Testing Distributed
Systems

Part ll: Test Cases, Model Coverage and Requirements

Tracing — Coverage Measures for Distributed Systems
2012-08-01

Jan Peleska and Wen-ling Huang
University of Bremen
{ip,huang}@informatik.uni-bremen.de

mailto:jp@informatik.uni-bremen.de
mailto:jp@informatik.uni-bremen.de

Development
Model (e.g. Simulink)

SysML Test Model

ettt
Spaeminie
Inifal
- CRASH_FLASHING_PASSIVE
N -
4 - - . - "
- . - .
- . . N
N Open request to central
L - ' [er_ImpactTaggle &2 cr_Impactx] {1 db_EmSwitch] [tin_EmSwitchSPV] loc s
. ; [oe_Central 22 (oc_C oStatus == 1)
ULSW’TLN,PRESSEDW (EM_SWITCH_SPV_PRESSED'
" [
N e J
) .a - . - . 8- K
- _— [l er_ImpactToggle && cr_lmpact(] (do_EmSwitch] [in_EmSwitchSPV]
) - . .
CRASH_FLASHING_ACTIVE
: + entry Flashing = 1,
- {019 ApplLinDiagTransferdata (uoia)
- /% 100.21330.000C0 */
) tm Active]
/% Service 0x36: ApplLinDiagTransferData */ CtriCrashFlashing sets the cr_CrashFlashing o™ Actve /
7x */ as performed a 0-> 1 -> 0 transition. Sefting c|
7% [RLs4_C_P1_435] */ crash flashing has command of the emergency|
oo omoce o1 Infil
/% Tno. 10000 400€0. 009C0 = There are 3 ways to de-activate crash flashing y
e N
Jx local variables +/ 1. Pressing and releasing the emergency fla| - -
CRASH_FLASHING_ACTIVE -> EM_SWIT entry /1 FlashCma=
/% 1n0.100C0 %/ activated by the releass.flank, while amerg| J
state machine NormalAndEmerFlashing. H
u8 dataLength; 2. Switching the special purpose emergenc)
@ ewe(temsagﬂe"@th 3. Opening the doors via centrallocking systd R -
I eXDe((edB\u(kSequenceCaunt v
Lt wri
boolean_t recPar0k check ReceivedParaneter:
132 AreaStartAddress l(lu]z]phL)angBuNer[d R pbLinntogBuffer(3) << 6) | poLinbisgBuffer(aD); {t lapse(12e0)
- .- - eeproRetVal_t writeRes = EEPROMERROR NOTOK; . It TigFlashing =
CebromRetVal™s ur\tchesBackup = EEPRDTERROR NOTOK; {1 FlashCmd 1=
.- eepronRetVal_t LocEepronStatus; e

eepronRetVal_t WriteStatus;

/% n0.400C0.000C0 */

ResetTineout();
/# In0.400C0.008CH +/

/% check session x/

/% Tno. 4008, BGECO */

if (UDS_PROGRAMMING != uds_output.state) {
/% Tn0.20EC0. 000C0 %/

L elode); /% OXTF */

/% no.400C0 %/

)

7% no.40EC0.000C0 */
/% check RD_OK %/

/% no.400C0. 00ECD */

i ! uds input. rd ok bt) {
0ECO.000C0 */

L KL i/ 0x2d

/% In0.400C0 %/

62_TumindL

-

Tipftashing

- J

ate maching shown here. niially
O indicates that nether ef nor

Tum indication (efight iz
the function is in basic canrol state I
right fashing i active

is controlled sccording to
and output I

shCmd

e dobouncod e oh um et over . 102 (o g, tte machine ransion
s performad

ot basc co

funcrlonalty: the tum indicato evor s released before 480ms have pass
stion o lcaton Tlashing s promod.In i corr

1980ms, on period has duration 650ms) are

Lo indictor evr 1 altady in postion b

fashi
is supervsed that

erods (duratior

perfomed before fasing i tumed of, though h

um indicator position during this phase the state machine transils again t
50 that the timer o, F1he tam ncctor v . loasod g bk 440 e
B et e s fosbig s W sl

Ifthe tum indicator leve i kept in positon 1 or 2 for a least £40ms, the state machine performs &

state Stable
he fashingdrecton (rnstion (0 Act), To
stable or Idl have been reached.

From et ndcalio can b drecly e o
Tashing bt is

ransiton into basic co
(transition to dle) or chan
reset 35 s00n 35 locaon:

Manual derivation of test model from software

requirements, developer model and hand-written code —

performed during development model review

Requirements tracing to model elements —
SysML method

st CulCmshFlashing/

REQ-CRASH-FLASHING-0003

Pressing and releasing one of the emergency flash

f CRASH FLASHING PASSIVE . g .
.- ¥ switches de-activates crash flashing
+ entry / cr_CrashFlashing =0, P
-
- -
- -
- Phe o / ;‘—/
-
- ’<<satisfy>>
| 1Togale 2& cr | | | db EmSwitch ‘—" ’ satis)’ Open request to central
cr_ImpaciToggle & cr_ImpactX ! Swit . 1 Switc i
[er_Imp g _Imp [! db_EmSwitc]“ . '<<sat|sfy>> [in_EmSwitch3PV] locking system
P - 'l
- ,! [oc_CentralLlockingRequest &2 (oc_CentralLockingStatus == 1)]
IMPACT_PENDING EM_SWITCH_PRESSED M_SWITCH_SPV_PRESSED
/
[l cr ImpactToggle && cr_ImpactX] [db_EmSwitch) [in_EmSwitchSPV) ‘\
‘\
A\
\ *
a CRASH_FLASHING_ACTIVE) %
. .
+ entry f cr_CrashFlashing = 1; ‘f<sat|sfy>>
‘
/ .
.
.
‘
A}
) | . . 5 <
CtriCrashFlashing sets the cr_CrashFlashing output to 1 as soon as a crash impact has been signalled v
has performed a 0-> 1 -> 0 transition. Setting cr_CrashFlashing to 1 immediately blocks the normal emer REQ_CRASH - FLASH | NG _0004
crash flashing has command of the emergency flash switch.
There are 3 ways to de-activate crash flashing: . .
| | . 4 | Unlocking the doors via remote control de-

1. Pressing and releasing the emergency flash switch on the dashboard (db_EmSwitch, state machine . .

CRASH_FLASHING _ACTIVE -> EM_SWITCH_PRESSED >CRASH_FLASHING PASSIVE). Obserd activates crash flashmg

activated by the release-flank, while emergency flashing can be both actwated and de-activated by th

state machine NormalAndEmerFlashing::HandleCrashOvernde)
2. Switching the special purpose emergency switch ON and OFF.
3. Opening the doors wia central locking system.

Automated generation of model coverage test cases

st CulCmshFlashing/

CRASH_FLASHING_PASSIVE

t entry / cr_CrashFlashing =0,

TEST-CASE-CRASH-FLASHING-0017

Transition EM_SWITCH_PRESSED
— CRASH_FLASHING_PASSIVE is performed
correctly

')

Open request to central
locking system

. [oc_CentralLlockingRequest &2 (oc_CentralLockingStatus == 1)]

TEST-CASE-CRASH-FLASHING-0018

'¢
”‘ .’
L4
¢"
[er_ImpaciToggle && cr_ImpactX] [! db_EmSwitcl;]" [lin_EmSwitchSPY]
’
l"
L
L4
\ ,*
- - = = > z
IMPACT_PENDING EM_SWITCH_PRESSED * SWITCH_SPV_PRESSED
L4 "
'¢
'l
| | - "
L4
L 4
[l cr I-'r.“:ﬁanr\nlc. 00 ~p Loty [PSP = A PN N | _ Iln_EmS'NITChSFV]

N\ .

Transition EM_SWITCH_SPV_PRESSED
— CRASH_FLASHING_PASSIVE is performed

/ *

correctly

CtriCrashFlashing sets the cr_CrashFlashing output to 1 as soon as a crash impact has been signalle
crash flashing has command of the emergency flash switch.
There are 3 ways to de-activate crash flashing:

1. Pressing and releasing the emergency flash switch on the dashboard (db_EmSwitch, state machi
CRASH_FLASHING_ACTIVE -> EM_SWITCH_PRESSED >CRASH_FLASHING_PASSIVE). Obs
activated by the release-flank, while emergency flashing can be both activated and de-activated by
state machine NormalAndEmerFlashing::HandleCrashOverride)

Switching the special purpose emergency switch ON and OFF.

Opening the doors via central locking system.

[SVI N]

has performed a 0-> 1 -> O transition. Setting cr_CrashFlashing to 1 immediately blocks the normal en TEST-CASE-CRASH-FLASHING-0019

Transition CRASH_FLASHING_ACTIVE
| ? CRASH_FLASHING_PASSIVE is performed
correctly

Automated tracing from test cases to
requirements

Requirement

Tested by

REQ-CRASH-FLASHING-0003

TEST-CASE-CRASH-FLASHING-0017

TEST-CASE-CRASH-FLASHING-0018

REQ-CRASH-FLASHING-0004

TEST-CASE-CRASH-FLASHING-0019

Automated tracing from test cases to
development model components

~ Simulink
Component

Tested by

component_X

Simulink.Crash_ flashing.

TEST-CASE-CRASH-FLASHING-0017

TEST-CASE-CRASH-FLASHING-0018

TEST-CASE-CRASH-FLASHING-0019

Test Cases for Model Coverage

® Automatically identified in the test model

® Guaranteed to be “sufficient” according to

requirements from RCTA DO178B/C, EN50128,
IEC 26262, if

® [00% decision coverage is achieved for non-critical
code

® [00% MC/DC coverage is achieved for safety-
critical code

® |00% requirements coverage

® Jest suite strength is sufficient

User-Defined Test Cases

Basic Control State
Pairs Coverage

Transition Coverage

Basic Control
State & Interface
Coverage

User-Defined Test Cases

Basic Control State
Pairs Coverage

Equivalence
Class Partition Testing

Transition Coverage

Basic Control
State & Interface
Coverage

User-Defined Test Cases

Pairwise Testing with
Orthogonal Arrays

Transition Coverage

Basic Control SN

Pairs Coverage

State & Interface

Equivalence
Class Partition Testing

Y

Basic Control

Coverage

Equivalence Class Partition
Testing

® Fundamental idea: input data
processed in the SUT by

® the same control path

® the same algorithm

may be regarded as equivalent

Justification of equivalence
class tests

® Equivalence class testing partitions the
computation space restricted to SUT
inputs, such that it may be expected
that the SUT behaves “equivalently”
for different members of each
partition, in the following sense

If 2 elements xo and x| are members of the
same partition (= equivalence class), it may be
expected that every error uncovered by x0 will
also be uncovered by x|

Equivalence Class Partition
Testing

¢ Example. Input parameter Voltage in the
turn indication example

® Note. It may be much more complex to
“find the right” equivalence classes

= See last session in the afternoon

“PartVI: Abstraction and its Implication for
Equivalence Testing”

Equivalence Classes in the

[b2_TurnindLvr == 0]

Time Domain

[Ir_FlashCmd I=
b2 TurnindLvr &.&
b2_TurnlndLyvr > 0]

Initial
[Idle
+ entry / Ir_FlashCmd= 0,
\ _/

[b2_TurnindLyvr = 0]

2 Active \

+ entry /Ir_FlashCmd = b2_TurnIndLvr,

/

Stable

N\

+ entry / Ir_TipFlashing = 1,

[t.elapsed{1980)]
/Ir_TipFlashing =
0.

+ entry / t.reset();

- /

+ entry / Ir_TipFlashing = 0;

.

/

[telapSEd(44D)] [bz_TUanndL\J’r > D]

M

[b2_TurnindLyr == 0]

TipFlashing

3 Types of Equivalence Classes

p Input equivalence classes identify
computations by means of their restriction to SUT

Inputs

p Output equivalence classes identify
computation by means of restrictions to SUT

outputs

p Structural equivalence classes identify
computations covering similar parts (in general path
segments) of the SUT code or SUT model

How path coverage comes in

® Problem:

® When testing members of an equivalence
class, an error of the associated data
transformation may be masked on the
path leading to this transformation

e3[x<5]/y = x+mt+error (:::)
| c3

e3[x>=5]/...

e2/m = w—-error

Error is masked on path cl->c2-»c3

How path covera

More about this in

Session VI
\

® When testing members of an equivalence
class, an error of the associated data
transformation may be masked on the
path leading to this transformation

® Problem:

e3[x<5]/y = x+mt+error (:::)
| c3

e3[x>=5]/...

e2/m = w—-error

Error is masked on path cl->c2-»c3

Equivalence Classes, Pairwise
Testing and Orthogonal Arrays

¢ Application Situation. Input
vectors to SUT have so many

components and / or so many
possible values that the test of all

parameter/value combinations is
infeasible

¢ Original application.
Combinatorial systems

Pairwise testing

® Recipe for pairwise testing with equivalence
classes and orthogonal arrays

® |dentify the factors: input and state parameters
influencing SUT behavior

® Partition factor domains into levels (= equivalence
classes)

® Use orthogonal arrays calculation technique to find
input combinations such that

® each parameter-level combination of given
size n occurs an equal number of times

Table 10: All Combinations for Three Variables of Three Levels Each

3
3

3

3

3

3

Red

3

o
B

IIIIIIIIIHHHHHHHHHHHHHHHHHII

25

3

LLLLLLLLLLLLLLLLELLLULLLLL
e e e
e

All-
Combinations

Testing

Example from
http://www.developsense.com/
pairwise Testing.html

Table 11: All-Pairs Array, Three Variables of Three Levels Each

Pairwise
testing with
orthogonal
arrays

Example from

http://
www.developsense.com/
pairwise Testing.html

http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html

Pairwise testing — Advantages

® Single-mode faults are detected
® Faults that only depend on one parameter

® Fault is revealed by selecting values of a certain
class, regardless of the other parameters’ values

® Dual-mode faults are detected

® n-tupel value combinations are evenly
distributed for n > 2

® Some authors claim impressive test
strength with surprisingly low number of
test cases

Pairwise testing — Ciriticism

® Some experiments show that test strength is
not as high as claimed by some others —
perhaps due to “mechanical” application
without analyzing the functional impact of
each parameter?

® Some experiments show that same strength
could be achieved (much easier) with random
test data generation

® Only applicable to combinatorial systems

® Far more complicated — even inapplicable — if
equivalence classes involve several parameters

How we apply pairwise testing
in MBT

® Objective. Test “important” control state
combinations in concurrent state machines

® Strategy.

® Select pairs based on writer-reader analysis

® Use orthogonal array methods so that control
state distribution is “‘as even as possible”

® Use SMT solver to calculate the input traces
needed to reach feasible control state
combinations

Boundary Value lests

® Boundary value testing refines equivalence

class testing by selecting special
representatives of each class who are at its

boundary

® The intuitive meaning of a boundary value test
t is that a representative t’ of another
equivalence class is “close” to t

® The formal meaning requires to look into
metric spaces

25

® A metric on a space X is a real-valued
binary function d fulfilling

0 (non-negative)

0 = x =y (identity of indiscernibles)
d(y,x) (symmetry)

d(z,y) + d(y,z) (triangle inequality)

26

At first, each atomic datatype is associated with
a metric:

® |ntegral numbers, floating point numbers,
enumerations (each enum interpreted by its
integer value) and Booleans (true = |, false =

0):

d(l’,y) — ‘x o y‘
® Strings:

d(x,y) = Hamming-Distance(x,y) or d(x,y) = |stremp(x,y)

27

The Hamming-Distance of two strings equals the number
of character substitutions to be performed until they
match each other.

If x, y do not have the same length, the shorter one is
padded with blanks; so it may always be assumed that
the strings to be compared have equal length.

The Hamming-Distance has the disadvantage that the
places where the strings differ and the alphabetic
distance of differing characters are not taken into
account.

As an alternative, strcmp(3) takes into account the
distance between differing characters

28

® Based on the metric d(x,y) we introduce the
concept of closeness for pairs x,y of values
of an atomic type T

close(z,y) =d(z,y) >0A(NVz €T —{x} :d(x,2) > d(x,y))

® Observe that close(x,y) is also well-defined for
floating point types, since for each x there is a
“closest” y differing from x by one ulp (unit in
the last place)

29

Automated identification of
relevant test cases

Automated generation of
concrete test data for test cases

— tool demonstration —

Automated execution of generated

test procedures against System Under
Test

Automated, documented tracing
Requirements — Test Cases — Test
procedures — SUT functions

Automated generation of simulations
and mutants:
check test suite strength

— tool demonstration —

Further Reading

Taguchi, G. 1987. System of Experimental Design, Volume 1 &
2. UNIPUB/Krass International Publications.

Tatsumi, K. 1987. Test case design support system. In International
Conference on Quality Control (ICQC), Tokyo. 615 —620.

Phadke, M. S. 1989. Quality Engineering Using Robust Design. Prentice
Hall, Englewood CIiff, NdJ.

Bach, J. and Schroeder, P. 2004. Pairwise testing - a best practice that isnt. In
22nd Pacific Northwest Software Quality Conference. 180—196.

Huang, W.-1. and Peleska, J. 2012. Specialised Test Strategies. Technical

Note Number: D34.2 Version: 0.1 Date: June 2012, Public
Document. http://www.compass-research.eu

http://www.compass-research.eu
http://www.compass-research.eu

