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Development
Model (e.g. Simulink)

SysML Test Model
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Manual derivation of test model from software

requirements, developer model and hand-written code —

performed during development model review




Requirements tracing to model elements —
SysML method
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Automated generation of model coverage test cases
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Automated tracing from test cases to
requirements

Requirement

Tested by

REQ-CRASH-FLASHING-0003

TEST-CASE-CRASH-FLASHING-0017

TEST-CASE-CRASH-FLASHING-0018

REQ-CRASH-FLASHING-0004

TEST-CASE-CRASH-FLASHING-0019




Automated tracing from test cases to
development model components

~ Simulink
Component

Tested by

component_X

Simulink.Crash_ flashing.

TEST-CASE-CRASH-FLASHING-0017
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TEST-CASE-CRASH-FLASHING-0019




Test Cases for Model Coverage

® Automatically identified in the test model

® Guaranteed to be “sufficient” according to

requirements from RCTA DO178B/C, EN50128,
IEC 26262, if

® [00% decision coverage is achieved for non-critical
code

® [00% MC/DC coverage is achieved for safety-
critical code

® |00% requirements coverage

® Jest suite strength is sufficient



User-Defined Test Cases

Basic Control State
Pairs Coverage

Transition Coverage

Basic Control
State & Interface
Coverage




User-Defined Test Cases

Basic Control State
Pairs Coverage

Equivalence
Class Partition Testing

Transition Coverage

Basic Control
State & Interface
Coverage




User-Defined Test Cases

Pairwise Testing with
Orthogonal Arrays

Transition Coverage

Basic Control SN

Pairs Coverage

State & Interface

Equivalence
Class Partition Testing

Y

Basic Control

Coverage




Equivalence Class Partition
Testing

® Fundamental idea: input data
processed in the SUT by

® the same control path

® the same algorithm

may be regarded as equivalent



Justification of equivalence
class tests

® Equivalence class testing partitions the
computation space restricted to SUT
inputs, such that it may be expected
that the SUT behaves “equivalently”
for different members of each
partition, in the following sense

If 2 elements xo and x| are members of the
same partition (= equivalence class), it may be
expected that every error uncovered by x0 will
also be uncovered by x|



Equivalence Class Partition
Testing

¢ Example. Input parameter Voltage in the
turn indication example

® Note. It may be much more complex to
“find the right” equivalence classes

= See last session in the afternoon

“PartVI: Abstraction and its Implication for
Equivalence Testing”



Equivalence Classes in the
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3 Types of Equivalence Classes

p Input equivalence classes identify
computations by means of their restriction to SUT

Inputs

p Output equivalence classes identify
computation by means of restrictions to SUT

outputs

p Structural equivalence classes identify
computations covering similar parts (in general path
segments) of the SUT code or SUT model



How path coverage comes in

® Problem:

® When testing members of an equivalence
class, an error of the associated data
transformation may be masked on the
path leading to this transformation

e3[x<5]/y = x+mt+error (:::)
| c3

e3[x>=5]/...

e2/m = w—-error

Error is masked on path cl->c2-»c3



How path covera

More about this in

Session VI
\

® When testing members of an equivalence
class, an error of the associated data
transformation may be masked on the
path leading to this transformation

® Problem:

e3[x<5]/y = x+mt+error (:::)
| c3

e3[x>=5]/...

e2/m = w—-error

Error is masked on path cl->c2-»c3



Equivalence Classes, Pairwise
Testing and Orthogonal Arrays

¢ Application Situation. Input
vectors to SUT have so many

components and / or so many
possible values that the test of all

parameter/value combinations is
infeasible

¢ Original application.
Combinatorial systems



Pairwise testing

® Recipe for pairwise testing with equivalence
classes and orthogonal arrays

® |dentify the factors: input and state parameters
influencing SUT behavior

® Partition factor domains into levels (= equivalence
classes)

® Use orthogonal arrays calculation technique to find
input combinations such that

® each parameter-level combination of given
size n occurs an equal number of times



Table 10: All Combinations for Three Variables of Three Levels Each
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Example from
http://www.developsense.com/
pairwise Testing.html



Table 11: All-Pairs Array, Three Variables of Three Levels Each

Pairwise
testing with
orthogonal
arrays

Example from

http://
www.developsense.com/
pairwise Testing.html
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Pairwise testing — Advantages

® Single-mode faults are detected
® Faults that only depend on one parameter

® Fault is revealed by selecting values of a certain
class, regardless of the other parameters’ values

® Dual-mode faults are detected

® n-tupel value combinations are evenly
distributed for n > 2

® Some authors claim impressive test
strength with surprisingly low number of
test cases



Pairwise testing — Ciriticism

® Some experiments show that test strength is
not as high as claimed by some others —
perhaps due to “mechanical” application
without analyzing the functional impact of
each parameter?

® Some experiments show that same strength
could be achieved (much easier) with random
test data generation

® Only applicable to combinatorial systems

® Far more complicated — even inapplicable — if
equivalence classes involve several parameters



How we apply pairwise testing
in MBT

® Objective. Test “important” control state
combinations in concurrent state machines

® Strategy.

® Select pairs based on writer-reader analysis

® Use orthogonal array methods so that control
state distribution is “‘as even as possible”

® Use SMT solver to calculate the input traces
needed to reach feasible control state
combinations



Boundary Value lests

® Boundary value testing refines equivalence

class testing by selecting special
representatives of each class who are at its

boundary

® The intuitive meaning of a boundary value test
t is that a representative t’ of another
equivalence class is “close” to t

® The formal meaning requires to look into
metric spaces

25



® A metric on a space X is a real-valued
binary function d fulfilling

0 (non-negative)

0 = x =y (identity of indiscernibles)
d(y,x) (symmetry)

d(z,y) + d(y,z) (triangle inequality)

26



At first, each atomic datatype is associated with
a metric:

® |ntegral numbers, floating point numbers,
enumerations (each enum interpreted by its
integer value) and Booleans (true = |, false =

0):

d(l’,y) — ‘x o y‘
® Strings:

d(x,y) = Hamming-Distance(x,y) or d(x,y) = |stremp(x,y)

27



The Hamming-Distance of two strings equals the number
of character substitutions to be performed until they
match each other.

If x, y do not have the same length, the shorter one is
padded with blanks; so it may always be assumed that
the strings to be compared have equal length.

The Hamming-Distance has the disadvantage that the
places where the strings differ and the alphabetic
distance of differing characters are not taken into
account.

As an alternative, strcmp(3) takes into account the
distance between differing characters

28



® Based on the metric d(x,y) we introduce the
concept of closeness for pairs x,y of values
of an atomic type T

close(z,y) =d(z,y) >0A(NVz €T —{x} :d(x,2) > d(x,y))

® Observe that close(x,y) is also well-defined for
floating point types, since for each x there is a
“closest” y differing from x by one ulp (unit in
the last place)

29



Automated identification of
relevant test cases

Automated generation of
concrete test data for test cases

— tool demonstration —



Automated execution of generated

test procedures against System Under
Test

Automated, documented tracing
Requirements — Test Cases — Test
procedures — SUT functions

Automated generation of simulations
and mutants:
check test suite strength

— tool demonstration —
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