) = P must Ug(s, A) A Q must Ug(s, A)
2. (P|| Q) must Ug(s, A) = P must Us(s,A) V Q must Uc(s, A)

Proof.

Proof of 1. Suppose that (P || Q) must Uc(s, A) A s € Traces(P || @) holds but

P must Up(s, A) N Q must Uc(s, A) is false. Specifically, assume that —(P must Us(s, A))
holds. Then (s, A) € Fail(P) by Lemma 14. Since s € Traces(P || Q) and a(P) = a(Q),
also s € Traces(Q) holds. From to the semantic definition of ||, (s, A) € Fail(P || @) follows.
Lemma 14 now implies —=((P || @) must Us(s, A)), a contradiction. The same argument can
be applied for (). This proves 1.

Proof of 2. Applying contraposition, we assume that neither P must Us(s, A) no

Q must Uq (s, A) hold. Then Lemma 14 implies (s, A) € Fail(P) and (s, A) € Fazl(Q).
Again, the semantic definition of || implies (s, A) € Fail(P || @), so ~((P || @) must Ucs(s, A))
follows. This completes the proof of the lemma.

([l

Example 4.9 Part 1 of Lemma 15 is really as strong as possible: Define P = a — b — STOP
and @ = a— c¢— CHAOS with o(P) = a(Q) = {a, b, c}. Then, for arbitrary A,

P must Us({a, c), A) and = (Q must Us({a, c), A)), but (P || Q) must Us({a, c), A).

(I

Example 4.10 The converse of Part 2 of Lemma 15 is not true: Define P = a— b — STOP
and @ = a — ¢ — STOP with a(P) = a(Q) = {a, b, c}. Then P must Us({a),{b, c}) and

Q must Uc((a),{b, c}), but = ((P || Q) must Uc((a),{b, c})).
O

Proof of Theorem 12: We will first state and verify four proof obligations that are used
to establish the validity of Theorem 12, 2.(a) = 2.(b).
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Proof Obligation 1. Show that
s € Traces((E || ASYS)1) A #s <n = s € Traces(U(n)) A U(n)/s = U(n,s)

Given U(n) with fixed n > 0, we will use induction over the length m = #s of the traces
s, m = 0,...,n — 1. The assertion holds trivially for m = 0, since this implies s = ()
and U(n)/( )= U(n) = U(n,()) by definition. Assume that obligation 1 has been proven
for m > 0 and let s € Traces((E || ASYS);) A #s = m+1 A m + 1 < n. Define trace
u = front(s) and event a = last(s).

Applying the induction hypothesis to u yields u € Traces(U(n)) and U(n)/u = U(n,u).
Since #s < n we have #u < n — 1. Furthermore, s € Traces((F || ASYS)) implies a €
[(E]|ASYS);/u]’, so R(u) # 0. Evaluating the guards in the definition of U(n, s) therefore
yields
Un)/u=U(n,u)= (A(u) = 0)&(w — SKIP)
[
(e: ([Er/u]®\ [ASYS;/u]’) =t — SKIP)

[
(M rrw Un, u, [(E || ASYS) /u]’ \ R))

Un,u,M)=e¢: M — U(n,u"{e))

Since § € R(u), process U(n,u,[(E || ASYS)/u]’) is an alternative of the (M g .- .)-
branch in U(n,u). As a consequence, [U(n,u,[(E || ASYS)/u]®)]° C [U(n)/u]° holds. By
construction of the processes U(n, s, M) we have

[U(n, u, [(E]] ASYS);/u]’)]” = [(E || ASYS)/u]’
Since a € [(E|| ASYS);/u]® we get a € [U(n)/u]®. This proves s = u"(a) € Traces(U(n)).

Since the first and the second [J-branch of U(n)/u do not accept a, we obtain U(n)/u"(a) =
U(n,u, [(E|| ASYS)/ul®\R)/{a) for some R € R(u) with a € [(E || ASYS);/u]’\ R. (Note,
that for all such sets R, R’ we have by definition of U(n, s, M) that

U(n,u,[(E| ASYS);/u]®\ R)/(a) = U(n,u,[(E] ASYS);/u]’\ R')/{a)). Hence, we con-
clude

U(n)/s = Ul(n )/u (a >= U(n, u,[(E[|ASYS)1/u]’ \ R)/(a)
Un,u™(a)) = U(n,s)
which proves obligation 1.

Proof Obligation 2. For Us(s,a) € Hs((E || ASYS);) and #s = n — 1 with Hg defined
as in Theorem 8 show that

~ ((E || SYS); must Us(s, a)) = — (SYS; must U(n)).

By Lemma 14, = ((E || SYS); must Us(s, a)) implies s (a) € Traces((E || SYS)). From the
semantic definition of ||, s (a) € Traces(E;) and s (a) € Traces(SYS;) follows. Since
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Us(s,a) € Hs, s € Traces((E || ASYS);) A a ¢ [(E|| ASYS);/s]°, so the semantics of ||
vields s € Traces(ASYSr) A s (a) ¢ Traces(ASYSs). As a consequence,

a € [Er/s]°\[ASYS;/s]°. From the validity of Proof Obligation 1 we get U(n)/s = U(n, s),
so U(n)/s "~ (a) = U(n,s)/(a) will accept the branch {— SKIP, because #s < n and
a € [Er/s]° \ [ASYS;/s]°. This means, that at least in one execution (U(n) || SYS) will fail

after s (a), which shows the validity of Proof Obligation 2.
Proof Obligation 3. For Ug(s,A) € Heo((E£ || ASYS)r) and #s = n — 1 show that

~ ((E || SYS); must Us(s, A)) = = (SYS; must U(n))

Uc(s,A) € Ho((E ]| ASYS);) and part 1 of Lemma 15 imply
A€ A(s) N s € Traces((E || ASYS);) N Er must Ug (s, A) N ASYS; must Uc(s, A). Since
- ((E||SYS); must Us(s, A)), Lemma 14 implies (s, A) € Fail((F || SYS)), that is,

(AR : refMax((E; || SYS;)/s) e AN[(E; || SYS)/s]° C R).

The definition of || implies that such a refusal R is a union of maximum refusals X; €
refMaz(E;/s) and Xy € refMaz(SYS;/s), so AN[Er/s]°N[SYS;/s]° C (X1 U Xy).

E; must Uq(s, A) implies A\ X; # (). Moreover, A C [Er/s]” holds according to the definition
of Ho((E|| ASYS)r), so (A\ X1) N [SYS;/s]° C X,. This means that SYS;/s may refuse
every event of A\ Xj.

From the validity of Proof Obligation 1 we know that U(n)/s = U(n, s). Evaluation of the
guards in the definition of U(n, s) results in:

U(n)/s=U(n,s)= (e:([Er/s]°\[ASYS;/s]°) —1— SKIP)
[

( Ml R':refMaz(Er/s),A":A(s) U(TL, S, A’ \ RI))

Un,s, M)=e: M — U(n,s"(e))

Therefore, since A € A(s) and X; € refMaz(FE;/s), a possible behaviour of U(n)/s is defined
by the process

P =(e:([Er/s]°\ [ASYS;/s]°) — t — SKIP)

[
(e: A\ X; — U(n,s"(e))).

At least one execution of ((E || SYS);/s|| P) will fail: If SYS;/s refuses X, the second
P-branch is blocked, and the first branch leads to trace failure . This proves obligation 3.

Proof Obligation 4. For Up(s) € Hp((E || ASYS);) and #s = n — 1 show that

= (B[] §YS) must Up(s)) = = (SYS; must U(n))

The premise Up(s) € Hp((E || ASYS)) implies s € Traces(Ey || ASYS;) and
s ¢ Div(E;|| ASYSr). The semantics of || implies s ¢ Div(E;) A s ¢ Div(ASYS;). Let
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u < s such that u € Div((E || SYS);). Since u is a prefix of s, u ¢ Div(E;) also holds and
u € Div(SYSy) follows. Since s € Traces((E || ASYS)r), the validity of proof obligation 1
shows that u,s € Traces(U(n)). Therefore u € Traces(U(n) || SYSr), and the definition of
| yields w € Div(U(n) || SYS;). As a consequence, (U(n) || SYS;) may refuse any event of
I U{w} after having engaged into trace u. Since u does not contain w, such an execution
will fail. This proves Obligation 4.

Proof of Theorem 12, 2.(a) = 2.(b). Suppose SYS; must U(n) for all n € N and let
Up(s) € Hp((E || ASYS);). Then (E || SYS); must Up(s), because otherwise
= (SYS; must U(#s+1)) according to proof obligation 4. Let Us(s, a) € Hs((E || ASYS);).
Then (E || SYS); must Us(s, a), because otherwise — (SYS; must U(#s + 1)) according to
proof obligation 2. Let Uc(s,A) € He((E || ASYS)r). Then (E|| SYS); must Uc(s, A),
because otherwise = (SYS; must U(#s + 1)) according to proof obligation 3.

Now we have established that (E || SYS); must U holds for all U € Hg((E | ASYS);) U
Ho((E||ASYS) ) UHp((E || ASYS)r). Therefore the application of Theorem 8 results in
(E||ASYS); Cpp (E || SYS)r. This proves Theorem 12, 2.(a) = 2.(b).

Proof of Theorem 12, 2.(b) = 2.(a). We apply contraposition and prove that the
negation of the premise 2.(a) implies the negation of 2.(b). Suppose = (SYS; must U(n)) for
some n € N. Analysis of the structure of U(n) shows that an execution of (U(n) || SYS;)
can only fail iff at least one of the following conditions are true:

1. An execution diverges, before success could be signalled:
(3s: Traces(U(n) || SYS;) ¢ = (w) in s A s € Div(U(n) || SYSr).

2. An execution produces a trace failure:
(Fs: Traces(U(n) || SYS;) e #front(s) < n A last(s) € [Er/s]’\ [ASYS:/s]%).

3. An execution blocks in the third []-branch of U(n, s):
(3s: Traces(U(n) || SYS); R, X :PIe#s<n—1A(s,X) e Fail(SYS) A
A(s) ZONR € R(s) AN[(E || ASYS) /s \ RN[SYS;/s]°\ X = 0).

4. An execution blocks in the forth []-branch of U(n, s):
(s : Traces(U(n) || SYS;); A,R, X :Ple#s=n—1A(s,X) € Fail(SYSr) A
A€ A(s) A (s,R) € Fail(E;) N A\ (RUX) =0).

Observe that, due to the specification of U(n), s is also contained in Traces(Ey) in all four
cases. Moreover, for cases 3. and 4. s is also contained in Traces((E || ASYS);).

Since Div(U(n)) = () by construction, failure condition 1 implies s € Div(SYS;). As a
consequence, Traces(Er) N Div(SYSy) # (), so the negation of 2.(b) holds.

For failure condition 2, we have that front(s) € Traces((E || ASYS)), but

last(s) ¢ [(E || ASYS);/front(s)]°. Then the test case Us(front(s),last(s)) is contained
in Hs((E||ASYS)r), and this test fails for the execution of (E || SYS), when trace s is
produced. Again this violates 2.(b), because (F || ASYS); Cpp (£ || SYS); implies

(E || SYS) must Us(front(s), last(s)) according to Theorem 8.

For failure condition 3, there exists an A € A(s) such that (E || ASYS); must Uc(s, A), so
Uc(s, A) is an element of He((E || ASYS) ). This test will fail for at least one execution of
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(Uc(s, A) || (E ]| SYS)), since this parallel composition may block completely after s. This
implies that (£ || SYS); does not refine (E || ASYS); due to a requirements coverage failure.

For failure condition 4, observe that (s, R U X) is a failure of (E || SYS);, so at least one
execution of (Ug(s, A) || (E || SYS),) will fail. However, (E || ASYS); must Uc(s, A) holds
since A € A(s). Therefore Uq (s, A) is contained in Ho((E || ASYS),). Again, this implies
that (E || SYS); does not refine (E || ASYS); due to a requirements coverage failure. Now
we have established that the negation of 2.(b) holds for each of the failure conditions listed
above. This proves Theorem 12, 2.(b) = 2.(a).

Proof of Theorem 12, 1. Choosing SYS; = ASYS; and noting that Cgp is reflexive,
part 1. of the theorem is a trivial consequence of part 2., (b) = (a). This completes the
proof of Theorem 12.

O

Using the results of Theorem 10 and Theorem 12, now we can state that test drivers using
the test cases U(n) have the desired correctness properties:

Theorem 13 For a given standard configuration (E, ASYS,SYS,I) of a reactive system,
let the associated tests U(n) be defined as above. Then the test driver

D(X) = (n:=0); «(U(n) || X~ (w— monitor?next
— (if next then i := i + 1; SKIP else SKIP)));

18 trustworthy for Cgp -test.

Proof.

In analogy to Theorem 10, D(X) applies test cases ordered by the length of the traces. Since
by Theorem 12 U(n) has the same capabilities to detect failures as the Hennessy test cases
Us(s,a), Uc(s,A) with #s < n, Theorem 10 implies that D(X) is trustworthy for Cpp -
test.

]

4.6 Discussion and Future Work

This report focussed on the development of test drivers performing automated generation,
execution and evaluation of tests for reactive systems against CSP specifications. Given
a correctness relation between specifications and implementations, a test driver should be
capable of

e generating test cases for every possible correctness violation,

e exercising test cases on the target system, at the same time simulating proper environ-
ment behaviour,

e detecting every violation of the correctness requirements during test execution.

To obtain test drivers which are provably correct with respect to these objectives, we anal-
ysed Hennessy’s testing theory in the framework of untimed CSP. Hennessy’s test classes are
suitable for the detection of safety failures, insufficient requirements coverage, divergence
failures and insufficient robustness in an implementation and characterise the corresponding
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refinement notions. As a result of this analysis we characterised minimal subsets of Hen-
nessy’s test classes that are still sufficient for the detection of safety failures and insufficient
requirements coverage. Furthermore we presented the top-level specification of a test driver
as implemented in the VVT-RT system. It was demonstrated that a test driver implementing
this specification possesses the three capabilities listed above, with respect to testing safety
and requirements coverage.

The work presented in this report reflects a “building block” of a joint enterprise of ELPRO
LET GmbH, JP Software-Consulting, Bremen University and Kiel University in the field of
test automation for reactive real-time systems. The main activities focus on the following re-
search and development topics, covering both theoretical investigations and implementation
in the VVT-RT tool:

Tool Verification Because of the dependability required of a tool allowing to perform
large parts of a test suite without human interaction, it is intended to verify the critical
parts of the tools and obtain tool certifications permitting the application of VVT-RT for the
test of safety-critical railway control and avionic systems. The formal test driver specification
and its verification presented in this report are a starting point of these activities.

Real-Time Testing for Reactive Systems The approach presented in this report ex-
ploits properties of untimed CSP specifications and their representations as transition graphs.
This concept is presently extended to a subset of timed CSP in the semantics described by
Davies [18], see [89]. It allows to generate test drivers detecting timed safety violations and
simulating environment properties in real-time, in addition to the properties described in
this report.

Test Monitors and Test Coverage Analysis A crucial problem in the context of
hardware-in-the-loop testing is presented by the fact that only the transition graph of the
specification is available, while the graph of the implementation is unknown, because in gen-
eral it will be impossible to provide a formal specification covering the complete software,
firmware and hardware behaviour®. The task of a test monitor is to reconstruct the unknown
transition graph of the implementation by means of the events observed at the black-box
interface and additional monitoring channels. Since the creation of additional interfaces “re-
vealing” internal states of the target system is a complex design and development activity,
it is of great practical value to know the minimum amount of internal information sufficient
to determine the test coverage achieved.

Test of Data Transformations A wide-spread heuristic approach to improve our under-
standing of large-scale systems is to use different modelling techniques for the description
of the three fundamental aspects transformational behaviour, dynamic system behaviour and
data structures. On a more formal level, this approach is reflected by the effort to combine
formal methods focusing on the description of dynamic aspects with methods that are most
suitable for the description and analysis of transformational behaviour and data structures.

9This situation is different from pure software tests, where the implementation is represented by software
code, and therefore the associated transition graph may be — at least theoretically — constructed.
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In [101], for example, Roscoe, Woodcock and Wulf describe a concept to specify data struc-
tures and sequential system components by means of Z [108], while using untimed CSP
specifications for the description of causal relations between interacting sequential processes.
This separation between data transformation and control is also a promising approach in
the field of test automation. Indeed, the concept described in this report may be regarded
as complementary to the efforts of Horcher [83, 41] and Mikk [63] regarding test automa-
tion based on Z specifications: While Horcher’s and Mikk’s method is successful in the field
of automated test evaluation for data transformations specified by operational Z schemas,
operating on data structures represented by Z state schemas, it does not provide a means
to test the (timed or untimed) dynamic behaviour of the (possibly parallel) interaction of
the isolated operations. Conversely, our present approach focuses on the test of dynamic
behavioural aspects, but does not allow to test operations on complex mathematical data
structures, as provided for example by the Z mathematical toolkit [108]. In the next stage of
our research activity, we will therefore investigate an integration of these two test automation
approaches, following the suggestions of Roscoe, Woodcock and Wulf about the combined
use of Z and CSP.

Investigation of Test Strategies and Combination with Formal Verification In
order to manage the complexity of large-scale systems, test and verification activities are
usually performed on different levels, ranging from isolated sequential units to the full sys-
tem. In particular, different techniques, like test and formal verification may be applied
to different system components. The objective of such test and verification strategies is to
reduce the amount of test coverage to be achieved on a specific level by relying on the results
previously achieved on the lower levels (Integration Testing). However, the trustworthiness
of integration test strategies depends on the architecture of the system, describing the mode
of interaction between the isolated components. Based on the compositional proof theory of
CSP, it is possible to derive conditions regarding the system architecture that are sufficient
for a given test strategy to be trustworthy.

Exercising test strategies on units, sub-systems and the full target system will allow to use
different methods and tools on the test levels where they can be most efficiently applied. For
example, the partition testing techniques as described by Grochtmann and Grimm [34] are
most useful on unit level. Test of isolated sequential processes can be designed and evaluated
by means of the methods based on Z, and the tests concerning proper dynamic behaviour
by the methods described in this report.

Investigation of other Semantics Interleaving semantics as used for CSP and other
process algebras are not always the best formal framework for the generation of tests: To
achieve full requirements coverage with respect to specifications interpreted in an interleaving
semantics, test cases have to be executed for ewvery possible sequence of unsynchronised
events. In many applications it is known a priori that one representative of a set of traces,
consisting of different permutations of the same events, would be sufficient to be tested.
These aspects might be better reflected by other types of semantics, as, for example, partial
order semantics.

Hybrid Systems A future research activity will consider the test of hybrid systems, ad-
mitting analog interfaces and specifications involving continuous or differentiable functions.



5. Security Aspects: Trustworthy
Evaluation of IT Security Products

5.1 Overview

Information technology (IT) security focuses on the confidentiality, integrity and availability
of IT systems. Because insufficient or incorrectly implemented security functionality may
cause severe damage in today’s applications, standards have been created describing require-
ments to be fulfilled by trustworthy IT security products or systems [47, 111, 28, 29]. In
Europe, the Information Technology Security Evaluation Criteria (ITSEC) [47] represent the
most important standard. They describe an evaluation and certification procedure allowing
to award certain quality levels (E1 [lowest], ... ,E6 [highest level]) to IT security products
and to classify the strength of their security mechanisms. In addition to quality levels, func-
tionality classes are defined ([47, Annex A]) describing different types of security functions
which should be present in specific types of products. For the highest level E6 of evaluation
quality (cf. [47, pp. 98]), it is required to provide a formal security model, a formal specifi-
cation of the critical parts of security-enforcing functions and a formal architectural design.
Moreover, it must be explained using both informal and formal verification techniques that
the design meets the specifications of the security model. The requirements of the ITSEC
are consistent with the V-model [112] discussed in Chapter 2, but they are specialised on IT
security products and focus less on product development than on product evaluation.

In this chapter methods for the evaluation of I'T security products according to the ITSEC
are investigated. We describe an effort to improve the objectivity, quality and efficiency of
the evaluation process by application of formal methods. To this end, a concept for the
formal specification of certain ITSEC requirements is presented. Based on such formal spec-
ifications, it is possible not only to justify informally, but also to prove the consistency of the
(formal) specification of a concrete product with the ITSEC requirements. We believe that
application of such a technique should become mandatory for the evaluation of maximum-
quality products according to the highest evaluation level E6. A characteristic feature of
the approach to formalise ITSEC requirements is that it makes use of generic specification
techniques allowing the formalised requirements to be applied to a wide spectrum of system

types.

Our concept is illustrated by means of an example formalising a requirement of ITSEC
functionality class F-C1. The access control list mechanism implemented to control file
access in extended UNIX versions serves as an example of I'T security product functionality.
We describe the formal verification process to be applied in order to prove that this access
control function fulfills the ITSEC requirement. The presentation given in this chapter is an
extended version of the earlier paper [77].

141
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5.2 Product Evaluation in Industry — Practical
Experiences

In 1994, my department at DST received the accreditation as an evaluation laboratory
for IT security products. In Germany this accreditation is awarded by the Bundesamt fur
Sicherheit in der Informationstechnik (BSI), the authorities responsible for the certification
of IT security products.

The concepts described in this chapter are based on experiences with IT security product
evaluations performed at DST to qualify for the accreditation. These experiences are consis-
tent with the criticism expressed frequently by other evaluation laboratories and companies
developing and selling I'T security products. The problems seem to be present both in Eu-
rope and the United States of America, where comparable evaluation procedures exist, based
on the US standards [111, 28, 29]. The crucial points of this criticism may be summarised
as follows:

e “Low-cost” evaluation procedures cannot be considered as trustworthy. Since the eval-
uation is performed by means of informal documentation reviews and only a very
modest amount of testing is required, the evaluation results will depend too much on
the intuition of the evaluators and therefore cannot really increase confidence in the
product.

e Even for the lowest standards E1 and E2 product manufacturers regard the evaluation
procedures as too time-consuming: Too often a product version had been outdated
before the evaluation suite was finished!

e The high-quality evaluation procedures involving Formal Methods may lead to more
trustworthy and more objective evaluation results. However, the costs for such an
evaluation are estimated to be unacceptably high for the product developers. Though
at least parts of I'T security products have been developed and verified using formal
methods (see [61, 116]), their number is still very small. In Germany for example, no
product has ever been evaluated according to the highest quality standards E5 or E6
defined in the ITSEC!.

A closer analysis performed at DST led to the following assessment of the main causes for
this criticism:

1. Natural-Language Style of the ITSEC The ITSEC standard is written in natural-
language style. This results in several ambiguities regarding the question how the
ITSEC requirements should be “mapped” onto the product. As a consequence, the
objectivity of the evaluation process cannot be guaranteed, because different evaluators
and certification authorities might interpret the evaluation standard in different ways.

2. Insufficient Observation of Functionality Classes Evaluation according to the
ITSEC requirements focuses very strongly on the quality levels E1,. .. E6, while putting
less emphasis on the functionality of the product: It is not mandatory during the

LA project for the development of a high-quality security interface for a message handling system had
been planned by the German Ministry of Defense for several years. Initially, its objective was to reach an
E6 quality standard, but recently the security requirements have been re-defined to make use of standard
software to be evaluated by lower evaluation criteria.
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evaluation process to relate the product to one of the ITSEC functionality classes®. As
a consequence, some certificates award a high quality level to products implementing
very weak security functions. Obviously, this does not fulfill the users’ needs, who will
be most interested in a product rating helping them to decide whether the product
functionality will meet their expectations®.

3. Non-Availability of Standard Security Architectures It is extremely time con-
suming to verify the absence of security threats caused by system architecture (e. g. covert
channels [19]). This is mainly due to the fact that these threats are invisible on spec-
ification level. The I'TSEC do not describe any reference architectures which help to
avoid such security gaps.

4. Insufficient Observation of “Sophisticated” Security Threats While being
rather explicit about certain basic features of product functionality (e. g. identifica-
tion, authentication or access control), the ITSEC requirements cover security threats
caused by the “legal” use of function combinations which may violate system security
only in an insufficient way. For example, the problems of interference between users
(see [32, 33, 48, 101]) and of inference channels (see [109]) allowing to deduce classified
data from unclassified knowledge are not described in the ITSEC. As a consequence,
evaluation may fail to notice important security deficiencies.

5. Missing Conformance Tests In contrast to standards in other fields (e. g. telecom-
munications, compiler development) the informal requirements specification style used
in the ITSEC does not allow to define conformance test suites which could be easily
adapted for each product of a certain functionality class. Therefore the penetration
tests required by the ITSEC [47, 3.37] have to be designed from scratch for each new
IT security product evaluation.

6. Insufficient Re-use of Evaluation Results The criticism listed above leads to the
fact that today’s evaluation techniques and results cannot be re-used in a systematic
way, because there is no systematic classification of I'T security products. Therefore
in many cases, the evaluation process will be too time-consuming and expensive. As
a consequence the E6-evaluation and certification of maximum-quality products still
appears to be wishful thinking, because nobody will invest into formal product verifi-
cation if the verification results cannot be re-used for similar product variants.

This list of deficiencies motivated the effort explained in the following sections. It is driven
by the idea that evaluation procedures should be formalised and at the same time made
re-usable by means of generic formal specifications of standard functionality required for
IT security products. In the example to follow we will focus on methods to overcome the
problems 1 and 2 described above. Further possibilities are discussed in Section 5.6.

2This is motivated by the fact that due to the rapid changes in today’s information technology, not every
IT security product can be easily classified to fit into a pre-defined category.
3...while naively taking the product quality for granted.
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5.3 A Formal Evaluation Approach

To overcome the above-mentioned problems regarding the evaluation of IT security products
we suggest the following approach:

Functionality Classes as Generic Formal Product Specifications The collection
of ITSEC functionality classes should be modified in the following directions: First, new
classes should be added to cover additional types of IT security products. Second, each
class should be extended by additional requirements regarding the missing security threats
mentioned above. Third, each functionality class should be formulated as a generic product
specification, so that a concrete IT security product can be viewed as an instantiation of its
corresponding functionality class. This generic (requirements) specification should make use
of formal specification techniques, so that the correspondence between the product and its
generic specification can be treated mathematically, as soon as the product itself is described
formally.

Generic
Product

Specifications
T

1
'
Formal

Security
Requirements

\refine/verify

\!
Complete § formal specification
(Formal) [ of security-relevant

functions

select and instantiate

Product Specification

refine/verify  (including non-interference
and covert channel analysis)

Complete
(Formal)
Design Specification

Figure 5.1: I'T security evaluation approach.

Formal Product Evaluation Steps With a generic formal product specification at hand,
an evaluation according to the highest quality level E6 could proceed along the following
lines* (see Figure 5.1):

1. Associate the product with a suitable ITSEC functionality class.

4In general, the product developer will perform these steps; the evaluator will only check their correctness.
However, it is also possible that the formalisation and verification process is completely performed in the
evaluation laboratory; especially if the developer requires a high-quality evaluation but does not have the
expertise to produce the formal specification and verification documents by himself
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2. Instantiate this class with the concrete structures of the product. This will result in
a new formal specification, which is free of any generic data types. This document
can be viewed as a formal security requirements specification for the product: It does
not describe the complete functionality of the product, but specifies the security re-
quirements to be fulfilled by the product in order to comply with the functionality
class.

3. Provide a formal product specification containing concrete specifications for all security-
relevant operations.

4. Specify the abstraction relation between the security requirements specification ob-
tained in step 2 and the formal product specification of step 3. This step will use
concepts of operational and data refinement, as shown in Section 5.5.4.

5. Using the abstraction relation, prove that the concrete product uses data structures
which are sufficient to implement the security requirements.

6. Prove that each security mechanism contained in the product is a correct implementa-
tion of the corresponding abstract operation. This step will use functional refinement
proof techniques, as illustrated in Section 5.5.5. It will focus on each function sepa-
rately.

7. Provide a formal design specification.

8. Prove that the product design meets the concrete formal specification. This refinement
proof will have to consider the complete (in general parallel) system, because it has to
be verified that the implemented security mechanisms cooperate in a way that does not
violate the overall security of the product. It is well known that for this step it does
not suffice to apply general refinement techniques for parallel systems (see for example
[44]), but that additional design restrictions have to be considered to ensure that the
refinement really preserves all the security properties specified (cf. [32, 33, 48, 101]).

9. Analyse the specification in combination with the design to prove that no unintended
inference channels exist (cf. [109]).

In the subsequent sections we will illustrate the construction of generic formal product spec-
ifications and the evaluation steps 1,...,6.

5.4 Example: Security Evaluation Based on Generic
Formal Specifications

To explain the application of formal methods as motivated in Section 1, we will now sketch
the formalisation of a requirement defined for the I'TSEC functionality class F-C1 which is
the initial class of a sequence of increasingly strict security functionality requirements.

5.4.1 Functionality Class F-C1: Discretionary Access Control

In [47, A.9] discretionary access control is described as
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“The TOE shall be able to distinguish and administer access rights between each
user and the objects which are subject to the administration of rights, on the basis
of an indiwvidual user, or on the basis of membership of a group of users, or both.
It shall be possible to completely deny users or user groups access to an object.”

Here ‘TOE’ means Target of Fvaluation, i. e. the product to be evaluated. The functional
requirements of class F-C1 have been copied for the European ITSEC from the TCSEC [111].
Similar requirements can be found in [28, p. 63].

5.4.2 Formalisation of the F-C1 Requirement

The goal of this section is to formalise the above requirement, in order to make it unam-
biguous and to provide a basis for the application of formal verification techniques during
product evaluation. As a formal description technique, we use the formal specification lan-
guage Z, as defined in [108] and [117]. To make this chapter sufficiently self-contained, the
language elements used will be explained while introducing the example. The formalisation
contains certain decisions how the informal text quoted above should be interpreted. These
decisions will be discussed below in Section 5.4.3 and 5.6.

The F-C1 requirement cited above references objects, users and groups of users. Each object
combined with its access information may be characterised by the following generic Z schema:

— Object[OBJECTS, USERS, GROUPS]
o: OBJECTS
u:F USERS
uDenied : F USERS
g :FGROUPS

u N uDenied = )

Here OBJECTS, USERS, GROUPS are unspecified generic data types which may be instan-
tiated with the concrete structures of a product. o, u,uDenied, g are variable declarations
with the following interpretation:

e 0 is the “logical contents” of the object.

e 1 is the finite set of users allowed to access the object.

e uDenied is the finite set of users explicitly excluded from object access.

e ¢ is the finite set of groups, whose members are allowed to access the object.

The predicate part u N uDenied = () of the schema states the invariant condition that any
user being allowed to access the object must not be registered at the same time in the set of
users without object access.

When attempting to access an object, users have to exhibit their identification, denoted by
u? : USERS and the groups g7 : F; GROUPS they are actually associated with. The logical
condition “User is allowed to access the object” may then be formalised by the following
generic Z schema:
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— GrantAccesslOBJECTS, USERS, GROUPS]
Object[OBJECTS, USERS, GROUPS]
u? : USERS
g?:F, GROUPS

u? ¢ uDenied
w? €uVg?ng#0

This schema references another schema Object|OBJECTS, USERS, GROUPS] in its dec-
laration part. This imports both the variables declared and the predicates specified in
Object|OBJECTS, USERS, GROUPS] into GrantAccess|OBJECTS, USERS, GROUPS].

From practical experience we know that it is always helpful to re-translate a mathemati-
cal specification and check if this “revised natural-language specification” really meets the
requirements. In many cases the new specification will be clearer and more complete than
the original text. The Z schema GrantAccess states, that we have interpreted the F-C1
requirement cited above as follows:

A user is granted access to an object, if the following conditions are fulfilled:

1. The user is not contained in the set of users explicitly excluded from object
access.

2. At least one of the following conditions is fulfilled:

(a) The user is contained in the set of users explicitly allowed to access the
object.

(b) When trying to access the object, at least one group possessing access
rights to the object is associated with the user.

Note that we have specified the set g7 of groups associated with the user to be non-empty
(F, M is the set of non-empty finite subsets of M ). This does not represent a restriction,
since always an auxiliary name ‘NOGROUP’ can be used, if a system allows users without
any group association.

GrantAccess specifies only the conditions under which a user is allowed to access the object.
However, in the context of IT security we always have to specify total operations, where
rejecting an unauthorised user is considered a part of the operation. This will be explained
in more detail during the formal product evaluation example given below.

Rejecting a user is specified just by negation of the access condition defined in GrantAccess:

— DenyAccess|OBJECTS, USERS, GROUPS]
Object[OBJECTS, USERS, GROUPS]
u? : USERS
g?:F, GROUPS

u? € uDenied V u? ¢ u A g?Ng=10
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5.4.3 Clarification of Ambiguities in Natural-Language
Requirements

The F-C1 requirements cited above provide a typical example for ambiguities in natural-
language specifications. Close inspection of its relatively “harmless” formalisation shows
that we have given an interpretation which deserves discussion. GrantAccess implies:

There do not exist any groups that explicitly prevent their members from object
access, as long as access permission is granted by other groups assoctated with
the user.

According to our understanding, the text would also admit the following interpretation: A
set gDenied : F GROUPS could be introduced, such that object access would not be granted
to a user associated with at least one group contained in gDenied. The object specification
would then look like

_ XObject{OBJECTS, USERS, GROUPS]
o: OBJECTS
u: F USERS
uDenied : F USERS
g :FGROUPS
gDenied : F GROUPS

u N uDenied = )
g N gDenied = )

The condition to grant object access to a user would be

— XGrantAccess|OBJECTS, USERS, GROUPS]
XObject[OBJECTS, USERS, GROUPS]
u? : USERS

g?:F, GROUPS

u? ¢ uDenied
g? N gDenied = ()
w? €uVg?ng#0

To motivate that this second interpretation is presumably not the one intended by the ITSEC
authors, we can only refer to a concrete implementation “officially” certified to possess F-C1
functionality: The Berkeley model for administration of UNIX access rights by means of
access control lists allows a process to be associated with more than one group. Therefore
modelling g7 as a set seems to be adequate. Moreover, the ACL control algorithm (see [42])
is described to calculate the “OR combination” of access rights that the groups contained in
g? possess with respect to the object. As a consequence a specific group can never prevent a
user from accessing an object, as long as the user is also member of other groups possessing
the rights for object access.

It is interesting to note that this textual ambiguity has been overcome in the draft version of
the US Federal Criteria [29, CS2-65, b.]. We feel that it is a great advantage that the formal
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specification at least allows to explain precisely the interpretation we have chosen, so that
misunderstandings can be much easier detected than in a natural-language specification.

5.5 A Formal Evaluation Example

In this section we will use the formalised requirement introduced above to illustrate the
formal verification process necessary to prove that a product possesses the properties of an
ITSEC functionality class. As an example we will consider a UNIX implementation allowing
administration of rights by means of access control lists (ACL). This technique is for example
described in [110, 42].

5.5.1 UNIX Access Control Lists

The UNIX extensions necessary for this operating system to certify F-C2 functionality®
include the definition of discretionary access rights by means of ACLs. Every UNIX file is
associated with a list of entries of the form

(user.group, rwx)

Here, user is a subject known to the system, group describes a UNIX group associated with
user and rwx stands for the types read, write, erecute of access right. For user and group
a “don’t-care” symbol % may be used. If users try to access a file, their identification and
the associated groups are compared with the ACL of the file. This comparison algorithm
observes the following priorities (1 = highest):

1. (u.g,rwx) — specific user, specific group

2. (u.%, rwx) — specific user, arbitrary group
3. (h.g, rwx) — arbitrary user, specific group
4. (h.%, rwx) — arbitrary user, arbitrary group

Any pairu.g, u.%, %.g, %.%must occur at most once in the ACL. For example, the entries
(ul.gl, r--), (ul.gl, -w-) cannot be contained in the ACL at the same time, whereas
this is possible for (ul.gl,r--) and (ul.%,---).

As soon as a matching ACL entry allowing object access has been found, only matching
ACL entries of higher priority are inspected. Access is finally granted if no matching higher-
priority entry preventing object access is found. If a user or process is associated with more
than one group, the access rights of all matching ACL entries are summarised by means of
an OR combination.

Example 5.1 Let a UNIX file have the ACL
(u2.g2,r__) ) (u2.%,———) > (%~g1,___) > (%-gs;r_x) ) (%~g4,_w_)

Suppose, user ul is associated with group g1, user u2 with groups gi,g2 and user u3 with
groups gl,g3,g4. ul cannot access the file, because (ul,gl) only matches ACL entry

SF-C2 is the next functionality class higher than F-C1.
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(%.gl,---), and this entry explicitly forbids object access. u2 is allowed to read the file
because this user is a member of group g2; if the g2 membership were removed from u2,
access would be denied. User u3 has full access, since he is a member of groups g3, g4; if
he would only be in group g1, access would be denied, if he would only be in g4, he would
be allowed to write onto the file.

(I

5.5.2 Formalisation of the ACL Model

For being able to prove that the ACL model fulfills the F-C1 requirements, we need a formal
specification of the ACL data structures and a mathematical description of the conditions
granting file access to a user in the ACL model. This is accomplished by a second Z speci-
fication representing a concrete security product specification, as implemented by the ACL
model.

Let

[UXUSERS, UXGROUPS)|

be the sets of concrete UNIX user identifications and groups, including the don’t-care symbols
%USQTS7 %gT'OUpS:

Dousers : UXUSERS
Yo groups : UXGROUPS

[UXFILES]
is the concrete representation of the general objects defined in the previous paragraph. Define
PERMISSION :=r|w |z

as the set of UNIX access types.

Using the Z notation, an ACL entry (u.g,rwx) can be expressed as a schema

ACLentry
user : UXUSERS

group : UXGROUPS
perm : P PERMISSION

and each complete ACL is a sequence of such entries; i. e. an element of

ACLset == seq ACLentry

Each object of our little UNIX universe can now be expressed by a Z schema
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—_ UXobject
f : UXFILES
acl : ACLset

Vi,7:domacl e
(acli).user = (acl j).user A (acli).group = (aclj).group = i =j

Here, (acli).user denotes the user-component of the ith ACL entry; dom acl is the domain
of all indexes 1, ..., #acl numbering the list entries. The predicate part of the schema states
that every user.group entry may appear only once in the ACL.

The priority ordering of ACL entries introduced above can be formally defined as a relation
between pairs (user,group):

— <ucr —: (UXUSERS x UXGROUPS) <» (UXUSERS x UXGROUPS)

Vul,u2 : UXUSERS: g1,42: UXGROUPS e
(ul, gl) <ucr (U2, 92) =
(ul =u2 A (g1 =92V 92 = Yogroups))
\% (U1 7£ u2 A\ u2 = %users A (91 =g2Vgl= %groups Vg2= %groups))

We say that ACL entry (ul, g1, p1) has higher priority than entry (u2, g2, p2) iff (ul, g1) <acr
(u2, g2) holds.

Now for example the formal specification “UNIX user is granted read access to UNIX file”
can be mathematically described by Z schema

_ UXgrantReadAccess
UXobject
u?: UXUSERS

g? :F, UXGROUPS

Jgr:g?; a:ran acl e
r € a.perm N
(u?, gr) <acr (a.user, a.group) A
(Vb:ran acl\{a} e
= ((u?, gr) <acr (b.user, b.group) A
(b.user, b.group) <acy, (a.user, a.group)))

Here, a : ran acl denotes an element contained in the ACL.
In natural-language style, this can be expressed as

User u? has read access to the UNIX file, if a group gr € g7 is associated with
u?, such that

1. There exists a matching ACL entry ‘a’ granting at least read permission to
(u?, gr).

2. There is no other ACL entry matching with (u?, gr) and possessing a higher
priority than ‘a’.
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Note that the set of groups ¢? must be non-empty. This reflects the fact that UNIX does
not admit users without any associated groups.

Similar schemas UXgrant WriteAccess and UXgrantEzecuteAccess can be defined by replacing
the term r € a.perm by w € a.perm and z € a.perm, respectively. To specify the condition
for full read-, write- and execute-access, we construct the AND-combination

UXgrantFullAccess =
UXgrantReadAccess N UXgrantWriteAccess N UXgrantEzecuteAccess

of all three schemas.

UNIX access control is a deterministic and total operation. As a consequence, the condition
for rejecting read access (and analogously write and execute access) is just the negation of
the predicate part of UXgrantReadAccess, i. e.

_ UXdenyReadAccess
UXobject
u? : UXUSERS
g? :F, UXGROUPS

Vgr:g? a:ran acl e
r ¢ a.perm \V
= ((u?, gr) <acr (a.user, a.group)) V
(Fb:ran acl\{a} e
((u?, gr) <acr (b.user,b.group) A
(b.user, b.group) <acy, (a.user, a.group)))

Analogously, UXdenyWriteAccess, UXdenyExecuteAccess are defined, so giving only limited
access or none at all is specified by

UXdenyFullAccess =
UXdenyReadAccess V UXdenyWriteAccess V UXdenyEzecuteAccess

5.5.3 Instantiation of the Generic Specification

To be able to verify the concrete specifications UXgrantFullAccess and UXdenyFullAccess of
the product against the abstract specifications, we first have to instantiate the generic data
types used in GrantAccess and DenyAccess with the concrete data structures of the product.
To this end, we create a new F-C1 object specification by instantiating it with the concrete
UNIX data types UXFILES, UXUSERS, UXGROUPS:

FC1lobjectForUniz = Object|UXFILES, UXUSERS, UXGROUPS]|

5.5.4 Abstraction Relation Between F-C1 Model and ACL
Model

The process of replacing an abstract specification (in our case the formal F-C1 specification,
instantiated with the concrete UNIX data types) by a concrete one (the ACL model) is a
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refinement step. The most important task for the refinement process is to relate the abstract
and concrete data structures by means of an abstraction relation.

— Abstraction
FClobjectForUnix
UXobject

0o=1

Ya:ran acl e
(a.perm = {r,w,z} V a.perm = ) A
(a.user, a.group) €
(UXUSERS \ {%users}) % (Togoupe}) U
({Seusers} X (UXGROUPS \ {%ogups})

u = {a:ran acl | a.user # Yousers \ a.perm = {r,w,z } ® a.user}
uDenied = {a : ran acl | a.user # Y%users N a.perm = () ® a.user}
g ={a:ran acl | a.group # Yogroups N a.perm = {r,w,z } ® a.group}

The five predicates defined in the abstraction relation have the following meaning®:

1. The “logical contents” of the objects — i. e. the interpretation of the UNIX
file contents — 1s identical on both levels of abstraction.

2. While the abstract F-C1 requirement only knows one access type (i. e. full
object access), the concrete state space UXobject allows to express different
types of access rights (read, write, execute). As a consequence, only a subset
of possible ACLs is related to the F-C1 model, namely those where each
entry either completely grants or completely denies object access. Moreover,
to implement the abstract F-C1 state space, only those ACLs are needed
where each entry has a don’t-care symbol in either the user- or the group-
component.

3. The abstract set of users explicitly allowed to access the object is implemented
by the ACL entries of the form (u.%,rwx) associated with the UNIX file.

4. The abstract set of users explicitly excluded from object access is imple-
mented by the ACL entries of the form (u.%,---).

5. The abstract set of groups granting object access is implemented by the ACL
entries of the form (%.g,wrx).

To prove that we have chosen a “reasonable” abstraction relation it must be shown that
the complete abstract state space can be modelled by means of the concrete one. This is a
consequence of the next theorem.

Theorem 14 (Suitability of the Abstraction Relation) Schema Abstraction specifies
a well-defined partial surjective retrieve function

‘ ¢ : UXobject - FC1lobjectForUniz

6Note that the Z notation for sets has been used: The elements contained in a set are defined by the
expressions after the e-marker.
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Proof.
Clearly the predicate part of schema Abstraction specifies a well-defined partial function ¢.
It remains to show that ran ¢ = FClobjectForUniz.

(a) ran ¢ C FClobjectForUniz: Since by definition ran ¢ is a subset of the type of
FC1lobjectForUnixz, we only have to prove that
Vy:ran ¢ e y.u N y.uDenied = ()

since this is the condition of the predicate part of FClobjectForUniz. Now let y = ¢(z)
and suppose v € y.u and w € y.uDenied. According to the definition of ¢ and because
z € dom ¢, there exist ACL entries a, b € ran z.acl, such that

v = a.user A\ a.perm = {r,w,z} A a.group = % groups
and
w = b.user A\ b.perm =0 A b.group = % groups

Obviously, a and b are distinct entries in z.acl. Since they do not differ in the group-
component, the predicate part of UXobject implies a.user # b.user. Therefore, v # w and
we have shown that y.u and y.uDenied have an empty intersection. As a consequence, y is
an element of FClobjectForUniz.

(b) FClobjectForUniz C ran ¢: Let y € FClobjectForUniz. Since y.u,y.uDenied,y.g are
finite sets, there exist bijective functions

h:1..#(y.u) — y.u
k:1..#(y.uDenied) — y.uDenied
C:1..#(y.g9) — y.g

Now define
z.f =y.0

~

z.acl=s "t w
such that the sequences s, t, v satisfy #s = #(y.u), #t = #(y.uDenied), #v = #(y.g) and”
(si).user = h(i) 1).group = %ogroups N (s1).perm = {r,w,z}

A (s
(ti).user = k(i) A (ti).group = Yogroups N (t7).perm = ()
(vi).user = Yoysers N (v i).group = (i) A (vi).perm = {r,w,z}

Then z is in dom ¢ and ¢(z) = y by construction.
O

(s i).user denotes the user-component of the ith entry in s.
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5.5.5 Verification of the Refinement

To finish our evaluation example, we present a refinement proof for the UNIX access control
operation. In the context of sequential systems, the following conditions have to be verified
in order to prove the correctness of a refinement step (see [117, p. 200]).

Initialisation Condition: The initialisation of the concrete system always results in an initial
state related to an initial state of the abstract system by means of the abstraction
relation.

Safety Condition: Whenever the pre-state of the abstract system allows an abstract oper-
ation, any concrete state related to the abstract state by means of the abstraction
relation will admit the corresponding concrete operation.

Lifeness Condition: If abstract and concrete pre-states are related via the abstraction rela-
tion, then execution of both an abstract and the corresponding concrete operation will
also lead to related after-states.

Since we did not define anything about system start, we will skip the initialisation condition
here. In contrast to other applications of function refinement, we have to analyse both the
GrantAccess and the DenyAccess operations in combination for the safety condition: If the
refinement rules were only applied to the GrantAccess part, then weakening the precondition
for object access would be admissible in the sense of general refinement, but certainly not
meet the desired security requirements. Moreover, we want the grant/deny-decision to be
deterministic. Therefore the following extended version of the safety condition for general
function refinement seems appropriate:

Theorem 15 (Safety Conditions for Secure Functions)

1. The concrete GrantAccess and DenyAccess conditions partition the the domain of
retrieve function ¢ into two disjoint sets. As a consequence, the decision “Access
granted /denied” is always deterministic.

u? : UXUSERS; g7 :F, UXGROUPS| N Abstraction =
1
- (UXgrantFullAccess N UXdenyFullAccess)

2. Whenever object access is granted in the abstract system, the same holds for the concrete
system:

GrantAccess|UXFILES, UXUSERS, UXGROUPS] A Abstraction
UXgrantFull Access

3. Whenever object access is denied in the abstract system, the same holds for the concrete
system:

DenyAccess|UXFILES, UXUSERS, UXGROUPS| A Abstraction
UXdenyFullAccess
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Proof.
Statement 1. is obvious, since the predicate part of UXdenyFullAccess is just the negation
of UXgrantFullAccess. We present the proof for condition 3.; the proof for 2. is similar.

We start with the user-object configuration in the abstract F-C1 model. The abstract object
is instantiated by schema FC1objectForUNIX. Let u? be the user’s identification, g7 the set
of groups associated with u?. According to the assumption, (u?, g7) satisfy the predicate
part of schema

DenyAccess| UXOBJECTS, UXUSERS, UXGROUPS|

SO

u? € uDenied V u? ¢ u A g?7Ng=10

Case 1. u? € uDenied

Using schema Abstraction, we can relate the abstract set uDenied with a concrete set of ACL
entries; it follows that

u? € {a :ran acl | a.user # Y%ousers N\ a.perm =) ® a.user}

Now let a € ran acl such that a.user = u? and a.perm = (). Since the access control list
acl containing a is related to the abstract model via schema Abstraction, it follows from the
predicate part of this schema that a.group = %goups- As a consequence the definition of
<acr, implies

Vgr:g?e(u?, gr) <acr (a.user,a.group)

Now chose any entry b € ran acl such that
(u?, gr) <acr (b.user, b.group) <acr (a.user, a.group)

Definition of < ,gz-priorities implies that b.user = a.user = u?. Schema Abstraction then
implies that b.group = a.group = Y%groups. Therefore, according to schema UXobject, we
have b = a.

Summarising these facts, we have shown that

Vgr:g?eda:ran acl e
a.perm = () A
(u?, gr) <acL (a.user, a.group) A
(Vb:ranacl\{a} e
= ((u?, gr) <acr (b.user, b.group) A
(b.user, b.group) <acr (a.user, a.group)))
holds. This means that the pair (u?, ¢7) fulfills the condition of schema UXdenyFullAccess,

because the predicate parts of all three schemas UXdenyReadAccess, UXdenyWriteAccess,
UXdenyFEzecuteAccess are fulfilled.
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Case 2. u ¢ uDenied ANu? ¢ uAg?ng=10

Take any gr € ¢7 and a € ran acl such that a.user # %ousers A a.perm = {r,w,z}. u? ¢ u
implies

= ((u?, gr) <acr (a.user, a.group))

Now take any b € ran acl such that b.group # %groups A b.perm = {r,w, z}. Since g?Ng = 0,
we have

= ((u?, gr) <acr (b.user, b.group))

As a consequence, the ACL is empty or all possible entries with {r, w, z}-permission are
incomparable with (u?, gr), so again the predicate parts of UXdenyReadAccess, UXdeny-
WriteAccess, UXdenyFEzecuteAccess are fulfilled.

Cases 1 and 2 imply that also in the concrete ACL model permission to access the object is
denied to this user.
O

We skip the liveness condition, because we did not specify anything about the object oper-
ations themselves (READ, WRITE,...), but only presented the preconditions under which
the grant-part or deny-part of each operation should operate.

5.6 Discussion and Future Work

In this chapter we have sketched a method applicable for the formal specification of generic
ITSEC functionality classes. The technique described would be equally well suited to
give mathematical specifications of the functional requirements in other related standards,
e. g. the US Federal Criteria [28, 29]. T am convinced that such formalisations could serve
as a very helpful addendum to the natural-language document in order to clarify ambiguous
requirements and provide a well-defined and consistent reference for evaluation and certifica-
tion of IT security products. The generic nature of the specifications described would make
them also suitable to serve as re-usable input documents for the formal specifications of new
high-quality products to be developed, thus reducing the amount of work to be spent on the
specification phase. Several aspects of the approach described above deserve discussion and
require extensions:

Alternatives to the Model-Oriented Approach Using generic Z specifications for the
formalisation of ITSEC requirements, we have chosen a model-oriented approach where data
structures — though generic in several aspects — become visible from the beginning.

Example 5.2 Schema Object{OBJECTS, USERS, GROUPS] uses generic data types, but
explicitly states that the objects to be protected by the security mechanisms should be
regarded as 4-tuples (o, u, uDenied, g), where u, uDenied and g have powerset types. If a
concrete system choses to use different data structures — like the ACLs for UNIX — the
connection has to be made explicit by means of the abstraction relation.

Il
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If we used algebraic specification techniques on this level, this might allow to cover a wider
class of system types by the generic specification.

Example 5.3 Object might be characterised by a set of functions like

Access : Object x USERS x F; GROUPS — {grant, deny}

AlwaysDenied : Object x USERS — BOOL

using axioms like

Access(0?,u?, g7) = grant = AlwaysDenied(o?, u?) = false

This leaves the internal structure of Object completely unrestricted, but still captures the
essential object information to be used by the security mechanisms.

O

Behavioural and Architectural Aspects The approach illustrated above solves only
one out of three problems to be covered by trustworthy IT security products, namely the
functionality of security mechanisms. The two other aspects are

e Secure Dynamic Behaviour: A security mechanism should grant the degree of pro-

tection required, regardless of other activities executed in the system in parallel. This
problem of non-interference depends on the dynamic behaviour of the system. A most
critical issue is the difficulty that non-interference will not always be preserved under
the application of standard refinement techniques. This has been investigated quite
extensively (see, for example, [48, 32, 33]), but from my point of view the most promis-
ing approach has been described only recently by Roscoe, Woodcock and Wulf [101]:
The isolated access operations can be described by means of Z as shown above, but
their parallel execution is specified by means of an embedding of the Z specifications
into CSP. Proofs about interference freedom can be designed as refinement proofs in
the CSP process algebra. The authors relate the absence of undesired information flow
to the absence of nondeterminism. They show that non-interference will be preserved
under refinement, if a certain degree of determinism can be guaranteed in the system.

Secure Architecture: It is well known that the general refinement approach does
not always lead to secure implementations, because again refinement might introduce
security leaks, this time in the form of covert channels, [50]. These are channels which
have been introduced during the refinement process and are therefore not covered
by the security mechanisms designed on specification level. Intruders may use these
“lower-level” channels to corrupt data or obtain secret information. This problem is
comparable to the one to be encountered in the development of fault-tolerant systems,
where certain choices of refinement may force the designer to alter the original fault-
hypotheses. To solve these difficulties it may be useful to develop standard architectures
for IT security products and define the requirements for security mechanisms based
on this architecture. An approach for the development of such architectural standard
models has been described in [6].
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Conformance Tests Defined by Generic Specifications The design of trustworthy
test suites considerably increases the evaluation costs for IT security products. Therefore
it will be necessary to define conformance tests which are designed in a way to be mapped
easily to specific products. Such test suites are well known, for example, in the fields of
telecommunications and compiler validation, but do not exist for I'T security. A promising
approach could be the design of “generic tests cases” to be instantiated for the concrete
product along with the generic specification.
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Appendix A. Glossary of Symbols

Functions

Symbol Meaning

: X - Y function f with domain X and range Y
: X +» Y  partial function f

f

f

f: X —» Y surjective function f
f: X — Y injective function f
f

: X — Y Dbijective function f

dom f domain of f
ran f range of f
feég function f overridden on dom g by values of ¢
Traces
Symbol Meaning Example
s =(s(1),s(2),s(3),...) trace notation
() empty trace
#s length of s
rans range of s ran{a, b, ¢, b,b) = {a, b, c}
head(s) head of s head({a,b,c,b,b)) = a
front(s) front of s front({a, b, c,b,b)) = (a,b,c,b)
tail(s) tail of s tail({a, b, c,b,b)) = (b, c, b,b)
last(s) last of s last({a,b,c,b,b)) = b
s <" s prefix of u, #fu —#s < n (a,b) <'(a,b,c)
s <u s subtrace of u (a,c) 4 {a,b,c,d)
sin u s segment of u (b, c) in (a, b, c, d)
s u concatenation of s and u (b,c)"{(a,b,c,d) = (b,c,a,b,c,d)
s X s projected on elements of set V (a,b,¢,d,c) [ {a,c} =(a,c,c)
f*(s) function f applied to each element of s  f*((b, c)) = {f(b),[f(c))
ch*(s) trace s projected on its channels ch*((c.z,d.y)) = (c, d)
val*(s) trace s projected on its values val*((c.z, d.y)) = (z,y)
{cl set of all channel events of ¢
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CSP Processes

Symbol Meaning
a(P) alphabet of P
Traces(P) traces of P
Fail(P) failures of P
Ref (P) refusals of P
refMaz (P) maximal refusals of P
Div(P) divergences of P
[P]° next events possible for process P:
{e € aP | (3u € Traces(P) o head(u) = e)}
P/s process P after having performed trace s
STOP deadlock process
SKIP terminating process, producing event /
a— P prefixing operator
PnaQ internal choice

(Moifar,an} (& = P(2))
P[]l Q
(z:{a1,...,a,} — P(x))
P;Q

X = F(¥),

puX e F(X)

9&B

P || @ parallel operator
Plle

P\H

P=Q

(P1Ap)

abbreviates a; — P(a1)M ... Ma, = P(ay)
external choice
abbreviates ay — P(a1)[] ... [] an — P(ay)

sequential composition

recursive equation
guarded command, abreviates
if g then B else STOP

interleaving operator
hiding operator
interrupt operator

threat introduction operator



Appendix B. A Quick-Reference Guide to
CSP

The CSP semantics [| o ]| for nondeterministic processes [44] maps each syntactic CSP unit
P onto a triple of sets

I[P] = (A, F,D)

subject to the following conditions:

D0: A, F, D have the following structure:
e A is a finite set, called the alphabet of P, denoted A = aP.

o F C A* xPA is called the failures of P, denoted F' = Fail(P). For each element
(s,X) € F, s is called a trace of P and X a refusal (set) of P/s. The set of all
traces is denoted by Traces(P).

e D C A*is called the divergences of P, denoted D = Div(P).
((),0)eF

Cl: (s"t,X)eF=(s,0)eF

C2: (s, Y)eEFAXCY=(s,X)eF

C3: |

Co:

s, X)eFANz e A=
(s, Xu{z}) e FV (s™(z),0) e F

C4: D CdomF
Cs: seDANteA*=s"teD
C6: se DANXCA= (s,X)€eF

Three refinement relations between processes P, () are defined by means of the semantics
[P] = (A, F,D) and [Q] = (A", F', D"):

Trace Refinement: P Cqp Q =4 A = A" A Traces(Q) C Traces(P)
Failures Refinement: P Cp Q =4y A=A NF'CF
Failures-Divergence Refinement: P Cp Q=4 A=A'ANF' CFAD' CD

We explain the meaning of CSP operators by giving their failure sets and their divergences.
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Nondeterministic OR Operator The OR operator M selects one of its operands non-
deterministically without giving th environment the possibility to influence this decision:

Fail(PN Q) = Fail(P) U Fail(Q)
Div(P 1 Q) = Div(P) U Div(Q)

Prefixing Operator The prefixing operator — executes P(z) after occurrence of an
initial event z € B.

Fail(z : B— P(z)) =
{({(),0)|UC (aP —B)}U{({z)"s,U) |z € BA(s,U) € Fail(P(z))}

Div(z : B— P(z)) = {{(z)"s|s € Diw(P(z)) A z € B}

Parallel Operator The parallel operator || defines joint execution of P and ) with events
common to both their alphabets executed synchronously.

Fail(P || Q) =
{(s,UUV)]|se(aPUa@Q)* A
(s aP,U) € Fail(P) A (s [aQ, V) € Fail(Q)} U
{(t, U) [t € Din(P [| @)}

Div(P || Q) =
{s7t|te(aPUa@)* A
(s [aP € Div(P) A s |aQ € Traces(Q) V
sla@ € Div(Q) ANs | aP € Traces(P))}

General Choice Operator The alternative operator [] executes P if the initial event is
from P’s alphabet and not from ()’s alphabet, executes @ if the initial event is from @’s
alphabet and not from P’s alphabet and choses nondeterministically if the initial event is in
the intersection of their alphabets.

Fail(P[] Q) =
{(s,U) | (s, U) € Fail(P)N Fail(Q) V (s # () A (s, U) € Fail(P)U Fail(Q))}
U{(s,U)|seDiv(P[]Q)}

Div(P[] Q) = Div(P) U Div(Q)
Hiding Operator The hiding operator \ defines a new process as the original P with all
events from C hidden.
Fail(P\ C) =
{t[(aP=0C),U)]|(t,UUC) € Fail(P)}U{(t,U) |t € Div(P\ C)}

Div(P\ C) =
{(sT(@aP-=0C)"t|te (aP—-C)" A
(s€ Diwv(P)V(Vne(Juec C*eo(#u>nA(s"u) € Traces(P)))))}



10U b. A Quick-nveterence Guide to Cor”

Interleaving Operator The interleaving operator || defines interleaved execution of P
and @) with events common to both alphabets nondeterministically executed either by P or

by @.

Fail(P | Q) =
{(s, U
{(s, U

Din(P || €) =
{u] (Ts,t e u interleaves(s,t) A

(s € Div(P) At € Traces(Q) V s € Traces(P) At € Div(Q)))}

)| (3t,u e s interleaves(t, u) A (t, U) € Fail(P) A (u, U) € Fail(Q))} U
) | s € Div(P || @)}

Interrupt Operator: (P~(Q) is defined to be the process that acts like P, but may be
interrupted at any time by the first event of (). From this event on, () continues to run and
P is never resumed. We have

a(P™Q)=aPUa@
and
Traces(P~Q) = {s"t | s € TracesP A t € TracesQ}

It is assumed that ()’s initial events are not contained in aP.



