
Testing Distributed
Systems

Part II: Test Cases, Model Coverage and Requirements
Tracing — Coverage Measures for Distributed Systems

2012-08-01

Jan Peleska and Wen-ling Huang
University of Bremen

{jp,huang}@informatik.uni-bremen.de

mailto:jp@informatik.uni-bremen.de
mailto:jp@informatik.uni-bremen.de

Development
 Model (e.g. Simulink)

SysML Test Model

Manual derivation of test model from software
requirements, developer model and hand-written code –
performed during development model review

Requirements tracing to model elements –
SysML method

REQ-CRASH-FLASHING-0003

Pressing and releasing one of the emergency flash
switches de-activates crash flashing

REQ-CRASH-FLASHING-0004

Unlocking the doors via remote control de-
activates crash flashing

<<satisfy>>

<<satisfy>>
<<satisfy>>

Automated generation of model coverage test cases

TEST-CASE-CRASH-FLASHING-0017

Transition EM_SWITCH_PRESSED
→CRASH_FLASHING_PASSIVE is performed
correctly

TEST-CASE-CRASH-FLASHING-0018

Transition EM_SWITCH_SPV_PRESSED
→CRASH_FLASHING_PASSIVE is performed
correctly

TEST-CASE-CRASH-FLASHING-0019

Transition CRASH_FLASHING_ACTIVE
→CRASH_FLASHING_PASSIVE is performed
correctly

Automated tracing from test cases to
requirements

Requirement Tested by

REQ-CRASH-FLASHING-0003

TEST-CASE-CRASH-FLASHING-0017

REQ-CRASH-FLASHING-0003

TEST-CASE-CRASH-FLASHING-0018

REQ-CRASH-FLASHING-0004 TEST-CASE-CRASH-FLASHING-0019

... ...

Automated tracing from test cases to
development model components

Simulink
Component

Tested by

Simulink.Crash_flashing.
component_x

TEST-CASE-CRASH-FLASHING-0017

TEST-CASE-CRASH-FLASHING-0018

TEST-CASE-CRASH-FLASHING-0019

... ...

Test Cases for Model Coverage

• Automatically identified in the test model

• Guaranteed to be “sufficient” according to
requirements from RCTA DO178B/C, EN50128,
IEC 26262, if

• 100% decision coverage is achieved for non-critical
code

• 100% MC/DC coverage is achieved for safety-
critical code

• 100% requirements coverage

• Test suite strength is sufficient

Basic Control
State & Interface

 Coverage

Transition Coverage

Hierarchic Transition Coverage

Basic Control State
Pairs Coverage

Hierarchic MC/DC Coverage

MC/DC Coverage

User-Defined Test Cases

Basic Control
State & Interface

 Coverage

Transition Coverage

Hierarchic Transition Coverage

Basic Control State
Pairs Coverage

Hierarchic MC/DC Coverage

MC/DC Coverage

User-Defined Test Cases

Equivalence
Class Partition Testing

Basic Control
State & Interface

 Coverage

Transition Coverage

Hierarchic Transition Coverage

Basic Control State
Pairs Coverage

Hierarchic MC/DC Coverage

MC/DC Coverage

User-Defined Test Cases

Pairwise Testing with
Orthogonal Arrays Equivalence

Class Partition Testing

Equivalence Class Partition
Testing

• Fundamental idea: input data
processed in the SUT by

• the same control path

• the same algorithm

 may be regarded as equivalent

Justification of equivalence
class tests

• Equivalence class testing partitions the
computation space restricted to SUT
inputs, such that it may be expected
that the SUT behaves “equivalently”
for different members of each
partition, in the following sense

If 2 elements xo and x1 are members of the
same partition (= equivalence class), it may be
expected that every error uncovered by x0 will
also be uncovered by x1

Equivalence Class Partition
Testing

• Example. Input parameter Voltage in the
turn indication example

• Note. It may be much more complex to
“find the right” equivalence classes

☞ See last session in the afternoon

“Part VI: Abstraction and its Implication for
Equivalence Testing”

Equivalence Classes in the
Time Domain

‣ Input equivalence classes identify
computations by means of their restriction to SUT
inputs

‣ Output equivalence classes identify
computation by means of restrictions to SUT
outputs

‣ Structural equivalence classes identify
computations covering similar parts (in general path
segments) of the SUT code or SUT model

3 Types of Equivalence Classes

How path coverage comes in

• Problem:

• When testing members of an equivalence
class, an error of the associated data
transformation may be masked on the
path leading to this transformation

c0

c2 c3

c1

e3[x<5]/y = x+m+error

e2/m = w-error

e1/m = z

e3[x>=5]/...

Error is masked on path c1!c2!c3

How path coverage comes in

• Problem:

• When testing members of an equivalence
class, an error of the associated data
transformation may be masked on the
path leading to this transformation

c0

c2 c3

c1

e3[x<5]/y = x+m+error

e2/m = w-error

e1/m = z

e3[x>=5]/...

Error is masked on path c1!c2!c3

More about this in
Session VI

Equivalence Classes, Pairwise
Testing and Orthogonal Arrays

• Application Situation. Input
vectors to SUT have so many
components and / or so many
possible values that the test of all
parameter/value combinations is
infeasible

• Original application.
Combinatorial systems

Pairwise testing

• Recipe for pairwise testing with equivalence
classes and orthogonal arrays

• Identify the factors: input and state parameters
influencing SUT behavior

• Partition factor domains into levels (= equivalence
classes)

• Use orthogonal arrays calculation technique to find
input combinations such that

• each parameter-level combination of given
size n occurs an equal number of times

All-
Combinations
Testing

Example from
http://www.developsense.com/
pairwiseTesting.html

Pairwise
testing with
orthogonal
arrays

Example from
http://
www.developsense.com/
pairwiseTesting.html

http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html

Pairwise testing – Advantages

• Single-mode faults are detected

• Faults that only depend on one parameter

• Fault is revealed by selecting values of a certain
class, regardless of the other parameters’ values

• Dual-mode faults are detected

• n-tupel value combinations are evenly
distributed for n > 2

• Some authors claim impressive test
strength with surprisingly low number of
test cases

Pairwise testing — Criticism

• Some experiments show that test strength is
not as high as claimed by some others –
perhaps due to “mechanical” application
without analyzing the functional impact of
each parameter?

• Some experiments show that same strength
could be achieved (much easier) with random
test data generation

• Only applicable to combinatorial systems

• Far more complicated – even inapplicable – if
equivalence classes involve several parameters

How we apply pairwise testing
in MBT

• Objective. Test “important” control state
combinations in concurrent state machines

• Strategy.

• Select pairs based on writer-reader analysis

• Use orthogonal array methods so that control
state distribution is “as even as possible”

• Use SMT solver to calculate the input traces
needed to reach feasible control state
combinations

• Boundary value testing refines equivalence
class testing by selecting special
representatives of each class who are at its
boundary

• The intuitive meaning of a boundary value test
t is that a representative t’ of another
equivalence class is “close” to t

• The formal meaning requires to look into
metric spaces

25

Boundary Value Tests

• A metric on a space X is a real-valued
binary function d fulfilling

26

d : X ⇥X ! R
8x, y, z 2 X :

d(x, y) � 0 (non-negative)

d(x, y) = 0) x = y (identity of indiscernibles)

d(x, y) = d(y, x) (symmetry)

d(x, z)  d(x, y) + d(y, z) (triangle inequality)

At first, each atomic datatype is associated with
a metric:

• Integral numbers, floating point numbers,
enumerations (each enum interpreted by its
integer value) and Booleans (true = 1, false =
0):

• Strings:

27

d(x, y) = |x� y|

d(x, y) = Hamming-Distance(x, y) or d(x, y) = |strcmp(x, y)|

• The Hamming-Distance of two strings equals the number
of character substitutions to be performed until they
match each other.

• If x, y do not have the same length, the shorter one is
padded with blanks; so it may always be assumed that
the strings to be compared have equal length.

• The Hamming-Distance has the disadvantage that the
places where the strings differ and the alphabetic
distance of differing characters are not taken into
account.

• As an alternative, strcmp(3) takes into account the
distance between differing characters

28

• Based on the metric d(x,y) we introduce the
concept of closeness for pairs x,y of values
of an atomic type T

29

• Observe that close(x,y) is also well-defined for
floating point types, since for each x there is a
“closest” y differing from x by one ulp (unit in
the last place)

close(x, y) ⌘ d(x, y) > 0 ^ (8z 2 T � {x} : d(x, z) � d(x, y))

Automated identification of
relevant test cases

Automated generation of
concrete test data for test cases

— tool demonstration —

Automated execution of generated
test procedures against System Under
Test

— tool demonstration —

Automated generation of simulations
and mutants:
check test suite strength

Automated, documented tracing
Requirements →Test Cases → Test
procedures → SUT functions

Further Reading

1. Taguchi,	 G.	 1987.	 System	 of	 Experimental	 Design,	 Volume	 1	 &	
2.	 UNIPUB/Krass	 International	 Publications.

2. Tatsumi, K. 1987. Test case design support system. In International
Conference on Quality Control	 (ICQC),	 Tokyo.	 615–620.

3. Phadke, M. S. 1989. Quality Engineering Using Robust Design. Prentice
Hall, Englewood Cliff, NJ.

4. Bach, J. and Schroeder, P. 2004. Pairwise testing - a best practice that isnt. In
22nd Pacific Northwest Software Quality Conference. 180–196.

5. Huang, W.-l. and Peleska, J. 2012. Specialised Test Strategies. Technical	
Note	 Number:	 D34.2	 Version:	 0.1	 Date:	 June	 2012,	 Public	
Document.	 http://www.compass-research.eu

http://www.compass-research.eu
http://www.compass-research.eu

