A Formal Introduction to Model-Based Testing
Part I: Exhaustive Testing Methods

Jan Peleska
jp@verified.de

Verified Systems International GmbH and University of Bremen

ICTAC 2008
Why will testing remain a crucial verification and validation activity?

- Simple answer: because standards for safety-critical systems development will never allow certification without testing
- More elaborate answers:
 - Complex HW/SW systems cannot be captured in a completely formal way – therefore at least **HW/SW integration and system integration testing** will remain important for system verification
 - Software testing plays an increasingly important role for the verification of automatic code generators
 - 100% software correctness is not always the main issue, because
 - 100% software correctness does not imply system safety (recall Leveson: “Safety is an emergent property”)
 - Systems containing software bugs can still be safe
Model-based equivalence testing . . .

. . . is a variant of exhaustive testing:

- The goal of the test suite is to establish an equivalence relation between specification model and implementation
- Typical equivalence relations are
 - Bi-similarity
 - Failures equivalence
- From a practical point of view, proof of refinement properties by means of exhaustive testing is often more relevant than equivalence testing
Model-based equivalence testing versus model checking

- White-box equivalence testing identical to model (equivalence) checking
- Grey-box equivalence testing differs from model checking:
 - The implementation model is only partially known, e.g., the maximal number of states and the interface latency of the implementation
- Black-box equivalence testing is impossible, due to the time-bomb problem: The SUT may behave properly for an unknown number of execution loops and fail after some hidden state condition (e.g., a counter overflow) arises
- In principle, all tests could be assumed to be grey box, since hardware limitations always impose a finite state system. This limit, however, will be so large that no practical application of equivalence testing is feasible.
Chow’s Theorem (1)

- Equivalence testing for deterministic Mealy automata
- One of the first contributions showing that equivalence proof by grey-box testing is possible with a *finite number of test cases*
- The test case construction method according to Chow is also called **W-Method**
- For a more detailed error classification extending the examples below see Chow’s paper and Robert. V. Binder: *Testing Object-Oriented Systems*. Addison Wesley (1999).
Chow’s Theorem (2): Pre-requisites

- A and B are Mealy automata over the same alphabet $\Sigma = I \cup O$
- I contains input symbols, O output symbols
- Transition functions
 $\delta_A : Q(A) \times I \rightarrow Q(A) \times O$ and $\delta_B : Q(B) \times I \rightarrow Q(B) \times O$
 are total functions
- For $\delta(q_1, x) = (q_2, y)$ we also write $q_1 \xrightarrow{x/y} q_2$.
- If input sequence $p = \langle x_1, \ldots, x_k \rangle$ leads from state q_1 to final state q_2, we write $q_1 \xrightarrow{p} q_2$.
- We require A and B to be minimal (this simplifies the proof, but is not essential)
- A is used as the model, B as the implementation.
Chow’s Theorem (3): Pre-requisites

- The set of states $Q(A)$ has cardinality n, $\text{card}(Q(B)) = m$
- Initial states: q_A, q_B.
- **Test cases** are input traces $p \in I^*$.
- The specification automaton A serves as **test oracle**: The generated input trace, when exercised on B, leads to an output trace which can be observed, and the resulting I/O-trace $u \in \Sigma^*$ can be automatically checked against A, whether it is a word of $\mathcal{L}(A)$
- $P \subseteq I^*$ is called **transition cover** of A, if:

$$\forall q_1 \xrightarrow{x/y} q_2 \in \delta_A : \exists p \in P : q_A \xrightarrow{p} q_1 \land p \vdash \langle x \rangle \in P$$
Chow’s Theorem (4): Pre-requisites

- $W \subseteq I^*$ is called **characterisation set** of A if for all $q_1, q_2 \in Q(A)$, there exists a $w \in W$ **distinguishing** q_1 and q_2, i.e.: w applied to q_1 results in an output trace which differs from the one resulting from application of w to q_2.

- Define $X^n = \{ p \in I^* \mid \#p = n \}$ for $n \geq 0$.

- Define $U_1 \cdot U_2 = \{ u_1 \cdot u_2 \mid u_i \in U_i, i = 1, 2 \}$ for $U_1, U_2 \subseteq I^*$.

- Define $\mathcal{W}(A)$, the set of **W-test cases** of A by

$$\mathcal{W}(A) = P \cdot (\bigcup_{i=0}^{m-n} (X^i \cdot W))$$
Chow’s Theorem (5)

Chows Theorem If B passes all W-test cases from $\mathcal{W}(A)$ then A and B are bi-similar (written $A \approx B$).

Remarks.

- “Passing a test case from $\mathcal{W}(A)$” means to generate the same outputs as A for every input sequence $w \in \mathcal{W}(A)$
- Bi-similarity for finite deterministic Mealy automata just means language equivalence.
- Bi-similarity of minimal Mealy automata is equivalent to the existence of an **isomorphism** $f : A \overset{\approx}{\longrightarrow} B$: f is bijective and satisfies $f(q_A) = f(q_B)$ and

$$\forall q_1, q_2 \in Q(A) : q_1 \overset{x/y}{\rightarrow} q_2 \implies f(q_1) \overset{x/y}{\rightarrow} f(q_2)$$
Chow’s Theorem (5b) – Illustration

Transition cover P

Characterisation set W

$W = \{ c \}$

Assume $\text{card}(Q(B)) \leq \text{card}(Q(A))+1$

$X^1 = \{ a, c \}$

$P = \{ >, a, c, ca, cc \}$

Test Cases:

$P \times^0 W$: c ac cc cac ccc

$P \times^1 W$: ac aac cac caac ccac

$P \times W$: cc acc ccc cacc cccc
Chow’s Theorem (5c) – Illustration: Time Bomb

Test Cases:

- $P X W^0$: c ac cc cac ccc
- $P X W^1$: ac aac cac caac ccac
- $P X W$: cc acc ccc cacc cccc

Failure is found by caac
(last c input not needed to uncover failure)
Chow’s Theorem (5d) – Illustration: Output failure

Test Cases:

\[
\begin{array}{c}
\text{P } X^0 W: \quad \text{c ac cc cac ccc} \\
\text{P } X^1 W: \quad \text{ac aac cac caac ccac} \\
\text{P } X^1 W: \quad \text{cc acc ccc cacc cccc}
\end{array}
\]

Failure is found by \(\text{ca(c)} \)

Only transition cover is required to uncover output failures
Chow’s Theorem (5e) – Illustration: Transition failure

Test Cases:

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P X^0 \ W)</td>
<td>c, ac, cc, cac, ccc</td>
</tr>
<tr>
<td>(P X^1 \ W)</td>
<td>ac, aac, cac, caac, ccac</td>
</tr>
<tr>
<td>(P X^1 \ W)</td>
<td>cc, acc, ccc, cacc, cccc</td>
</tr>
</tbody>
</table>

Failure is found by \(ac \)
Chow’s Theorem (6): Preparations for the proof

Definition 1: Let $V \subseteq I^*$ a set of input traces

1. Two states $q_i \in Q(A)$, $q_j \in Q(B)$ are **V-equivalent** $(q_i \sim_V q_j)$, if each $p \in V$ produces the same outputs when exercised from q_i as when exercised from q_j.

2. Automata A and B are **V-equivalent** $(A \sim_V B)$, if their initial states are V-equivalent, i.e., $q_A \sim_V q_B$

Obviously \sim_V is an equivalence relation on $Q(A) \times Q(B)$
Chow’s Theorem (7): Proof

Obviously,

\[A \approx B \implies (\forall V \subseteq I^* : A \sim_V B) \]

holds for all bi-similar automata \((A \approx B)\). Therefore we can re-write Chow’s theorem as

Chow’s Theorem – Variant 2: \(A \sim_{W(A)} B \implies A \approx B \)

The proof of variant 2 results from the lemmas below. We assume that \(A \) has \(n \) states and \(B \) \(m \geq n \) states and that both are minimal. The characterisation set of \(A \) is denoted by \(W \).
Chow’s Theorem (8): Proof

Lemma 1: Suppose characterisation set W of A partitions $Q(B)$ into at least n equivalence classes. Then $Z = \bigcup_{i=0}^{m-n} (X^i \cdot W)$ partitions $Q(B)$ into m classes. This means that every two states $Q(B)$ can be distinguished by $W(A)$

Proof: Define $Z(\ell) = \bigcup_{i=0}^{\ell} (X^i \cdot W)$. Obviously $Z(m-n) = Z$. Perform induction proof for $\ell = 0, 1, \ldots m-n$:

$Z(\ell)$ partitions $Q(B)$ into $\ell + n$ classes \hfill (*)

Choosing $\ell = m - n$ implies the lemma.
Chow’s Theorem (9): Proof of Lemma 1

Proof of (∗) – induction start: For $\ell = 0$ (∗) coincides with the assumptions of the lemma.

Assumption: For given $\ell \in \{0, 1, \ldots m - n - 1\}$ $Z(\ell)$ partitions $Q(B)$ into at least $\ell + n$ classes

Induction step: We show that $Z(\ell + 1)$ partitions $Q(B)$ into at least $\ell + n + 1$ classes

If $Z(\ell)$ already partitions $Q(B)$ into $\ell + n + 1$ or more classes then we have nothing to prove. Otherwise there exists $k > \ell$ such that (observe that $Z(k) = Z(k - 1) \cup X^k \cdot W$)

$$\exists r_1, r_2 \in Q(B) : r_1 \sim_{Z(k-1)} r_2 \land r_1 \not\sim_{(X^k \cdot W)} r_2$$
Chow’s Theorem (10): Proof of Lemma 1

If \(k = \ell + 1 \) there is nothing more to show since (*) holds for \(Z(k) = Z(\ell + 1) \).

Otherwise, if \(k \geq \ell + 2 \), let \(p = \langle x_1, \ldots, x_k \rangle \bowtie w, w \in W \) the input sequence distinguishing \(r_1 \) and \(r_2 \).

Choose \(r_1', r_2' \) such that \(r_1 \xrightarrow{\langle x_1, \ldots, x_{k-\ell-1} \rangle} r_1', r_2 \xrightarrow{\langle x_1, \ldots, x_{k-\ell-1} \rangle} r_2' \). Then \(r_1', r_2' \) can be distinguished by \(Z(\ell + 1) \).
Chow’s Theorem (11): Lemma 2

Lemma 2: Let $Z = \bigcup_{i=0}^{m-n}(X^i \cdot W)$ as introduced in Lemma 1. Then $A \approx B$ if and only if the following conditions are fulfilled

1. The initial states of A and B are Z-equivalent: $q_A \sim_Z q_B$.
2. For all $a \in Q(A)$ exists $b \in Q(B)$ such that $a \sim_Z b$.
3. For all $a_i \xrightarrow{x/y} a_j$ in A exists $b_i, b_j \in Q(B)$, such that $a_i \sim_Z b_i$, $a_j \sim_Z b_j$ and $b_i \xrightarrow{x/y} b_j$.

Chow’s Theorem (12): Proof of Lemma 2

Proof Step (a). If $A \approx B$, then (1,2,3) are directly implied by the existence of an isomorphism $f : Q(A) \longrightarrow Q(B)$.

Proof Step (b). Suppose (1,2,3) hold. We have to establish the existence of an isomorphism $f : Q(A) \longrightarrow Q(B)$. To this end we will show that function f specified by

$$f(q_A) = q_B$$

$$(q_A \langle x_1, \ldots, x_\ell \rangle \Rightarrow a \land q_B \langle x_1, \ldots, x_\ell \rangle \Rightarrow b) \Rightarrow f(a) = b$$

is well-defined, one-one and surjective. Then (3) additionally implies that $\forall a \in Q(A) : a \sim_Z f(a)$ holds, too.
Chow’s Theorem (13): Proof of Lemma 2

Well-definedness of \(f \). It has to be shown that *different* input traces \(q_A \xrightarrow{\langle x_1, \ldots, x_\ell \rangle} a, q_A \xrightarrow{\langle x'_1, \ldots, x'_k \rangle} a \), leading to the same target state \(a \) in \(A \) will also lead to the same target state in \(B \).

Therefore suppose \(q_B \xrightarrow{\langle x_1, \ldots, x_\ell \rangle} b \) and \(q_B \xrightarrow{\langle x'_1, \ldots, x'_k \rangle} b' \) in \(B \). It has to be shown that \(b = b' \).

Because of (3) we can conclude

\[
a \sim_Z b \land a \sim_Z b'
\]

\((**)

We will now show that \(Z \) distinguishes every pair of states in \(B \), so that \((**)) implies \(b = b' \). This establishes well-definedness of \(f \).
Z distinguishes every pair of B-states. The characterisation set \(W \) of \(A \) partitions \(Q(A) \) into \(n = \text{card}(Q(A)) \) classes (since \(A \) is minimal).

Now (2) and (3) imply that \(W \) also partitions \(Q(B) \) into at least \(n \) classes: Suppose \(a_1 \) and \(a_2 \) are distinguished by \(w \in W \). Suppose \(q_A \xrightarrow{\langle x_1, \ldots, x_\ell \rangle} a_1 \) and \(q_A \xrightarrow{\langle x'_1, \ldots, x'_k \rangle} a_2 \). These two input traces will lead us according to (3) to states \(b_1, b_2 \in Q(B) \) such that \(a_i \sim_Z b_i, i = 1, 2 \).
Chow’s Theorem (14): Proof of Lemma 2

Because of (3) and $W \subseteq Z$, sequence $b_1 \xrightarrow{w} \text{ has to generate the same outputs as } a_1 \xrightarrow{w}$ and $b_2 \xrightarrow{w}$ the same outputs as $a_2 \xrightarrow{w}$. Since w produces different outputs when applied to a_1 and a_2, respectively, the same has to hold for $b_1 \xrightarrow{w}$ and $b_2 \xrightarrow{w}$. Therefore w also distinguishes b_1 and b_2, and therefore $b_1 \neq b_2$.

Since $W \subseteq Z$ and since W partitions $Q(B)$ into at least n classes, we can apply Lemma 1 to conclude that Z distinguishes all states of B. Let $b \in Q(B)$, then $b \sim_Z b'$ implies $b = b'$ which shows well-definedness of f.
Chow’s Theorem (15): Proof of Lemma 2

\textbf{f is one-one.} Let \(a_i \in Q(A), i = 1, 2, a_1 \neq a_2 \) and \(b_i = f(a_i) \in Q(B) \). We have to show that \(b_1 \neq b_2 \).

Since \(a_1 \not\sim_W a_2 \) and \(W \subseteq Z \) we conclude \(a_1 \not\sim_Z a_2 \). (3) implies \(a_i \sim_Z f(a_i) = b_i, i = 1, 2 \) and therefore \(b_1 \not\sim_Z b_2 \), and therefore also \(b_1 \neq b_2 \).
Chow’s Theorem (16): Proof of Lemma 2

\textbf{f is surjective.} Given \(b \in Q(B) \) and an input sequence \(q_B \langle x_1, \ldots, x_\ell \rangle \rightarrow b \). Since \(A \) and \(B \) are deterministic, the target states \(b \in Q(B), a \in Q(A) \) are uniquely determined by \(q_B \langle x_1, \ldots, x_\ell \rangle \rightarrow b \) and \(q_A \langle x_1, \ldots, x_\ell \rangle \rightarrow a \). Since we already know that that \(f \) is well-defined this implies \(f(a) = b \). \(\square \)
Chow’s Theorem (17): Lemma 3

Lemma 3: Let $\mathcal{W}(A) = P \cdot Z$, where P is the transition cover of A and $Z = \bigcup_{i=0}^{m-n} (X^i \cdot W)$. Then $A \sim_{\mathcal{W}(A)} B$ if and only if

1. The initial states of A and B are Z-equivalent: $q_A \sim_Z q_B$.
2. For all $a \in Q(A)$ exists $b \in Q(B)$ such that $a \sim_Z b$.
3. For all $a_i \xrightarrow{x/y} a_j$ in A exists $b_i, b_j \in Q(B)$, such that $a_i \sim_Z b_i, a_j \sim_Z b_j$ and $b_i \xrightarrow{x/y} b_j$.

Observation. Since $(1,2,3)$ are identical with the only-if condition of Lemma 2, and therefore imply $A \approx B$, Lemma 3 directly implies Chow’s theorem, variant 2, because with Lemma 3

$$A \sim_{P.Z} B \Leftrightarrow A \approx B$$

holds.
Chow’s Theorem (18): Proof of Lemma 3

Proof of Lemma 3 – (a). Suppose (1,2,3) hold. Then Lemma 2 implies $A \approx B$ and this trivially implies $A \sim_{\mathcal{W}(A)} B$.

Proof of Lemma 3 – (b). Suppose $A \sim_{P,Z} B$. Given $a \in Q(A)$ and input sequence $p \in P$ with $q_A \xrightarrow{p} a$. This sequence p exists because P is a transition cover. Since A and B are deterministic b is uniquely determined by $q_B \xrightarrow{\langle x_1, \ldots, x_\ell \rangle} b$. Since $q_A \sim_{P,Z} q_B$ and $p \in P$, $a \sim_Z b$ follows, and this shows (2) and (3) (observe that $\langle \rangle \in P$).
Chow’s Theorem (19): Proof of Lemma 3

Let $a_1 \xrightarrow{x/y} a_2$ a transition in A. Let $p \in P$ with $q_A \xrightarrow{p} a_1$. Since P is a transition cover, p exists and also $p \sim \langle x \rangle \in P$. Define $b_1, b_2 \in Q(B)$ uniquely by $q_B \xrightarrow{p} b_1$ and $q_B \xrightarrow{p\langle x \rangle} b_2$.

Now $A \sim_{P,Z} B$ implies $a_i \sim_Z b_i$, $i = 1, 2$. In addition, transition $b_1 \xrightarrow{x/y'} b_2$ has to satisfy $y' = y$, because otherwise a_1 and b_1 could be distinguished by input x, and this would be a contradiction to $a_1 \sim_Z b_1$. □
Chow’s Theorem (20): BFS-Algorithm for Transition Cover Construction

Overview over the algorithm presented on the next slide by function tc:

- Breadth-first search (BFS) over deterministic finite (Mealy) automaton (DFA) A
- tc returns set of input traces representing the transition cover
- α is the “usual” queue used in BFS-algorithms
- $N \subseteq Q(A)$ is an auxiliary subset of A-states which should not be inserted into queue α anymore.
- τ maps states q from where the transition graph of A should be further explored to the previously constructed input trace leading from q_A to q.
Chow’s Theorem (21): Transition Cover Construction

function $tc(in \ A : DFA) : \mathbb{P}(I^*)$
begin
 $tc := \{\langle \rangle\}; \ \alpha := \langle q_A \rangle; \ \mathcal{N} := \{q_A\}; \ \mathcal{\tau} := \{q_A \mapsto \langle \rangle\};$
 while $0 < \#\alpha$ do
 $u = head(\alpha);$
 foreach $x \in I$ do
 $q := \delta_A(u, x);$
 $tc := tc \cup \{\tau(u) \bowtie \langle x \rangle\};$
 if $q \notin \mathcal{N}$ then
 $\mathcal{N} := \mathcal{N} \cup \{q\};$
 $\tau := \tau \oplus \{q \mapsto \tau(u) \bowtie \langle x \rangle\};$
 $\alpha := \alpha \bowtie \langle q \rangle;$
 endif
 enddo
 enddo
 $\alpha := tail(\alpha);$
end
Chow’s Theorem (22): Characterisation set construction

- Characterisation set \mathcal{W} can be generated as a “by-product” of the standard procedure for constructing a minimal DFA A for given DFA A'.
- Using a minimal DFA as specification model is not necessary, but desirable for the \mathcal{W}-method application, since this keeps the size of the transition cover as small as possible.
- Therefore, given possibly non-minimal DFA A', we simultaneously reduce A' to its minimal DFA A and construct \mathcal{W}.
- It is reasonable to assume that
 - A' does not contain any unreachable states q
 - A' has no accepting state (since as a reactive system it should not terminate)
Chow’s Theorem (23): Characterisation set construction

Notation:

\[\omega_A : Q(A) \times I \rightarrow O; \omega_A(q, x) = y \iff (\exists q' \in Q(A) : \delta_A(q, x) = (q', y)) \text{ maps (Source state, Input) to the associated output } y. \text{ In other words, } \omega_A = \pi_2 \circ \delta_A. \]

\[\lambda_A : Q(A) \times I \rightarrow Q(A); \lambda_A(q, x) = q' \iff (\exists y \in O : \delta_A(q, x) = (q', y)) \text{ maps (Source state, Input) to the associated target state } q', \text{ that is, } \lambda_A = \pi_1 \circ \delta_A. \]

We suppose that all states \(q, q' \in Q(A) \) are uniquely numbered, so that a relation \(\prec \subseteq Q(A) \times Q(A) \) is well-defined and \(q \neq q' \) either implies \(q < q' \) or \(q' < q \).
Chow’s Theorem (24): Characterisation set construction

Notation (continued):

- Specification

\[od : Q(A) \times Q(A) \not\rightarrow Q(A) \times Q(A) \]

\[od(q, q') = \begin{cases}
(q, q') & \text{falls } q < q' \\
(q', q) & \text{falls } q' < q
\end{cases} \]

defines a map on pairs \((q, q') \in Q(A) \times Q(A)\) which sorts pairwise distinct states according to their \(<\)-order.

- For input traces \(w, w' \in I^*\) we write \(w < w'\), if \(w\) is a true prefix of \(w'\)

- \(\beta : Q(A) \times Q(A) \not\rightarrow I^*\) is defined as a function mapping distinguishable states \((q, q') \in Q(A) \times Q(A)\) to non-empty input traces revealing this distinction by producing different outputs when exercised on \(q\) and \(q'\).
Chow’s Theorem (25): Characterisation set construction

procedure \(W(\text{inout } A : \text{DFA}, \text{inout } W : \mathbb{P}(I^*)) \)
begin
\(D : \mathbb{P}(Q(A) \times Q(A)) \); // Ordered distinguishable state pairs
\(\beta : Q(A) \times Q(A) \not\rightarrow I^*; \) // Map elements from \(D \) to input trace
\(D := \{\}; \) \(\beta := \{\}; \)
// Initialisation: Insert all ordered pairs of states into \(D \)
// which can be distinguished by a single input
\(\text{distinguishedByOne}(A, D, \beta); \)
// Identify all distinguishable state pairs, while constructing \(W \)
\(\text{generateW}(A, D, \beta, W); \)
// Optionally, reduce the DFA
\(\text{reduceA}(A, D, \beta); \)
end
Chow’s Theorem (26): Characterisation set construction

procedure distinguishedByOne(in A : DFA,
 inout D : \(\mathbb{P}(Q(A) \times Q(A))\),
 inout \(\beta : Q(A) \times Q(A) \not\rightarrow I^*\))
begin
 foreach \(p < q \in Q(A) \times Q(A)\) do
 foreach \(x \in I\) do
 if \(\omega_A(p, x) \neq \omega_A(q, x)\) then
 \(D := D \cup \{(p, q)\}\);
 \(\beta := \beta \oplus \{(p, q) \mapsto \langle x \rangle\}\);
 endif
 enddo
 enddo
end
Chow’s Theorem (27): Characterisation set construction

procedure generateW(in A : DFA,
inout D : \mathbb{P}(Q(A) \times Q(A)),
inout \beta : Q(A) \times Q(A) \not\rightarrow I^*,
out W : \mathbb{P}(I^*)
begin
 b : bool; b := false;
do
 foreach p < q ∈ (Q(A) × Q(A)) − D do
 foreach x ∈ I do
 v := \lambda_A(p, x); z := \lambda_A(q, x);
 if od(v, z) ∈ D then
 b := true;
 w := ⟨x⟩ ↘ \beta(od(v, z));
 // Remove traces which are prefixes of the new (longer) one
 foreach (p', q') ∈ D do
 if \beta(p', q') < w then
 \beta := \beta ⊕ \{(p', q') ↦ w\};
 endif
 enddo
 \beta := \beta ⊕ \{(p, q) ↦ w\};
 D := D ∪ \{(p, q)\};
 endif
 enddo
 enddo
 while b;
 W := ran(\beta);
end
Chow’s Theorem (27): Characterisation set construction

procedure reduceA**(inout** A : DFA,
inout D : \(\mathbb{P}(Q(A) \times Q(A))\))

begin

\(A_r : DFA;\)

// Definition of equivalence classes:
// \([p] = \{ q \in Q(A) | od(p, q) \notin D \}\)
// States of the minimised DFA are equivalence classes,
// each class represented by a state \(p\) of \(A\) which is
// member of a distinguishable pair \((p, q)\) or \((q, p)\) in \(D\).

\(Q(A_r) := \{ [p] | \exists q \in Q(A) : od(p, q) \in D \};\)

\(q_{A_r} := [q_A];\)

\(\delta_{A_r} := \{ ([p], x) \mapsto ([\lambda_A(p, x)], \omega_A(p, x)) | (p, x) \in Q_A \times I \};\)

// Well-definedness of \(\delta_{A_r}\) follows from properties of
// equivalence classes \([p]\).

\(A := A_r;\)

end
Similar results for other formalisms – overview

- Hennessy and deNicola showed that refinement properties can be established by (possibly infinite) number of tests for CCS-like process algebras
- Brinksma and Tretmans produced similar results for conformance testing against Lotos models
- Peleska and Siegel provided solutions for testing against CSP models
- Vandraager et. al. extended Chow’s theorem to timed automata
Conclusion of Part I

- Equivalence or refinement proofs by means of exhaustive grey-box testing are possible for untimed and timed automata and process algebras with synchronous (blocking) communication.

- Exhaustive testing has exponential complexity in the number of states.

- Apart from the complexity problem, the results presented here do not handle the problem of complex data structures and guard conditions: The state space has to be unfolded completely in order to apply the algorithms in a direct way.

The next part of the tutorial shows how to cope with this problem.