
Reliability Analysis of Safety-Related
Communication Architectures

Jan Peleska and Oliver Schulz

University of Bremen, 28359 Bremen, Germany,
{jp,oschulz}@informatik.uni-bremen.de,

WWW home page: http://www.informatik.uni-bremen.de/agbs

Abstract. In this paper we describe a novel concept for reliability anal-
ysis of communication architectures in safety-critical systems. This con-
cept has been motivated by applications in the railway control systems
domain, where transitions into stable safe state are usually considered as
undesired events because they cause a severe deterioration of the service
reliability expected by end users. We introduce a domain-specific lan-
guage for modelling communication architectures, the protocols involved
and the fault hypotheses about anticipated deviations of communication
channels and possibly other components from expected behaviour. From
such model, a generator creates mutant models associated with proba-
bility formulae expressing each mutant’s probability of occurrence. Each
mutant is analysed with respect to its unreliability, that is, whether it
contains paths leading into stable safe state. Then the system reliabil-
ity can be conservatively estimated by calculating an upper bound of
the probability for the system to perform a transition into stable safe
state within a given operational period. Our approach deliberately re-
frains from utilising probabilistic model checking, in order to avoid the
state space explosions typically occurring when considering all possible
erroneous behaviours within a single model. Instead, we analyse many
different models, each only containing a restricted variant of deviations,
which leads to faster evaluation times. In addition, several models can
be evaluated in parallel in a distributed multi-core environment.

1 Introduction

1.1 Background: Safety Versus Reliability in Communicating
Railway Control Systems

In safety related communication domains there are two important characteristics
of communication architectures: Safety and reliability. In the railway domain the
standard EN 50159-2 defines a basic design of communication architectures for
safety related equipment. In general the standard splits the architecture into two
parts: A safety layer, which must fulfil a specific safety integrity level (SIL) and a
“grey channel” without any safety responsibility (see Fig. 1 and 2). Safety layers
have to detect six different types of message errors to grant functional safety. The
standard EN 50159-2 defines a defence matrix against these threads (Table 1,

[1, 2]). The safety reaction on such errors must be a safe state, which usually
stops the communication service until the system is reinitialised or reset by an
operator. Therefore a safe communication reduces the fault tolerance against
arbitrary transmission errors and lowers the reliability of the communication
architecture. To improve the fault tolerance against message errors it is necessary
to use a reliable message transmission service (e.g. ARQ, Automatic Repeat
Request) before the safety check is executed. A reliable transmission service can
be included in the safety layer, in the upper protocol layer of the grey channel
or in both layers (Fig. 2).

A “naive” combination of fault-tolerance mechanisms in the grey channel and
safety layers will not necessarily increase the overall fault-tolerance: if, for ex-
ample, lost messages in the grey channel lead to re-transmissions after timeouts,
the message eventually passed to the receiving safety layer may be out-dated
and therefore has to be discarded. As a consequence, it is necessary to perform
analyses whether – given a trustworthy estimate for the occurrence of basic trans-
mission faults as classified in Table 1 – the fault-tolerance mechanisms deployed
in the grey channel will really increase the overall reliability of the distributed
safety-critical control system.

Non safety process

(optional)

Safety Process

Safety Related

Transmission

Functions

Non safety process

(optional)

Safety Process

Safety Related Equipment

Safety Related

Transmission

Functions

Safety Related

Message

Non safety process

Non Safety Related

Equipment

Non Safety Related

Message

Upper Protocol

Layers

Logical and

Physical Link

Layers

Upper Protocol

Layers

Logical and

Physical Link

Layers

Upper Protocol

Layers

Logical and

Physical Link

Layers

EN 50129

EN 50159-1

Safety Related Equipment

Non trusted

Transmission

System

Transmission Media

Safety Related

Transmission

System

Modelling

Framework in

this Paper

Fig. 1. Structure of safety-related communication architecture (from [2]). The term
“Non Safety Process (optional)” in the Safety Related Equipment block indicates that
also processes without safety-relevance can be deployed in the safety-critical equipment.

„Grey Channel“

Safety-Layer

Upper Protocol

Layers

Link Layer

Safety-Layer

Upper Protocol

Layers

Link Layer

Observer

Transmit message Probability of receiving a

message correctly

COTS-Network or COTS-Transmission Technique

Transmission errors

and their probability

of occurrence.

Fig. 2. General Modelling Architecture

Table 1. Threats

Defences Sequence Time Time Src. and Feed-back Identification Safety
Threat number stamp out dst. ID message procedure code

Repetition x x

Deletion x

Insertion x x x x

Resequence x x

Corruption x

Delay x x

1.2 Objectives and Contributions

In this paper we present a novel method for reliability analysis of safety-related
communication architectures structured into safety layers and grey channels as
described in the previous section. In this context reliability is defined as the
probability that the overall system will perform its (deterministic) safety-related
services in a given operational time period [t1, t2] without interruption and re-
sulting transition into stable safe state, though transmission faults may occur
in the grey channel with a given probability (see IEC 60050(191) [12] for the
general definition).

Our analysis approach uses a domain-specific modelling language (DSL) de-
veloped by the authors. This DSL facilitates modelling communication archi-
tectures and protocols, together with the fault hypotheses concerning the prob-
abilistic occurrence of the basic faults listed in Table 1. These communication
models are used to create mutants, that is, derived models showing erroneous
behaviour resulting from one or more basic faults occurring in compliance with

the fault hypotheses at various places in the communication architecture. For
each mutant the probability of its occurrence can be calculated. Since the mu-
tants themselves show deterministic (erroneous) behaviour, conventional non-
probabilistic model checkers can be used to analyse whether the safety-related
services will still operate properly in presence of the behaviour specified by the
mutant. Time constraints play an important rôle in the behaviour of the sys-
tem layers involved; therefore we have chosen Timed Automata [3] for modelling
the mutant behaviour and use the UPPAAL tool [4] to perform the associated
analyses. The verification goal A�(SAFE ∧ ¬φ) is to show that the safety layer
will always satisfy its safety-specification SAFE and never transit into stable
safe state φ, despite of the faults occurring in the grey channel according to the
mutant model under investigation. If a combination of faults on the grey channel
leads to a violation of A�SAFE the design has to be changed in any case, since a
design-intrinsic safety violation that can be provoked by erroneous grey channel
behaviour is not to be tolerated, regardless of the probability of its occurrence. If
all mutants satisfy A�SAFE, they are classified by their occurrence probability,
and according to their satisfaction or violation of A�(¬φ). Then the resulting
reliability of the overall system is calculated as the probability that only correct
behaviour or mutants satisfying A�(¬φ) occur during the given operational time
period.

Our modelling approach requires transaction-oriented processing of safety-
related communication functions: it is assumed that each activity consists of
a bounded number of communication and processing steps, such that (1) the
success or failure of the activity can be clearly determined after this sequence,
and, (2) the success of the actual transaction is stochastically independent on
the success of preceding actions. In the context of safety-related communication
architectures this restriction is not a severe one: applications usually proceed
according to different protocol phases like system setup, connection request,
transmission of one application-specific datagram, and going through each of
these phases corresponds to processing transactions of a specific type T`, ` =
1, . . . , q. A minor limitation is discussed in Section 5.

We have developed an integrated tool chain starting with the modelling phase
supported by the MetaEdit+ meta case tool [5] which was also used to design
the DSL. A model-to-text generator creates an internal representation of the
DSL model. A mutation generator creates the mutants from this model and
calculates their occurrence probability. Each mutant is expressed by an XML
text representation conforming to the internal input formal for UPPAAL models.

Our main contributions consist in the design of the DSL, the automated
generation of the mutants and the calculation of their occurrence probability.
Furthermore, our approach avoids the occurrence of state space explosions aris-
ing when all possible faulty behaviours are simultaneously considered in one
probabilistic model (see further comments in Section 1.3). Finally, the different
mutants can be analyses independently; therefore our analysis tool distributes
the UPPAAL model checking tasks over several computers and CPU cores, so
that model checking of different mutants can be performed simultaneously.

1.3 Related Work

Model-checking has been widely used for the verification of communication pro-
tocols and also for checking safety-properties of systems, see [6–8] and the ref-
erences given there for related work in the railway domain. Reliability aspects
have mostly been approached by means of probabilistic model checking, see, for
example, [9, 10].

Our solution differs from the latter in that we deliberately do not use prob-
abilistic model checking for these reliability aspects: extensive experiments per-
formed by our group with the PRISM tool [10] showed that (1) the lack of
real-time modelling capabilities enforces abstractions which either oversimplify
the real communication behaviour or lead to unnecessarily complex construc-
tions involving clock tick counters or similar devices, and (2) the incorporation
of all possible faulty behaviours in one model lead to unacceptable checking
times and even state explosions for the more sophisticated models. Indeed, since
the probability that all possible faults occur while processing one transaction
is so low that it can be neglected anyway, such a model would contain many
computations of no practical relevance. Finally, (3) tools like PRISM only han-
dle numeric probability values, but do not allow to investigate symbolic ones.
As a consequence, parameter-dependent analyses require to re-run the time-
consuming model checks for every parameter value to be considered.

Our approach tackles the combinatorial problem by checking many models
instead of a single one and profit from the smaller size of each model: the com-
plexity of evaluating one (probabilistic) model incorporating all possible faults is
considerably higher than checking many simpler models, in particular, if the sim-
pler models can be checked in parallel. Additionally, we calculate algebraic rep-
resentations of ocurrence probabilities. As a consequence, parameter-dependent
analyses can be made by just inserting concrete probability values into the pa-
rameters of the formula.

1.4 Overview

In Section 2 we sketch the work flow supporting reliability analysis and the tool
components involved. Section 3 introduces the DSL CAMoLa, our description
formalism for communication architectures. In Section 4 the principles of muta-
tion generation and the reliability calculation based on mutant evaluation are
described. Section 5 contains a discussion of results and prospects for future
work.

2 Workflow and Tool Chain

The reliability analysis workflow starts with modelling a communication archi-
tecture in the domain-specific Communication Architecture Modelling Language
(CAMoLa), using the informal communication architecture specification with

associated protocol descriptions as input (Fig. 3). Next, CAMoLa’s model-to-
text generator transforms the CAMoLa model into an UPPAAL model, en-
riched with syntactic markers for the so-called behaviour switches which are
part of the CAMoLa formalism and used to model possible deviations from nor-
mal behaviour (see Section 3 below). Now the mutation generator tool inserts
behaviour-vectors (Section 3) into the UPPAAL model to create mutations with
different message transmission behaviour. Intuitively speaking, each vector spec-
ifies which deviations from normal behaviour are applied to message sequences
passing at specific locations in the model, and each model location where faulty
behaviour is anticipated is associated with such a vector. The mutation genera-
tor records the algebraic formula for each mutation’s occurrence probability in a
table. Each formula is an arithmetic expression over the occurrence probability
parameters associated with each fault type (see Table 1) possibly occurring in
some part of the model when processing a message. Then the UPPAAL tool
is activated to verify the reliability property on the mutation; this process is
parallelised over several CPU cores and computers to increase performance. For
each mutant, it is recorded in the table whether it shows reliable behaviour or
leads to a transition into stable safe state.

3 The Communication Architecture Modelling Language
CAMoLa

CAMoLa was designed for modelling communication architectures and associ-
ated protocol behaviours. Each model consists of synchronized processes repre-
senting protocol components, transmission channels or additional components
simulating environment behaviour or acting as observers in the verification pro-
cess. CAMoLa and its model-to-text generator were designed with the tool
Metaedit+ [11], which is a meta-modelling and modelling-workbench [5]. The
DSL supports two hierarchical views on communication architectures: A view
on all components with their interactions (Fig. 4) and a process view on each
component behaviour in timed automata notation (Fig. 5).

CAMoLa extends the usual timed automata notation by the notion of be-
haviour-switches bs, representing controlled normal and exceptional behaviour
transitions between locations (see Fig. 5). Each possible controlled transitions is
identified by a marker from set obs = {0, . . . , n, stop}. The transition connected
to one distinguished switch position (position 1 in Fig. 5) is associated with
normal behaviour at this model location, so the error-free timed automata model
can be extracted from the CAMoLa model by deleting at every behaviour switch
all outgoing transitions but the one associated with normal behaviour. Each
other switch position gives rise to a type of mutated behaviour.

In order to reflect the possibility of different types of transient errors occur-
ring at a specific model location, mutant models are not simply generated from
the CAMoLa model by fixing switch positions, but by associating each behaviour
switch with behaviour-vectors vk: if obs = {0, . . . , n, stop}, then vk ∈ {0, . . . , n}k,
and it specifies that the first k messages m1, . . . ,mk passing along the model lo-

Formal CAMoLa

Model

Mutant m1

Informal

Architecture

Specification

Metaedit+

CAMoLa

UPPAAL Model

Mutation Generator

UPPAAL Verifier

UPPAAL Mutant

Model n

Safety

A[] SAFE

Stable Safe State

A[] ¬φ

Mutant m2

...

p1

p1*p2

...

YES

NO

...

Probability

of

Occurence

A[] ¬φ

holds
Mutation

Model-to-Text-

Generator

Fig. 3. Workflow of the presented Framework.

cation controlled by bs trigger transitions vk(1), . . . , vk(k) ∈ {0, . . . , n}, respec-
tively.

The semantics of this construction can be expressed by translating the CAMoLa
process containing the pair bs, vk into an ordinary timed automaton utilising an
additional auxiliary variable i counting the number of messages passing along the
behaviour switch, that is, the number of outgoing transitions of bs which have
been triggered so far, and an auxiliary location lstop: suppose that bs is located
at source location l and that the switch controls outgoing transitions with iden-
tifiers 0, . . . , n, leading to target locations l0, . . . , ln. Then the associated timed

automaton has outgoing transitions

l
i<k∧vk(i)=0∧i:=i+1;−−−−−−−−−−−−−−→ l0

l
i<k∧vk(i)=1∧i:=i+1;−−−−−−−−−−−−−−→ l1

...

l
i<k∧vk(i)=n∧i:=i+1;−−−−−−−−−−−−−−→ ln

l
i≥k−−→ lstop

at location l (i is initialised to 0 when the automaton is initialised).
While the designers specify the behaviour-switches and model the possible

deviations from normal behaviour, behaviour-vectors are generated automati-
cally by the mutation generator (Section 4). In order to control this generation
process, each behaviour-switch position carries an upper bound indicating up to
how many times the transition can be taken. The bound can be taken from the
set N0∪{∗} (in the sample state machine of Fig. 5 only 0 and ∗ are used): symbol
∗ indicates that the mutant generator can select this transition an unbounded
number of times when generating behaviour-vectors, a bound m ∈ N0 associated
with transition p constrains the behaviour-vector generation in such a way that
p occurs at most m times in the vector.

Observe that all locations introduced on behalf of the behaviour-switch are
urgent, since the switch is only a selector of normal or mutated behaviour, and
does not consume processing time in the real world.

 T:CyclicTransmitter

1

 R:Receiver

3

 C:Channel

1

 Obs:Observer

1

 Type Definition

typedef struct{

 int seq;

} message;

inCh

msg
outCh

msg

 toUpperLayer
fromUpperLayer

stableSafe

Fig. 4. Simple Architecture, System View

4 Mutation Generation and Reliability Calculation

Generation Concept Suppose we have created a CAMoLa model for each
transaction type T` occurring in our communication architecture. The mutation

 Transmitter

repeatMsg

timer<=5

 T

 Declaration of Variables

clock timer;

message msg;

int seq=1;

send

 U

 Channel

idle

 T

out

 U

in

 U

2

3

4

5

6

1

0

Behaviour

Switch

*

*

0

0

0

0

0

Stop

Vector

Controlled

drop

 U

 Declaration of Variables

message msg;

 Receiver

initial

wd<=14

 T

rcv

 U

stableSafeState
 U

 Declaration of Variables

clock wd;

int seq=1;

message msg;

 Observer

start

 U

send

 T

success

 U
connClosed

 T

timer>=5

 sendCh! msg

 toUpperLayer?

 inCh! msg inCh? msg

 outCh! msg

wd >=14

 stableSafe!

 outCh? msg

msg.seq==seq

 fromUpperLayer!

msg.seq!=seq

 toUpperLayer!

 fromUpperLayer? stableSafe?

timer=0;

msg.seq=seq;

timer=0;

seq++;

wd=0;

seq++;

wd = 0;

Fig. 5. Simple Architecture, Process View

l 0

1

v3=(1,1,0)

i ≥ dim(v)

l0

l1

lstop

m4, m3, m2, m1

m4

m1, m2

m3

mi: Message, Sequence i

Fig. 6. Vector controlled Behaviour-Switch

generator creates concrete mutants as timed automata models, where all nonde-
terminism regarding fault occurrences has been eliminated. This is achieved by
means of the behaviour vectors: let {bs1, . . . , bsk} the behaviour switches in the
CAMoLa model associated with transaction type T`. Given a bound max ∈ N,
the mutation generator creates tuples of behaviour vectors V = (vd11 , . . . , vdk

k),
such that each behaviour switch bsi is associated with one behaviour vector vdi

i

of dimension di, and the following conditions are fulfilled: (1) ∀i = 1, . . . , k : di ≤
max, (2) each vector component vdi

i (j), j = 1, . . . , di is in range {0, . . . , ni}, such
that an outgoing transition with identifier vdi

i (j) exists at behaviour switch bsi,
(3) the mutantsM(V) associated with V satisfy A�(¬φ) (we call them reliable
mutants), and, (4) reducing the dimension of any vdi

i by one will result in an
unreliable mutant satisfying E�φ. Conditions (3) and (4) are checked by means
of the UPPAAL model checker.

Calculation of Overall Reliability. It is our objective to calculate an ap-
proximation of the communication architecture’s expected reliability which is
conservative in the sense that the real reliability is equal to or better than
the calculated estimate. The calculations performed below are based on the as-
sumptions that (1) no other faults occur in the communication system than the
anticipated ones that have been represented in the CAMoLa model by means
of behaviour switches, (2) all faults occur in a stochastically independent man-
ner, and, (3) the safety-related services are performed in a transaction-oriented
manner as explained in Section 1.2, so that the outcome of transactions is again
stochastically independent.

If these hypotheses are satisfied it is possible to approximate the reliable
system operation R(t0, t1) over a time period [t0, t1] by means of the reliability
of single transactions: suppose that RT`

is the probability that execution of
transactions of type T` will not transit into stable safe state, but perform the
specified service, and that different transaction types T`, ` = 1, . . . , q have to be
considered. For each transaction type T` let cmax` ∈ N of the maximal number
of T`-transactions which are possible per time interval [t0, t1], and δ` > 0 the
minimal duration of such a transaction. Then the overall reliability R(t0, t1) can
be approximated conservatively by

R(t0, t1) ≥ min{
q∏
`=1

(RT`
)c` | 0 ≤ c` ≤ cmax` ∧ t1 − t0 ≤

q∑
`=1

c` · δ` ≤ t1 − t0 + ε}

for ε satisfying 0 < ε ≤ max{δ` | 1 ≤ ` ≤ q}. The right-hand side of the
above formula represents the worst-case situation, where a maximal number
of transactions is performed during time interval [t0, t1], and the combination of
transactions performed in this interval is technically still possible, but represents
the least reliable combination which may occur.

It remains to determine the reliability of each transaction type T`. To this
end, we observe that the occurrence probability of a reliable mutant M(V) is

PV =
k∏
i=1

di∏
j=1

pi
v

di
i (j)

where pim denotes the occurrence probability of the basic fault (or normal be-
haviour) associated with outgoing transition number m at behaviour switch bsi
(so

∑ni

j=1 p
i
j = 1 for all i = 1, . . . , k).

The probability that a transaction of type T` will terminate successfully
without transition into stable safe state is

RT`
=

∑
{V | M(V)|=A�(¬φ)}

PV +
∑

{π,V | M(V)|=E�φ∧π|=�(¬φ)}

Pπ · PV

where π denotes a computation of mutant M(V) and Pπ the probability of its
occurrence: RT`

is the sum of all occurrence probabilities of reliable mutants plus
the occurrence probabilities of paths in unreliable mutants leading to successful
completion of the transaction. We neglect the occurrence possibility of the latter
paths and only consider behaviour vectors of a maximal dimension max ∈ N.
This results in the conservative approximation

RT`
≥

∑
{V | M(V)|=A�(¬φ)∧∀i=1,...,k:di≤max}

PV

Since the right-hand side of this inequation can be computed by the mutant
generator in combination with the model checker, this completes the conservative
approximation for reliable system operation R(t0, t1).

Example. As an example we demonstrate the calculation of the reliability of
the example architecture in Fig. 4. This architecture consists of a transmitter,
channel, receiver and observer, transmitter and receiver being allocated in the
safety-layer.

The observer performs a safety-related transaction which completes success-
fully in terminal state success if a message sent on channel toUpperLayer is finally
received on channel fromUpperLayer (see Fig. 5). The transmitter sends messages
in fixed cycles of 5 time units. It repeats a message with the same sequence num-
ber until a next message has to be transmitted. The receiver removes duplicated
messages indicated by equal sequence numbers. It also monitors the operability
of the transmission channel: at least one message within 14 time units is ex-
pected (regardless of the sequence number). If no message is received within 14
time units, the receiver transits into stableSafeState, so we are interested in the
probability that the complete system satisfies A�¬Receiver.stableSafeState, or,
equivalently, RQ ≡ A�Observer.success (“RQ” standing for Reliability Query).

The communication channel includes a behaviour-switch bs1 with the set
of outgoing transitions identified by {0, 1}. The outgoing transition number 0

models the message-loss-error and transition 1 transmits the message correctly.
The *-character in the behaviour switch denotes that the transition can be take
arbitrarily many times, so there are no restrictions regarding the creation of
behaviour-vectors for bs1.

The mutation generator generates the initial vectors v1
1,1 = (1), v1

1,2 = (0)
and starts the model-checking processes to verify RQ on each mutation. The
model mutation induced by v1

1,1 = (1) satisfies RQ, but the mutation induced
by v1

1,2 = (0) violates RQ, because the mutant derived from v1
1,2 will drop the first

message and block as soon as the second message arrives. In the next generation
step, the mutation generator extends all vectors which are not satisfying RQ
by all possible outgoing transitions of the behaviour-switch – this results in
v2
1,1 = (0, 1), v2

1,2 = (0, 0) – and starts again the verification process. The tool
iterates until the dimension of the vectors have reached a predefined limit (in the
example we set the limit to 4, because we know that RQ can never be satisfied
in presence of more than 3 message-drops). In Fig. 7 the whole set of generated
behaviour-vectors is shown, each inducing one mutant model.

All behaviour-vectors whose mutants satisfy RQ represent reliable compu-
tations of the communication architecture: each transmission where only fault-
combinations still ensuring A�¬Receiver.stableSafeState occur is still reliable.
The probability of transmitting a sequence of messages specified in a behaviour-
vector is calculated due to the known probability for an error-type to occur. In
our example there is a probability to drop (pd) or to transmit (1−pd) a message.
The probability that a sequence of controlled transitions occurs is the product of
each transition probability in a behaviour-vector (e.g. v3 = (0, 0, 1), probability
of occurrence: p(v3) = pd · pd · (1− pd)). We assume that all events are stochas-
tically independent. Now the reliability of a communication model is the sum
of all mutation-occurrence probabilities satisfying RQ. For the example system
this results in the reliability formula REx = (1− pd) + pd · (1− pd) + p2

d · (1− pd)
which can be reduced to REx = 1− p3

d. �

5 Discussion and Future Work

The reliability analysis of communication architectures according to the concepts
introduced in this article allows users to compare different architectural designs
and fault-tolerance mechanisms of communication protocols in safety-related
domains. Furthermore, the analysis results induce requirements on message er-
ror probabilities. These probabilities represent decision criteria whether specific
transmission techniques like WLAN, IP-Networks or xDSL should be allowed
or forbidden in safety-related communication architectures with high reliability
requirements.

We have successfully analysed the reliability of the safety protocol SAHARA
over UDP [13], a proprietary session-layer over the HDLC (High-Level Data
Link Control) protocol, PROFIsafe over PROFINET and PROFINET DCP (Ba-
sic Discovery and Configuration Protocol). The results of these analyses imply
maximal error probabilities and properties like maximal latencies of transmis-

Root

v1=(1) v1=(0)

v2=(0,1) v2=(0,0)

RQ(tk) is satisfied

v3=(0,0,1) v3=(0,0,0)

v4=(0,0,0,1) v4=(0,0,0,0)

RQ(tk) is not satisfied

tk = (vk)

Fig. 7. Generated Vector Tree

sion techniques which are still acceptable in presence of the high levels of overall
reliability required. Additionally the knowledge about the communication be-
haviour in presence of errors and error combinations has led to improvements of
protocol specifications.

Due to the divide-and-conquer approach the availability of an array of com-
puters and multiple CPU cores makes model checking feasible on a large amount
of error combinations (i. e., mutants). We have successfully analysed an archi-
tecture with about 34 million error combinations which takes about 60 hours
with an array of 25 computers (each 3 GHz).

In the future, we will analyse further architecture specifications, especially
with reliable transport protocols like TCP and SCTP. Furthermore, we will im-
prove the DSL CAMoLa for modelling communication architectures in a more
generic way, such that pre-defined error behaviours applicable in specific com-
munication domains can be re-used my means of building blocks from libraries.
Additionally, it is planned to allow deviations from the transaction-oriented ap-
proach, in the sense that some system variables will be allowed to evolve across
sequences of transactions. This will be helpful if, for example, fault counters are
introduced in the system and incremented across transitions, so that shutdowns
can be enforced if the fault rate is considered to be too high: in such a situa-
tion the success of a transaction also depends on the probability that the fault
counter has reached its admissible limit before start of transaction.

Acknowledgements. The second author has been supported by Siemens AG
in the context of the Graduate School on Embedded Systems GESy at the Uni-
versity of Bremen (http://www.informatik.uni-bremen.de/gesy).

Originality. All necessary clearances for the publication of this paper have been
obtained. If it is accepted, the authors will prepare the final manuscript in time
for inclusion in the conference proceedings and will present the paper at the
conference.

References

1. CENELEC: En 50159-1. railway applications -communication, signalling and pro-
cessing systems part 1: Safety-related communication in closed transmission sys-
tems (2001)

2. CENELEC: En 50159-2. railway applications -communication, signalling and pro-
cessing systems part 2: Safety related communication in open transmission systems
(2001)

3. Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science
(126) (1994) 183–235

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In Bernardo, M.,
Corradini, F., eds.: Formal Methods for the Design of Real-Time Systems: 4th
International School on Formal Methods for the Design of Computer, Communi-
cation, and Software Systems, SFM-RT 2004. Number 3185 in LNCS, Springer–
Verlag (September 2004) 200–236

5. Kelly, S., Lyytinen, K., Rossi, M.: Metaedit+ a fully configurable multi-user and
multi-tool case and came environment. Advanced Information Systems Engineering
1080 (1996) 1–21

6. Esposito, R., Sanseviero, A., Lazzaro, A., Marmo, P.: Formal verification of ertms
euroradio safety critical protocol. In: Proceedings of FORMS 2003, May 15-16,
2003, Budapest, Hungary. (2003)

7. Peleska, J., Große, D., Haxthausen, A.E., Drechsler, R.: Automated verification
for train control systems. In Schnieder, E., Tarnai, G., eds.: Proceedings of the
FORMS/FORMAT 2004 - Formal Methods for Automation and Safety in Railway
and Automotive Systems, Technical University of Braunschweig (December 2004)
252–265 ISBN 3-9803363-8-7.

8. Schlingloff, F., Barthel: Verifikation und test des profisafe-sicherheitsprofils (2007)
9. Maxemchuk, N.F., Sabnani, K.K.: Probabilistic verification of communication pro-

tocols. In: PSTV. (1987) 307–320
10. Duflot, M., Fribourg, L., Hérault, T., Lassaigne, R., Magniette, F., Messika, S.,

Peyronnet, S., Picaronny, C.: Probabilistic model checking of the CSMA/CD pro-
tocol using PRISM and APMC. In: Proc. 4th Workshop on Automated Verification
of Critical Systems (AVoCS’04). Volume 128(6) of Electronic Notes in Theoretical
Computer Science., Elsevier Science (2004) 195–214

11. metacase.com: Metaedit+ workbench (2009)
12. IEC: Iec 60050-191-am1 ed1.0 amendment 1 - international electrotechnical vo-

cabulary. chapter 191: Dependability and quality of service. (1999)
13. Kähloer, M.: The european train control system in thales signalling solutions.

Mechanics Transport Communications 3 (2008) VIII–8–VIII–12
14. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (May 2008)

