
Specification of Embedded Systems
Summer Semester 2020

Session 1
Motivation – MBSE – SysML –

Requirements Modelling

Jan Peleska
peleska@uni-bremen.de

Issue 1.1
2020-04-27

Note. These lecture notes are free to be used for non-commercial educational
purposes. I did my best to provide scientifically sound material, but no
guarantees whatsoever are given regarding correctness or suitability of the
content for any specific purpose.

All rights reserved c© 2020 Jan Peleska

Chapter 1

Preface

In this document, an introduction into the course Specification of Em-
bedded Systems is given.

Recall that a system specification describes the desired properties of a
system to be developed. Spacifications can be implicit by stating desired
properties, for example, using logical formulas. Alternatively, specifications
can be explicit by providing a model of the system to be developed.

In this course, we will follow the model-based approach and introduce SysML

the Systems Modelling Language SysML [3] which is based on the
well-known Unified Modelling Language UML [2]. While UML has a
strong focus on software development, SysML extends this focus to integrated
HW/SW systems that may in turn be integrated in larger mechanical objects
that may be connected with each other over communication networks and/or
mechanical devices. Such systems are usually denoted by cyber-physical
systems.

This document gives an overview over this course and introduces require- Overview

ments as a first modelling artefact. Moreover, the Papyrus SysML modelling
tool is introduced. The document is structured as follows.

• In Chapter 2, the concept of model-based systems engineering is intro-
duced, and related terms are explained.

• In Chapter 3, the Papyrus tools is introduced which will be used in this
course for creating SysML models.

• As a first step towards practical modelling, the representation of re-
quirements in a model is explained in Chapter 4

1

• In Chapter 5, an overview over the whole course is given.

• Chapter 6 refers to relevant literature.

• In Chapter 7, questions and exercises related to the material presented
in Session 1 are listed, for you to work on in the first week of the
semester.

2

Contents

1 Preface 1

2 Motivation: Systems Engineering 5
2.1 Some Basic Terms and Definitions 5
2.2 The Benefits of MBSE . 8

3 Developing SysML Models with Papyrus 9

4 Requirements 11

5 What happens next? The Session Structure 13

6 Literature 15

7 Questions and Exercises 16
7.1 Questions . 16

7.1.1 Benefits of Model-based Testing 16
7.1.2 The Importance of Standards 16

7.2 Exercises . 16
7.2.1 Requirements of the Turn Indication Model 16

3

List of Figures

4.1 Requirements diagram with 3 atomic requirements for the turn
indication controller. 12

4

Chapter 2

Motivation: Systems
Engineering

2.1 Some Basic Terms and Definitions

This course is about systems engineering (SE), which is the engineer- Model-

based

systems

engineer-

ing

ing discipline focussing on systematic system development. A sub-discipline
of systems engineering is model-based systems engineering (MBSE),
where system development is guided by a series of formal models: just like
a house is built from construction plans, complex systems consisting of me-
chanical parts, electronics, and software should be built from a well-defined
reference specification.

We will introduce the well-known modelling formalism Systems Mod- SysML

elling Language (SysML) [3] for learning and applying the MBSE ap-
proach. SysML is a so-called profile of the UML [2], that is a specialisation
of the latter for system development (as opposed to pure software develop-
ment which can also be done using UML).

The term formal states that the semantics of models should be un-
ambiguous, at least to experts of the modelling formalism. To recap the
term ‘semantics’, recall that a model, just like a programming language, has
a formal syntax specified by the modelling formalism. Every syntactically
well-formed model should have a well-defined semantics, just like a computer
program that compiles correctly, so that we can expect well-defined program
execution behaviour. Semantics has two aspects.

• Static semantics explains the meaning of the model structure, e.g., Semantics

5

“this model consists of two sub-components communicating over a sin-
gle shared variable interface”. Moreover, it specifies all rules that can
be checked without “executing” the model, such as usage of admissible
types in expressions (e.g. you cannot add an integer to a string).

• Behavioural semantics1 explains how input data to or stimulations
of the model are transformed step by step into output data or reactions
of the model.

Which aspects of a system to be developed should be covered by a model? Modelling

aspectsTo answer this questions, we look at the typical sub-division of system
properties.

Structural properties specify the static decomposition of a system to be
developed: components, interfaces, hardware structure.2

Behavioural properties (also called functional properties) specify the
transformation of data and other dynamic reactions, as explained for
the term ‘semantics’ above.

Non-functional properties describe all aspects of a system that are nei-
ther behavioural nor structural. Important examples are

• safety,

• reliability,

• availability,

• security,

• maintainability,

• usability,

• fault-tolerance,

• quality (e.g. requirements conformance),

but many more examples exist.3

1also called dynamic semantics
2Observe that since we are talking about system development, it’s not only about

software, but about software integrated into controllers integrated into surrounding HW
like cars, aircrafts, trains, space ships, robots . . .

3see https://en.wikipedia.org/wiki/Non-functional_requirement for a (still
non-comprehensive) list of further non-functional requirements

6

https://en.wikipedia.org/wiki/Non-functional_requirement

Relevant modelling formalisms always support the specification of struc-
tural and behavioural properties. When it comes to non-functional proper-
ties, they differ quite a lot. During this course we will see that SysML is
a modelling formalism which covers a rather wide variety of non-functional
properties, which is one of the unique selling points of this formalism.

To emphasise that models should be the main drivers of a system de- Model-

drivenvelopment undertaking, the terms model-driven architecture (MDA),
model-driven design (MDD) are frequently used. In the same sense,
the term model-based is connected with testing, code generation and other
activities of a development process.

Typically, complex systems will be built from more than one model: a PIM and

PSMplatform-independent model (PIM) specifies the expected properties of
the system in a way which is independent on specific choices of hardware,
operating systems etc. A platform-specific model (PSM) specifies how
the general properties are mapped to concrete hardware, operating system,
interfaces etc.

Example 1. Airbus is using the MBSE approach to specify the electronic
service functions of the aircraft cabin (e.g. cabin pressure control, air con-
ditioning, crew telephone system, passenger address system and hundreds
more) as a library of PIMs (one for each service function), so that a uniform
behaviour of these services over all members of the aircraft family (A318,
A320, A340, A350, . . .) is enforced.

The concrete instantiation of a service in a specific aircraft type is then
represented in a PSM which has the same behaviour as specified in the asso-
ciated PIM, but refers to concrete interfaces and reduced or enhanced service
options. For example, control computers in the A350 aircraft communicate
over AFDX which is a variant of the UDP/IP protocol over Ethernet4, while
computers communicate using the ARINC 429 protocol5 in the A340 aircraft.

To provide another example, cabin lights in the A320 aircraft can be
controlled in only two seat row columns (left and right of the single aisle),
while there are three columns of light to control in A340 or A350 aircrafts
that have two aisles.

These aircraft-specific refinements or instantiations of a PIM are repre-
sented in PSMs. �

4https://en.wikipedia.org/wiki/Avionics_Full-Duplex_Switched_Ethernet
5https://en.wikipedia.org/wiki/ARINC_429

7

https://en.wikipedia.org/wiki/Avionics_Full-Duplex_Switched_Ethernet
https://en.wikipedia.org/wiki/ARINC_429

Models come with different levels of abstraction. For example, a proces- Programs

are

models

sor specification model could be represented in VHDL6 or SystemC7, which
would look just like a computer program to a system modeller, but is really
an abstraction from the perspective of chip designers. In the same sense, a
C program is a model of the assembler code to be executed on a computer.
Therefore, we consider computer programs also as models, but on a lower
level of abstraction.

Please read [1, Chapter 1] about a more elaborate introduction to systems Further

readingengineering.

2.2 The Benefits of MBSE

Models of a system to be developed are elaborated for many reasons, we list
some of the important ones here.

• A model library is the ideal means of storing knowledge about systems,
products, or business processes.

• Finding bugs early during the development life cycle is less expensive
than fixing bugs in a system that has already been deployed. Modelling
the desired behaviour of a systems offers the opportunity to detect
logical misconceptions already in the model, without having created
a single piece of “real” hardware and without having programmed a
single line of code.

• Models can be used as the source for automated code generation, if they
are sufficiently detailed. This makes conventional coding of embedded
systems superfluous.

• Models can be used to derive relevant test cases and test procedures
for the system under development, so that tests have no longer to be
programmed manually.

• Models help to trace requirements to implementation and verification
artefacts in an automated way.

We do not discuss this any further here, because there is an exercise
question about this for you to work on.

6https://en.wikipedia.org/wiki/VHDL
7https://en.wikipedia.org/wiki/SystemC

8

https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/SystemC

Chapter 3

Developing SysML Models with
Papyrus

In this course, we will use the Papyrus tool for designing SysML models.
Papyrus is available free of charge, it is open source, and it is well-known
to support UML/SysML in a very comprehensive way, conforming to the
standards [2, 3]. Some commercial tools have better usability, you will find
that the workflow with Papyrus is sometimes a bit cumbersome. However,
it does the job, and for the purpose of this course the conformance to the
standards is most important.

You need to install this tool on your computer like this:

1. Download and install the Eclipse IDE 2020-03 for Java Develop-
ers https://www.eclipse.org/downloads/packages/

2. Open the Eclipse IDE, and use pull-down menu Help → Eclipse Mar-
ketplace . . .

• In the Search rider, insert Papyrus; this will give you 3 hits. Select
Papyrus SysML 1.6 1.0.0 and install this plugin.

I have prepared three videos showing how to install and perform the first 3 videos

steps with Papyrus SysML in the Eclipse IDE, you can see this under

• https://youtu.be/NNRMMjb_BiQ : This video tells you how to install
Papyrus as an Eclipse plugin and create your first SysML modelling
project, structured into packages.

9

https://www.eclipse.org/downloads/packages/
https://youtu.be/NNRMMjb_BiQ

• https://youtu.be/VTmxlG7E-_4 : This video shows you how to create
requirements in a SysML model and how to create requirements dia-
grams in order to structure the (potentially large) collection of atomic
requirements. This is the first part of two videos.

• https://youtu.be/ekiHlkaX0WU : This is the second part of the video
about requirements modelling.

10

https://youtu.be/VTmxlG7E-_4
https://youtu.be/ekiHlkaX0WU

Chapter 4

Requirements

The professional way of approaching a complex systems development under-
taking is to first capture its requirements. A requirement is a specification
of a desired system property. In today’s industrial practice, requirements are
written in natural language associated with informal diagrams, to facilitate
the communication between customers and system development experts. Re-
search communities advocate a formalisation of requirements, for example,
using temporal logic1, but this is not yet considered as state of practice.

In any case, requirements should be well-structured and describe struc- Requirements

should be

part of

the model

tural, behavioural, and non-functional properties of a system to be devel-
oped. Most modelling formalisms consider requirements as artefacts to be
compiled separately, and serve as inputs to the modelling phase. The SysML
modelling language has the advantage, that requirements are considered as
part of the modelling language, so that they are represented as a (slightly
informal) part of the model. The formal modelling elements (block diagrams,
state machines, activity charts, we will learn about this in the coming weeks)
can then refer to requirements, so that it becomes clear which formal parts
of a model are responsible to represent a specific requirement.

In SysML, a requirement consists of a pair (id, text), where id is a unique
identifier and text is a textual description of the requirement. The description
may contain links to informal graphics.

Requirements should be decomposed until they are atomic, that is, until Containment

linkthey represent an indivisible property that does not contain any case dis-

1This is, for example, explained in the course Theory of Reactive Systems held by
Wen-ling Huang in this semester, see http://www.informatik.uni-bremen.de/agbs/

jp/papers/trs_script.pdf

11

http://www.informatik.uni-bremen.de/agbs/jp/papers/trs_script.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/trs_script.pdf

tinctions. Non-atomic requirements can be used to structure the collection
of atomic requirements. To depict the decomposition of requirements in a
diagram, the so-called containment link is used. In Fig. 4.1, a require-
ments diagram related to Exercise 7.2.1 is shown. The “cross hair” end of a
containment link is the higher-level composite requirement, and the undeco-
rated end of the link attaches a lower-level requirement which is part of the
higher-level one.

Figure 4.1: Requirements diagram with 3 atomic requirements for the turn
indication controller.

The videos referenced above describe how a SysML model is created with Model

creationthe Papyrus tool. A model should always be structured into packages impos-
ing a sub-structure. For the start, the only package we need is requirements,
we will add more packages in the next session.

Please study Sections 13.1 — 13.4 in [1], where further information about Further

readingthe specification of requirements in SysML is given.

12

Chapter 5

What happens next? The
Session Structure

This course is structured into the following sessions. Note that for obtaining
only 3 ECTS credit points, it is only required to learn Session 1 — Session 4.
From Session 5 on, C programming skills are required, but template programs
will be handed out to start with.

Session 1. Motivation – MBSE – SysML – Requirements modelling

From-to: 2020-04-20 — 2020-04-30

Session 2. Modelling interfaces and structure – SysML ports – Blocks –
Block definition diagrams – Internal block diagrams – Context specifi-
cation – Specification of physical units

From-to: 2020-05-04 — 2020-05-15

Session 3. Modelling behaviour, Part I: operations – state machines –
events – timing conditions

From-to: 2020-05-18 — 2020-05-29

Session 4. Modelling behaviour, Part II: activities – detailed requirements
tracing

From-to: 2020-06-02 — 2020-06-12

Session 5. Model analysis: textual SysML model representation in XMI-
format – LIBXML2 – parsing the XMI model – static model analysis

13

From-to: 2020-06-15 — 2020-06-26

Session 6. Code generation I: domain framework – hardware abstraction
layer – signal interfaces – shared variable interfaces – state machine to
code transformation

From-to: 2020-06-29 — 2020-07-10

Session 7. Code generation II: Activity to code transformation

From-to: 2020-07-13 — 2020-07-24

14

Chapter 6

Literature

As mentioned above, SysML is a profile of the UML, so for fully understand-
ing SysML, an understanding of the UML is important as well.

• The reference specification for the UML is [2] and can be downloaded
from https://www.omg.org/spec/UML/2.5.1/PDF

• The reference specification for the SysML is [3] and can be downloaded
from https://www.omg.org/spec/SysML/1.6/PDF

Though being (of course) comprehensive, these standards are quite hard
to read. A very good book introducing and motivating the SysML is [1]. It
also explains technical details differently from the standards – this may facili-
tate understanding complex modelling concepts. The book is available online
for you under https://suche.suub.uni-bremen.de/peid=B79963566.

15

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/SysML/1.6/PDF
https://suche.suub.uni-bremen.de/peid=B79963566

Chapter 7

Questions and Exercises

7.1 Questions

7.1.1 Benefits of Model-based Testing

Study the paper [4] which has also been uploaded to Stud.IP and make a
list of benefits claimed by the author to come from model-based testing.
Explain the term traceability and describe why traceability is so important
for safety-critical systems.

7.1.2 The Importance of Standards

Which standards are mentioned in [4] and [1, Chapter 1]? How do these
texts explain the importance of standards?

7.2 Exercises

7.2.1 Requirements of the Turn Indication Model

As part of the material for Session 1, you find file
turn-indication-controller.pdf which describes (a part of) the
functionality involving the left-right indication lights in cars in natural
language. Please study this text and perform the following activities.

1. Create a new Papyrus-SysML model called

16

TurnIndication<Your Name>.

The name-suffix helps me to avoid model name clashes when loading
your models into my Eclipse workspace.

2. Create a package requirements1

3. Analyse the natural-language specification in file
turn-indication-controller.pdf and identify atomic require-
ments from this text.

4. Create a SysML requirement in this package for each of the require-
ments you have identified in the previous step. Make sure that the
requirements are properly specified with id and descriptive text.

5. For structuring the collection of requirements, create suitable names
for non-atomic requirements collections, and draw several requirements
diagrams showing the structured hierarchy of requirements. The struc-
ture should at least contain

• structural

• behavioural

• non-functional

• safety-related

requirements

In the diagrams, only requirements and their containment links need to
be shown. The additional relationships described in [1, Table 13.2] are not
needed for the moment, they will be discussed at a later stage.

1Traditionally, package names are in small letters, no blanks, underscores, or special
characters.

17

Bibliography

[1] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML, Third Edition: The Systems Modeling Language. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2014.

[2] Object Management Group. OMG Unified Modeling Language (OMG
UML), version 2.5.1. Technical report, OMG, 2017.

[3] Object Management Group. OMG Systems Modeling Language (OMG
SysML), Version 1.6. Technical report, Object Management Group, 2019.
http://www.omg.org/spec/SysML/1.4.

[4] Jan Peleska. Model-based avionic systems testing for the airbus family.
In 23rd IEEE European Test Symposium, ETS 2018, Bremen, Germany,
May 28 - June 1, 2018, pages 1–10. IEEE, 2018.

18

	Preface
	Motivation: Systems Engineering
	Some Basic Terms and Definitions
	The Benefits of MBSE

	Developing SysML Models with Papyrus
	Requirements
	What happens next? The Session Structure
	Literature
	Questions and Exercises
	Questions
	Benefits of Model-based Testing
	The Importance of Standards

	Exercises
	Requirements of the Turn Indication Model

