A Unified Approach to Abstract Interpretation,
Formal Verification and Testing of C/C++
Modules

Jan Peleska

Department of Mathematics and Computer Science
University of Bremen
Germany
jp@tzi.de

Abstract. In this paper, a unified approach to abstract interpretation,
formal verification and testing is described. The approach is applicable
for verifying and testing C/C++ functions and methods and complies
with the requirements of today’s applicable standards for the develop-
ment of safety-critical systems in the avionics and railway domains. We
give an overview over the techniques required and motivate why an in-
tegrated approach is not only desirable from the verification specialists’
perspective, but also from the tool builders’ point of view. Tool support
for our approach is available, and it is currently applied in industrial
verification projects for railway control systems. All techniques can be
adapted to model-based testing in a straightforward way. The objective of
this article is to describe the interplay between the methods, techniques
and tool components involved; we give references to more comprehensive
descriptions of the underlying technical details.

1 Introduction

1.1 Overview

Starting from the perspective of safety-critical systems development in avion-
ics, railways and the automotive domain, we advocate an integrated verification
approach for C/C++ modules! combining abstract interpretation, formal veri-
fication by model checking and conventional testing. It is illustrated how testing
and formal verification can benefit from abstract interpretation results and, vice
versa, how test automation techniques may help to reduce the well known prob-
lem of false alarms frequently encountered in abstract interpretations. As a con-
sequence, verification tools integrating these different methodologies can provide
a wider variety of useful results to their users and facilitate the bug localisation
processes involved. From the practitioners’ point of view, our approach is driven
by the applicable standards for safety-critical systems development in the rail-
way and avionic domains: The methods and techniques described should help

1 We use the term module to denote both C functions and C++ methods.

to (1) fulfil the software-quality related requirements of these standards more
efficiently and (2) facilitate the formal justification that these requirements have
been completely fulfilled.

We present an overview of the methods required to achieve these goals for
C/C++ code verification. The tasks involved can be roughly structured into six
major building blocks (see Figure 1): (1) A parser front-end is required to trans-
form the code into an intermediate model representation which is used for the
analyses to follow. The intermediate model representation contains a suitably
abstracted memory model which helps us to cope with the problems of aliasing,
type casts and mixed arithmetic and bit operations typically present in C/C++
code. (2) Verification tasks have to be decomposed into sub-tasks investigating
sub-models. A sub-model selector serves for this purpose. (3) Concrete, symbolic
and abstract interpreters are required to support the process of constraint gener-
ation, the abstract interpreter serving the dual purpose of runtime error checking
and of constraint simplification. (4) A constraint generator prepares the logical
conditions accumulated by the interpreters for the (5) constraint solver which is
needed to calculate concrete solution vectors as well as over and under approxi-
mations of the constraint solution sets. (6) For automated test case generation,
test data is constructed as solutions to the constraints associated with a specific
reachability goal. The test data has to be integrated in test procedures automat-
ically invoking the tested modules, feeding the input data to their interfaces and
checking the modules’ behaviour against expected results specifications. Test
procedures are internally represented as abstract syntax trees, so that different
syntax requirements of test execution environments can be conveniently met.

Our presentation focuses on the interplay between these building blocks and
provides references to more detailed elaborations of the technical problems in-
volved.

H Sub-Model Selector

('SUT - Memory Model)

Interpreters Test Procedures
Concrete

Symbolic Abstract

Constraint Solver String

Interval Linear Bit-
Analysis Arithmetic Vector Boolean

Constraint
Generator

jonje—{ UML20

* Test Case Specifications

Model Repr

Concrete Test Data

[
3
[SUT - Abstract Model]

AST Test Procedure Representation
Concrete Test Procedure Backends

SUT Code/Model Parsers

(Cox ot

Fig. 1. Building blocks of test automation, static analysis and property verification
tool platform.

In section 2 the requirements of standards related to safety-critical systems
development are sketched. Section 3 contains the main part of this paper. It

describes the work flow between the tool components listed above which conforms
to these standards. Moreover, the methods used to implement the component
functionality are sketched. Section 4 presents a conclusion.

1.2 Related Work

The work presented here summarises and illustrates results previously published
by the author and his research team in cooperation with Verified Systems Inter-
national GmbH [3,17,19, 16, 15].

Many authors point out that the syntactic richness and the semantic ambigu-
ities of C/C++ present considerable stumbling blocks when developing analysis
tools for software written in these languages. Our approach is similar to that
of [11] in that we consider a simplified syntactic variant — the GIMPLE code —
with the same expressive power but far more restrictive syntax than the original
language: GIMPLE [10] is a control flow graph representation using 3-address
code in assignments and guard conditions. Since the gcc compiler transforms ev-
ery C/C++ function or method into a GIMPLE representation, this seems to be
an appropriate choice: If tools can handle the full range of GIMPLE code, they
can implicitly handle all C/C++ programs accepted by gcc. Therefore we ex-
tract type information and GIMPLE code from the gce compiler; this technique
has been described in [14]. In contrast to [11], where a more abstract memory
model is used, our approach can handle type casts.

The full consideration of C/C++ aliasing situations with pointers, casts and
unions is achieved at the price of lesser performance. In [6, 5], for example, it is
pointed out how more restrictive programming styles, in particular, the avoid-
ance of pointer arithmetics, can result in highly effective static analyses with
very low rates of false alarms. Conversely it is pointed out in [25] that efficient
checks of pointer arithmetics can be realised if only some aspects of correctness
(absence of out-of-bounds array access) are investigated. As another alternative,
efficient static analysis results for large general C-programs can be achieved if a
higher number of false alarms (or alternatively, a suppression of potential fail-
ures) is acceptable [8], so that paths leading to potential failures can be identified
more often on a syntactic basis without having to fall back on constraint solving
methods.

On the level of binary program code verification impressive results have been
achieved for certain real-world controller platforms, using explicit representation
models [22]. These are, however, not transferable to the framework underlying
our work, since the necessity to handle floating point and wide integer types
(64 or 128 bit) forbids the explicit enumeration of potential input values and
program variable states.

All techniques described in this paper are implemented in the RT-Tester tool
developed by the author and his research group at the University of Bremen
in cooperation with Verified Systems International GmbH [26]. The approach
pursued with the RT-Tester tool differs from the strategies of other authors [6,
5,25]: We advocate an approach where verification activities focus on small pro-
gram units (a few functions or methods) and should be guided by the expertise

of the development or verification specialists. Therefore the RT-Tester tool pro-
vides mechanisms for specifying preconditions about the expected or admissible
input data for the unit under inspection as well as for semi-automated stub
(“mock-object”) generation showing user-defined behaviour whenever invoked
by the unit to be analysed. As a consequence, programmed units can be verified
immediately — this may be appealing to developers in favour of the test-driven
development paradigm [4] — and interactive support for bug-localisation and fur-
ther investigation of potential failures is provided: A debugger supports various
abstract interpretation modes (in particular, interval analysis) and the test case
generator can be invoked for generating explicit input data for reaching certain
code locations indicating the failure of assertions.

With the recent progress made in the field of Satisfiability Modulo Theory [20]
powerful constraint solvers are available which can handle different data types,
including floating point values and associated non-linear constraints involving
transcendent functions. The solver implemented in the tool relies on ideas devel-
oped in [9] as far as Boolean and floating point constraints are involved, but uses
additional techniques and underlying theories for handling linear inequations, bit
vectors, strings and algebraic reasoning, see, e. g. [23]. Most methods for solving
constraints on interval lattices used in our tool are based on the interval analysis
techniques described in [12].

2 Background and Motivation: Industrial Safety-Critical
Systems Development and the Deployment of Formal
Methods

According to the standards [21,7,1] the generation of 100% correct software
code is not a primary objective in the development of safety-critical systems. This
attitude is not unjustified, since code correctness will certainly not automatically
imply system safety. Indeed, safety is an emergent property [13, p. 138], resulting
from a suitable combination of (potentially failing) hardware and software layers.
As a consequence, the standards require that

— the contribution of software components to system safety (or, conversely, the
hazards that may be caused by faulty software) shall be clearly identified,
and

— the software shall be developed and verified with state-of-the art techniques
and with an effort proportional to the component’s criticality.

Based on the criticality, the standards define clearly which techniques are
considered as appropriate and which effort is sufficient. The effort to be spent
on verification is defined most precisely with respect to testing techniques: Tests
should (1) exercise each functional requirement at least once, (2) cover the code
completely, the applicable coverage criteria (statement, branch, modified condi-
tion/decision coverage) again depending on the criticality, (3) show the proper
integration of software on target hardware. Task (3) is of particular importance,

since analyses and formal verifications on source code level cannot prove that
the module will execute correctly on a specific hardware component.

These considerations motivate the main objectives for the tool support we
wish to provide:

1. Application of the tool and the results it provides have to be associated
clearly with the development phases and artifacts to be produced by each
activity specified in the applicable standards.

2. Application of the tool should help to produce the required results — tests,
analysis and formal verifications — faster and at least with the same quality
as could be achieved in a manual way.

Requirement 1 is obviously fulfilled, since the tool functionality described here
has been explicitly designed for the module verification phase, as defined by the
standards mentioned above. Requirement 2 motivates our bug finder approach
with respect to formal verification and static analysis: These techniques should
help to find errors more quickly than would be possible with manual inspec-
tions and tests alone — finding all errors of a certain class is not an issue. As a
consequence the tool can be designed in such a way that state explosions, long
computation times, false alarms and other aspects of conventional model check-
ers and static analysis tools, usually leading to user frustration and rejection of
an otherwise promising method, simply do not happen: Instead, partial verifica-
tion results are delivered, and these — in combination with the obligatory tests
— are usually much better than what a manual verification could produce within
affordable time.

3 Abstract Interpretation, Formal Verification and
Testing — an Integrated Approach

3.1 Specification of Analysis, Verification and Test Objectives

In our approach functional requirements of C/C++ modules are specified by
means of pre- and post-conditions (Fig. 2). Optionally, additional assertions can
be inserted into an “inspection copy” of the module code. The Unit Under Test
(UUT)? is registered by means of its prototype specification preceded by the
Quut keyword and extended by a {@pre: ... @post}; block. Pre- and post-
conditions are specified as Boolean expressions or C/C++ functions, so that —
apart from a few macros like @pre, @post, @assert and the utilisation of the
method name as place holder for return values — no additional assertion language
syntax is required. The pre-condition in Fig. 2, for example, states that the spec-
ified module behaviour is only granted if input ¢ is in range 0 < ¢ < 9 and inputs
x,y satisfy exp(y) < z. The post-condition specifies assertions whose applica-
bility may depend on the input data: The first assertion globx == globx@pre
states that the global variable globx should always remain unchanged by an

2 We use this term in general for any module to be analysed, verified and/or tested.

execution of £(). The second assertion (line 9) only applies if the input data
satisfies —10.0 < y Aexp(y) < x. Alternatively (line 12), the return value of £ ()
shall be negative.

1 double globx;

2

3 Quut double f(double x, double y, int i) {
4 @pre:

5 0 <=1 and i <= 9 and exp(y) < x;

6 @post:

7 Qassert(globx == globx@pre);

8 if (-10.0 < y and exp(y) < x) {

9 @assert(f == 1.0/(x - exp(y)));
10 }

11 else {

12 Q@assert(f < 0);

13 }

14 };

15

Fig. 2. Example: Module specification by pre- and post-conditions.

It is well-known that pre-/post-condition specifications are considerably facil-
itated by the optional utilisation of auziliary variables [2, p. 192]: These variables
are characterised by the fact that they are never read in control conditions or
assignments to non-auxiliary variables. As a consequence, the existence of aux-
iliary variables and their associated assignments does not change the (untimed)
behaviour of the UUT. Assignments can either be directly inserted into the UUT
code (so-called code instrumentation) or into the UUT specification by way of
pre- and post-processing statements.

Since module behaviour is not only defined by its input-output relation but
also by the sequence of sub-function and method invocations, it is necessary to
specify

— the expected number and sequence of sub-function invocations,

— the expected input data to be passed by the UUT to its sub-functions,

— constraints about the sub-function behaviour, depending on the input data
it receives.

Sub-functions are specified in the same way as the UUT itself. Using auxiliary
variables and associated assignments recording the calls and their parameters,
the assertions related to sequencing of sub-function calls can be expressed by
means of predicates referring to these auxiliary variables. For test purposes, our

system automatically generates test stubs (also called mock objects in object-
oriented settings): These are functions replacing the original sub-functions in-
voked by the UUT, and showing the specified sub-function behaviour. The utili-
sation of stubs has the advantage, that exceptional behaviour which rarely occurs
in the original sub-function (e. g. report of an arithmetic exception or a hardware
error) can ecasily be simulated in the stub, so that execution of the associated
code sections in the UUT can be triggered in a simple way.

Complementary to functional testing, it is required to perform structural test-
ing. The goal of structural testing consists in covering the UUT control struc-
tures, statements, calls to sub-functions and interfaces, while still checking that
the functional requirements are met. Currently, we support the coverage criteria
required in the standards [21,7]:

— Statement coverage (C0): Every statement is executed at least once.

— Decision coverage (C1): CO coverage plus the requirement that every decision
is evaluated at least once with result true and at least once with result false.
This is required, for example, for testing avionic software of criticality level
B (A = highest criticality level).

— Multiple condition/decision coverage (MC/DC): C1 coverage plus the re-
quirement that every condition in a decision in the module has taken all
possible outcomes at least once, and each condition in a decision has been
shown to independently affect that decision’s outcome. A condition is shown
independently to affect a decision’s outcome by varying just that condition
while holding fixed all other possible conditions. This is required, for exam-
ple, for testing avionic software of criticality level A.

The specification of pre-/post-conditions and internal assertions, in com-
bination with the optional utilisation of auxiliary variables, allows to specify
safety conditions about the module behaviour. As a consequence, the verifi-
cation goals are represented by reachability problems which are very similar
to the structural coverage test goals: If we consider augmented module ver-
sions where each safety condition 1 is represented by an auxiliary code branch
if () then { raiseError(); } located at the appropriate place in the code,
a test reaching the raiseError ()-statement would uncover the violation of v
and at the same time provide a counter example. Conversely, if this statement
can be proven to be “dead code”, this proves validity of .

Furthermore, the objective to achieve functional test coverage can also be
reduced to the problem of achieving structural test coverage, that is, it can also
be transformed into a set of reachability problems. To illustrate this we consider
a typical post-condition pattern

Q= /\(Ci(v,v') = Qi(v,v"))

Given variable vector pre-states v and post-states v’, this post-conditions states
a number of conditions C;(v,v’) about the situations to be distinguished. De-
pending on the applicable situation C;(v, v’), additional assertions Q; (v, v") shall

also hold. Functional test coverage would now require to create each of the situ-
ations C;(v,v'), so that the expected outcome Q;(v,v’) can be checked. Instead
of UUT £(), we now consider the augmented function f..z() shown in Fig. 3.
Obviously, statement coverage of f,u() implies functional coverage of £() in the
sense exemplified above.

1 void f_aug(tl x1, ..., tn xn) {

2 t r;

3 if (P(w)) {

4 // This branch is entered when input data

5 // satisfied pre-condition P(v)

6

7 v0 = v; // Create copy of pre-states
8 r = f(x1, ...,xn); // Call the UUT

9

10 // Post-state has changed variable vector v,
11 // pre-state is saved in auxiliary variable vO.
12

13 if (C_1(v0,v)) {

14 assert(Q_1(v0,v));

15 }

16 e

17 if (C_k(vO,v)) {

18 assert(Q_k(v0,v));

19 }
20 }
21 }
22

Fig. 3. Branch coverage of f_aug() implies functional test coverage of £ ().

For the abstract interpretation objective “absence of run-time errors” no
user-defined specifications are required, since the analysis obligations can be
directly extracted from the code. It is possible, however, to choose between bug
finder mode and proof mode: The former mode only uncovers run-time errors
along the module paths which have been investigated in order to reach the
specified test coverage and verification goals. Each uncovered run-time error
is associated with a test case uncovering the erroneous module state; potential
runtime errors for which no test cases could be constructed are not reported. The
proof mode tries to prove the absence of any runtime error within the module,
provided that the specified pre-conditions are met.

3.2 Transformation into an Intermediate Model Representation

To facilitate the re-use of algorithms for testing and verifying programs writ-
ten in other programming languages and to support model-based testing and
verification approaches, all algorithms operate on an intermediate model repre-
sentation IMR. Conceptually, IMRs consist of collections of transition systems
T = (5,59, —) which may be connected by a decomposition relation (e. g. tran-
sition system state s € S is decomposed into one or more sub-ordinate transition
systems Ti,...,T,) and a parallelism relation (transition system T} is executed
in parallel to T3).

Since we do not impose any restrictions on the size of the data types involved,
explicit transition system state space representations of C/C++ modules in the
IMR would be impossible. Instead, the IMR encodes the transition relation,
using a combined explicit and symbolic technique: The full transition system
state space S is structured into locations Loc and variable valuations V' 4 D,
i.e., S = Locx (V 4 D), where V denotes the set of symbols and D a suitable
domain capturing all symbol types involved. Note that the valuation mappings
are partial, because at different states different symbols may be present in the
state-dependent scope. Moreover, V' may be infinite to allow for symbols specified
by de-referenced pointer expressions (such as *(p->next->...->next->x)) or
array elements with arbitrary index expressions (like a[ig + ...+ i,]).

A directed location graph L = (Loc,—,C Loc x Label x Loc) with labelled
edges explicitly represents an abstraction of the transition system. The abstrac-
tion hides all concrete symbol valuations. The Edges e = [y —, [; of L may be
labelled by guard conditions g(e), that is, predicates with symbols from V' as free
variables. The guard conditions specify the constraints on variables valuations to
be fulfilled for having an associated transition in the concrete transition system
T = (Locx (V 4 D), Sy, —). Furthermore, edges e can be annotated with sym-
bolic transition relations specifying actions €(e), that is, changes o1 = €(e)(09)
on symbol valuations accompanying a (lg,00) — (l1,01)-transition in the
concrete transition system 7. Similarly, nodes [y of the location graph can be
annotated by entry actions «(ly), specifying changes on symbol valuations oc-
curring when entering location /1. Furthermore, they can be labelled with invari-
ants inv(l) and do-actions 6(1) to encode models specified in timed, potentially
hybrid, formalisms and supporting urgent and non-urgent transitions.

A pre-requisite for a concrete transition (lp,09) — (l1,01) to take place

in T is that there exists an edge [%L [1 in the location graph such that
oo = g, that is, g(oo(z0)/x0,...,00(xn)/x,) evaluates to true. This is obvi-

ously independent on the concrete formalism encoded in the IMR. The more
specific rules for deriving possible T-transitions depend on the underlying for-
malism. As a consequence, we instantiate specific interpreters implementing the
concrete transition rules with each supported formalism. This necessity suggests
an object-oriented approach for the IMR.

For C/C++ module testing, each module f() corresponds to one transition
system T'(f) and transition system states correspond to computation states of
the module. A call from f() to a sub-module h() corresponds to a state s repre-

senting the call which is related to a sub-ordinate transition system 7'(h). The
IMR uses GIMPLE control flow graphs (CFG) as location graphs for C/C++
modules (see [10]). These graphs have one dedicated entry node BLOCK 0 and
one exit node EXIT. Each location is associated with an entry action, and these
are the only actions defined for CFGs; do-actions, invariants and actions associ-
ated with edges are not needed. Actions are defined in imperative programming
language style according to the GIMPLE syntax and in 3-address code®. Each

CFG node [has at most two outgoing edges [ML U1 @w " corresponding

to if-else-conditions, so g3 = —¢go. The symbol set V consists of the variable
symbols occurring in f() plus additional atomic variables introduced to support
the 3-address code representation. Each concrete transition of T' can be derived
from the rule

lo ﬂw li,ool=g
(lo,00) — (I1, a(l1)(00))
A run of a C/C++ module is a finite computation, that is, a sequence

r= <([O’ 00)7 e (ln, Un)>

such that (lp,00) € Sp and

Viée {O,...,TL— 1} =y M)L li+1 L 0; ': Ggi N Oiy1 = Ol(li+1)(0i)

A path lg — 13 —,...,— [, through the location graph L(T) is called
feasible if an associated run in T can be constructed, otherwise the path is
infeasible.

If the entry action of the target node consists of a function call then the
following rule for the calculation of a(ly)(0p) is applied:

a(ly) = {xo =h(x1,...,%x);}, (BLOCK 0,00|n) —} (EXIT,01)
a(li)(o0) = (o1]f)[o — o1 (hreturn)]

This rule is interpreted as follows: If T'(f) may perform a transition into location
l1 which has a function call as entry action, then the effect of this action is
defined by T'(h). If T'(h) transforms entry valuation o[, into exit valuation oy
then the symbols still visible at the level of f() (that is, everything but the formal
parameters and stack variables of h()) carry the new valuation o1, and the return
value of h() is assigned to the target variable xo of the assignment. The symbol
| in 0|, denotes (1) the extension of dom og to the scope of h(): dom oy is now
extended by the formal parameters and stack variables of h(). (2) The assignment
of actual parameter values used in the call to h to formal parameter valuations
visible inside h. Observe that for reference parameters the formal parameter gets
an address assignment from the associated actual parameter. Conversely, o1]f
denotes (1) the domain restriction of valuation function oy; formal parameters
and local variables of h() are no longer visible, and (2) the assignment of the
return value of h() to an intermediate variable A,z visible at the level of f().

3 Exceptions are calls to modules with more than 3 parameters y = f(x1,...,%n) and
access to multi-dimensional array y = afxi]... [xa],n > 2.

Due to the aliasing effects possible in C/C++, the sub-function h() may in-
directly change local variables of f() via assignments to de-referenced pointers.
As a consequence, the effect of the h()-execution on symbol valuations “appar-
ently” outside the scope of h() can be quite complex. The memory model and
the associated valuation rules described below have been designed to cope with
these problems. For the moment it suffices to observe that an assignment to a
symbol inside the scope of h() may implicitly change the valuation of (due to
recursive data structures and pointer de-referencing) possibly infinitely many
other symbols which may even be outside the scope of k().

3.3 The Sub-Model Generator

The reason for using a mixed explicit (location graph) and symbolic (specifica-
tion of transition effects on valuations) intermediate model representation lies in
the fact that this allows us to distribute the elaboration of reachability strategies
onto two tool components — the solver and the sub-model generator — instead
of only one (the solver). It has been pointed out in [3] that the reachability
goals associated with structural test coverage and with the verification of safety
properties can always be expressed as a goal to cover specific edges in a location
graph; for C/C++ this is the GIMPLE CFG or a semantically equivalent trans-
formation thereof. The task of the sub-model generator is therefore to restrict
the complete transition system collection representing the UUT into a collection
of restricted sub-systems by eliminating as many original transitions that will
never be visited by any path leading to the destination edges as possible. Since
this should be performed in an efficient manner before a constraint solver is in-
volved, the sub-model generator performs a conservative approximation based
on the location graph alone, that is, without calculating symbol valuations. Fur-
thermore, the sub-model generator receives feed-back from the constraint solver
about infeasible paths through the location graph and applies learning strate-
gies for avoiding to pass infeasible sub-models to the solver. Finally, this tool
component keeps track of the location graph coverage achieved.

The simplest sub-models are paths through the location graph, more complex
ones are

— trees leaving a higher degree of freedom for the solver in order to construct
runs to the destination edges, and

— sub-graphs representing if-else branches both leading back to the same path
to the destination edge.

Ezample 1. Consider a C/C++-UUT whose transition relation is encoded by
the CFG depicted in Fig. 4. For structural testing it is useful to know all paths
up to a certain depth leading to any given edge. For this purpose, the sub-model
generator maintains a tree of depth k as depicted in Fig. 5, associated with a
function ¢, mapping edges e of the location graph to lists of nodes n in the
tree, such that a path in the tree from root to n corresponds to a path trough
the transition graph reaching e. For the configuration described by Fig. 4 and

5 we have, for example, ¢g(f) = ((I5,3), (I5,5), (I5,4), (I5,7)). If one path, say,
the one specified by (I5,3), to the destination edge is identified by the solver to
be infeasible, the tree is pruned at the target node of the destination edge. In
our example, edges in the sub-tree starting at (l5,3) would never be suggested
again by the sub-model generator. If all paths specified by ¢ (f) turned out to
be infeasible, the tree can be expanded if possible, but only at leaves which do
not reside in sub-trees already pruned.

For structural testing it will be too costly to expand the tree of Fig. 5 further,
if most of the edges have already been covered. The sub-model generator now
constructs another tree structure capturing all (still potentially feasible) paths
to an edge still uncovered.

More details about the algorithms for generating sub-models can be found

in [3]. O

Fig. 4. Location graph example.

3.4 Interpreters

Symbolic Interpretation. Given the IMR of a spcification or C/C++ mod-
ule, the symbolic interpreter performs symbolic computation of runs through
a sub-model of the location graph. This interpreter is the core component for
generating the constraints to be solved for the inputs of a module, in order to
reach a given edge.

As a consequence of the aliasing problems of C/C++ it may be quite complex
to determine the valuation of a variable in a given module state: the memory
location associated with the variable may have been changed not only by direct
assignments referring to the variable name, but also indirectly by assignments

(l3’ 6)

(l6,6) (l6,7) (I5,7)

Fig. 5. Tree sub-model with paths to all edges in the location graph.

to de-referenced pointers and memory copies to areas containing the variable.
Therefore we introduce a memory model that allows us to identify the pres-
ence of such aliasing effects with acceptable effort. Computations are defined as
sequences of memory configurations, and the memory areas affected by assign-
ments or function/method executions are specified by means of base addresses,
offsets and physical length of the affected area. Moreover, the values written
to these memory areas are only specified symbolically by recording the value-
defining expression (e. g. right-hand side of an assignment or output parameter
of a procedure call) without resolving them to concrete or abstract valuations.
This motivates the term symbolic interpretation. Global, static and stack vari-
ables x induce base addresses &x in the data and stack segment, respectively.
Dynamic memory allocation (malloc(), new ...) creates new base addresses
on the heap. A memory configuration mem consists of a collection of memory
items, each item m specified by base address, offset, length and and value ex-
pression (Fig. 6). Since some statements will only conditionally affect a memory
area, it is necessary to associate memory items with constraints specifying the
conditions for the item’s existence.

Symbolic computations — that is, sequences of memory configurations related
by transition relations — are recorded as histories, in order to reduce the required
storage space: Memory items are associated with a validity interval [m.vg, m.v;]
whose boundaries specify the first and last computation step where the item was
a member of the configuration.

Ezxample 2. Suppose that variables float x,y, z; are defined in the stack frame of
the UUT on a 32-bit architecture, and the current computation step n performs
an assignment x = y 4+ z. This leads to the creation of a new memory item

m:def’n|oo|&x|float|0|32|yn—|—zn|true‘

’m.vo | mr | m.a | m.t | m.oo | md| mowal | m,c‘

m.vo First computation step number where m is valid

m.v1 Last computation step number where m is valid or oo for items valid beyond the
actual computation step

m.a Symbolic base address

m.t Type of specified value m.val

m.o Start offset from base address in bits, where value is stored

m.l Offset from base address to first bit following the stored value, so m.l—m.o specifies
the bit-length of the memory location represented by the item

m.val Value specification

m.c Validity constraint

Fig. 6. Structure of a memory item m.

Item m is first valid from step n on, and has not yet been invalidated by other
writes affecting the memory area from start address &z to &x + 31. The value
depends on the valuation of y and z, taken in step n. This is denoted by the
version index n in the value expression y, + 2. O

For the representation of large memory areas carrying identical or inter-
dependent values it is useful to admit additional bound parameters in the offset,
value and constraint specifications:

Mpo,....pk

[vo [o [alt] oo, o) [1o, ,px) | val(po,. . p) | c(pos---,pr) |

defines a family of memory items by means of the definition

Mpo....on =def {1V | M vg=v9 Am' vy =v1 Am.a=aAm/'t=tA
(Epl{), . ,p/;c :ml.o= ?[pf)/po, ey D/ PE] A
m'.l = l[pO/pO, s 7pk;/pk] A
m/.wal = valpy/po, . .., D) /Pr] A
m'.c = c[py/po, - - Pl/Pr])}

Ezample 3. Suppose that array float a[10]; is defined in the stack frame of
the UUT on a 32-bit architecture, and is currently represented by a family of
memory items

Mp =def

’n | oo | &al0] | float | 32-p | 32-p+ 32 | sinf((float)p) | 0 <pAp <10

Family m specifies one memory item for each p € {0,...,9}, each item located
at a p-dependent offset from the base address &a[0] and carrying a p-dependent
value. 0

S T W N =

Symbolic interpretation (denoted below by transition relation —¢, “G”
standing for “GIMPLE operational semantics”) is performed according to rules
of the pattern

ni —org ne
(n1,n,mem) —¢ (n2,n + 1, mem’)’

S0 a transition can be performed on symbolic level whenever a corresponding
edge exists in the control flow graph (i>c ra denotes the edge-relation in the
module’s CFG, with guard condition g as label). It may turn out, however, on
abstract or concrete interpretation level, that such a transition is infeasible be-
cause no valuation of inputs exists where the constraints of all memory items
involved evaluate to true. Informally speaking, a statement changing the mem-
ory configuration is processed according to the following steps: (1) For every base
address and offset possibly affected by the statement, create a new memory item
m’, to be added to the resulting configuration. (2) For each new item m’ check
which existing items m may be invalidated: Invalidation occurs, if m’ refers to
the same base address as m and the data area of m’ has a non-empty intersection
with that of m. (3) For each invalidated item m create new ones m’ specifying
what may still remain visible of m: m” equals to m if m’ does not exist at all
(i. e., constraint m/'.c evaluates to false), or m’ and m do not overlap. Moreover,
m/ specifies the resulting value representation of m in memory for the situation
where m’ and m only partially overlap.

In [16, 15], formal transition rules have been specified for — ¢, as well as the
algorithms required for rule application. Here we will only present an example,
in order to illustrate the effect of these rules on the symbolic memory state.

Example 4. A stack declaration int a[10]; followed by assignments a[i] = m
+ n; alj]l = 0; is represented in GIMPLE as

int a[10];

i_0 =1,

D_4151 = m + n;
ali_0] = D_4151;
j-1=73;

alj_1] = 0;

After having processed lines 1 — 6, the associated computation results in the
following history of memory items:

m), = (1,3,&al0],32 - p,32 - p + 32, int, Undef,0 < p A p < 10)

m? = (2,00, &41.0,0,32, int, i, true)

m? = (3,00, &D_4151,0, 32, int,my + nytrue)

mp = (4,5,&al0],32 - p,32 - p + 32,int,Undef,0 < pAp < 10 A p # i02)

m® = (4,5, &a[0],32 - i_02,32 - i_02 + 32, int, D_41513,0 < i_.02 A i_02 < 10)

mS = (5,00, &j-1,0,32, int, ja, true)

mJ] = (6,00, &a[0],32 - p,32 - p+ 32, int,Undef,0 < pAp < 10Ap #i 02 Ap # j 1)
m® = (6,00, &al0],32 - i_02,32 - i_02 + 32, int, D_41513,

0<i0sAi0s<10Ai0s#7j15)
m? = (6,00, &a[0],32 - j_15,32 - j_15 + 32,int, 0,0 < j_15 A j_15 < 10)

Initially, the declared array a is undefined because it resides in the stack segment
where no variable initialisation takes place (memory item m,}). The assignment
to a[i_0] in line 4 invalidates the original item 7, representing the symbolic
valuation of a, so mzl,.vl = 3. This leads to the creation of two new items:
m?® specifies the effect of the assignment in line 4, and mﬁ specifies the array
elements which are still undefined. A further invalidation of m?, m® is caused
by the assignment in line 6 and generates the new items m;, msp, m?®. Ttem m?,
for example, specifies the situation where the original value written to a[i_0] in
line 4 is still visible after the new assignment in line 6. (|

Abstract Interpretation. The abstract interpreters evaluate one or more ab-
stractions of the memory model. Starting with (lattice) abstractions of the mod-
ule’s input data, they operate on abstractions of the symbolic memory model.
The purpose of this activity is threefold:

— Identification of runtime errors.

— Using over-approximation, an abstract interpreter can find sufficient condi-
tions to prove that a computation “suggested” by path generator and sym-
bolic interpreter is infeasible. Since abstract interpretation can be performed
at comparably low cost this is more effective than waiting for the constraint
solver to find out that a path cannot be covered.

— Using under-approximation, the abstract interpreters speed up the solution
process for non-linear constraints involving floating point variables and tran-
scendent functions.

Concrete Interpretation. The concrete interpreter applies concrete GIMPLE
semantics [16] in order to find out the paths through the IMR that are covered
with concrete sets of input data. It is applied

— in verification to present counter examples,

— in structural testing to determine the location graph edges following a reach-
able destination edge which are also covered before the exit point of a module
execution is reached.

3.5 Constraint Generation

As we have seen in the previous section, the guard conditions to be fulfilled in
order to cover a specific path or a sub-graph of a module’s CFG are already
encoded in the memory items associated with the symbolic memory configura-
tions involved. The most important task for the constraint generator is now to
resolve the value components of the memory items involved, so that the resulting
expressions are free of pointer and array expressions, and are represented in an
appropriate format for the solver.

Ezample 5. Let us extend Example 4 by two additional statements

7 D_4160 = a[i_0];
8 if (D_4160 <0) { ...(x)... }

and suppose we wish to reach the branch marked by (*). The constraint generator
now proceeds as follows: (1) Initialise constraint ¢ as ¢ := D_4160 < 0.

(2) Resolve D_4160 to a[i-0], as induced by the memory item resulting from
the assignment in line 7. Since a[i_0] is an array expression, we have to resolve
it further, before adding the resolution results to @.

(3) a7[i-0¢] matches with items m], m®, m? for a and m? for i 0 in Exam-
ple 4, since the other items with base address &a[0] are already outdated at
computation step 7; this leads to resolutions

& =D_4160 < 0 A ((D-4160 = Undef ANi 07 =pAO<pAP<I0AP#iO;Ap#jls)V
(D4160 =D_41513 A1 07 =i 00 A0 <i0,A1i0; <10Ai 0y # j15)V
(D-4160 =0A 107 = j1s A0 < j1s A j-1s < 10)) A
107 =10, A10; =1i1 AjO0s = jaAja=3js

Observe that at this stage @ has been completely resolved to atomic data types:
The references to array variable a have been transformed into offset restrictions
(expressions over i_07,1_05,j-1s,...), and the array elements involved (in this
example a[i_0]) have been replaced by atomic variables representing their values
(D_4160). References to C-structures would be eliminated in an analogous way,
by introducing address offsets for each structure component and using atomic
variables denoting the component values.

Further observe that we have already eliminated the factors 32 in @, initially
occurring in expressions like 32-i_0; = 32- j_15. These factors are only rele-
vant for bit-related operations; for example, if an integer variable is embedded
into a C-union containing a bit-field as another variant, and a memory item
corresponding to the integer value is invalidated by a bit operation.

(4) Simplify by means of abstract interpretation: Using interval analysis for
symbols of numeric type, some atoms of the constraint can be quickly verified or
falsified, in order to simplify the constraint finally passed to the solver. Suppose,

for example, that i, j were inputs to the module and fulfilled the pre-conditions
0 <i<2 2<j < 10 The interval analysis would yield true for condition
109 # j_15 for all elements 4, j satisfying the pre-condition, so conjunct i_0s #
j-15 could be deleted in &.

(5) Prepare the constraint for the solver: Following the restrictions for ad-
missible constraints described in [9], our solver requires some pre-processing of
@: (a) Inequalities like 1.0, # j_15 are replaced by disjunctions involving <, >,
e. g 1.0y < j-1s Vi 0y > j-15. (b) Inequalities a < b are only admissible if a or
b is a constant. Therefore atoms like i 05, < j_1s are transformed with the aid
of slack variables s, so that non-constant symbols are always related by equality.
For example, the above atom is transformed into i-0, +s = j_1s A0 < s. (¢)
Three-address-code is enforced, so that — with the exception of function calls
y = f(%o,...,%s) and array expressions y = a[xi]...[xy] — each atom refers to
at most 3 variables. Since the introduction of slack variables may lead to four
variables in an expression originally expressed with three symbols only, auxil-
iary variables are needed to reinstate the desired three-address representation.
For example, x +y < z leads to x + y = 2 + s A s < 0 which is subsequently
transformed into aux = z+sAx+y = auxr A s < 0. (d) The constraint is trans-
formed into conjunctive normal form CNF. Constraint @ in this example already
indicates a typical problem to be frequently expected when applying the stan-
dard CNF algorithm: Some portions of @ resemble a disjunctive normal form.
This is caused by the necessity to consider alternatives — that is, V-combinations
— of memory items, where the validity of each item is typically specified by a
conjunction. As a consequence, the standard CNF algorithm may result in a
considerably larger formula. Therefore we have implemented both the standard
CNF algorithm and the Tseitin algorithm [24] as an alternative, together with a
simple decision procedure indicating which algorithm will lead to better results.

3.6 Constraint Solver

The solver handling the conditions prepared by the constraint generator has been
developed according to the Satisfiability Modulo Theory (SMT) paradigm [20].
It uses a combination of techniques for solving partial problems of specific type
(e. g., constraints involving bit vector arithmetic, strings, or floating point cal-
culations). For the solution of constraints involving floating point expressions
and transcendent functions the solver applies interval analysis [12] and learning
strategies designed by [9], see also [3] for more details of solver application in
the context of test automation.

4 Conclusion

We have described an integrated approach for automated testing, static analysis
by abstract interpretation and formal verification by model checking (reacha-
bility analysis for safety properties). The main focus of the presentation was
on the verification of C/C++ modules. It has been indicated, however, how

more abstract specification models can be encoded in the same intermediate
model representation IMR used for code verification. As a consequence, the al-
gorithms operating on the IMR can be directly applied to model-based testing
and model verification. The techniques described in this paper, together with
the tool support provided by the test automation system RT-Tester [26] are ap-
plied in industrial projects in the fields of railway control systems and avionics,
the model-based approach is currently applied in the railway and automotive
domains. More details about model-based testing can be found in [18].

References

10.

11.

12.

13.

. IEC 61508 Functional safety of electric/electronic/programmable electronic safety-

related systems. International Electrotechnical Commission, 2006.

K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer, Berlin Heidelberg New York, 1991.

Bahareh Badban, Martin Franzle, Jan Peleska, and Tino Teige. Test automa-
tion for hybrid systems. In Proceedings of the Third International Workshop on
SOFTWARE QUALITY ASSURANCE (SOQUA 2006), Portland Oregon, USA,
November 2006.

Kent Beck. Test-Driven Development. Addison-Wesley, 2003.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Combination of abstractions in the ASTREE static analyzer. In M.
Okada and I. Satoh, editors, Eleventh Annual Asian Computing Science Confer-
ence (ASIAN’06), pages 1-24, Tokyo, Japan, LNCS, December 6-8 2006. Springer,
Berlin. (to appear).

Bruno Blanchet et. al. Design and implementation of a special-purpose static pro-
gram analyzer for safety-critical real-time embedded software. In T. AE. Mogensen
et al., editor, The Essence of Computation, volume 2566, pages 85—108, 2002.
European Committee for Electrotechnical Standardization. EN 50128 — Railway
applications — Communications, signalling and processing systems — Software for
railway control and protection systems. CENELEC, Brussels, 2001.

Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and Felix Rauch.
Goanna - a static model checker. In Proceedings of 11th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS), Bonn, Germany, 2006.
Martin Fréanzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schu-
bert. Efficient solving of large non-linear arithmetic constraint systems with com-
plex boolean structure. Journal on Satisfiability, Boolean Modeling and Computa-
tion, 2007.

GCC, the GNU Compiler Collection. The GIMPLE family of intermediate repre-
sentations. See http://gcc.gnu.org/wiki/GIMPLE.

Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic protocol analysis on
real C code. In Radhia Cousot, editor, Proceedings of the 6th International Con-
ference on Verification, Model Checking and Abstract Interpretation (VMCAI’05),
volume 3385 of Lecture Notes in Computer Science, pages 363-379, Paris, France,
January 2005. Springer.

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied Interval Anal-
ysis. Springer-Verlag, London, 2001.

Nancy G. Leveson. Safeware. Addison-Wesley, 1995.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

253.

26.

Helge Loding. Behandlung komplexer Datentypen in der automatischen Testdaten-
generierung. Master’s thesis, University of Bremen, May 2007.

Jan Peleska. Integrated and automated abstract interpretation, verification and
testing of C/C++ modules. In Dennis R. Dams, Ulrich Hannemann, and Martin
Steffen, editors, Correctness, Concurrency and Compositionality — Festschrift for
Willem-Paul de Roever, LNCS Festschrift series. Springer, 2008. To appear.

Jan Peleska and Helge Loding. Symbolic and abstract interpretation for c¢/c++
programs. In Proceedings of the 3rd intl Workshop on Systems Software Verification
(SSV08), Electronic Notes in Theoretical Computer Science. Elsevier, February
2008.

Jan Peleska, Helge Loding, and Tatiana Kotas. Test automation meets static anal-
ysis. In Rainer Koschke, Karl-Heinz Rodiger Otthein Herzog, and Marc Ronthaler,
editors, Proceedings of the INFORMATIK 2007, Band 2, 24. - 27. September, Bre-
men (Germany), pages 280—286.

Jan Peleska, Oliver Moéller, and Helge Loding. Model-based testing for model-
driven development with uml/dsl. In To appear in Proceedings of the Soft-
ware € Systems Quality Conference 2008 (SQC 2008). Available under
http://www.informatik.uni-bremen.de/agbs/jp/jp-papers_e.html.

Jan Peleska and Cornelia Zahlten. Integrated automated test case generation and
static analysis. In Proceedings of the QA+ Test 2007 International Conference on
QA+ Testing Embedded Systems, Bilbao (Spain) 17th - 19th October 2007, 2007.
S. Ranise and C. Tinelli. Satisfiability modulo theories. TRENDS and
CONTROVERSIES-IEEE Magazine on Intelligent Systems, 21(6):71-81, 2006.
SC-167. Software Considerations in Airborne Systems and Equipment Certifica-
tion. RTCA, 1992.

Bastian Schlich, Falk Salewski, and Stefan Kowalewski. Applying model checking
to an automotive microcontroller application. In Proc. IEEE 2nd Int’l Symp.
Industrial Embedded Systems (SIES 2007). IEEE, 2007. ISBN 1-4244-0840-7.
Ofer Strichman. On solving presburger and linear arithmetic with sat. In M.D.
Aagaard and J.W. O’Leary, editors, Formal Methods in Computer-Aided Design
(FMCAD),, number 2517 in LNCS, pages 160-170. Springer, 2002.

G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic,
Part 2, page pp. 115. Consultants Bureau, New York-London, 1962.

Arnaud Venet and Guillaume Brat. Precise and efficient static array bound check-
ing for large embedded c programs. In Proceedings of the PLDI’04, June 9-11,
2004, Washington, DC, USA. ACM 1581138075/04/0006.

Verified Systems International GmbH, Bremen. RT-Tester 6.2 — User Manual,
2007.

