
Specification of Embedded Systems
Summer Semester 2020

Session 3

Modelling Behaviour, Part I
Operations – Statemachines – Events –

Timing Conditions

Jan Peleska
peleska@uni-bremen.de

Issue 2.1
2020-06-06

Note. These lecture notes are free to be used for non-commercial educational
purposes. I did my best to provide scientifically sound material, but no
guarantees whatsoever are given regarding correctness or suitability of the
content for any specific purpose.

All rights reserved c© 2020 Jan Peleska

Chapter 1

Preface

In this document, the material for Session 3 of the course Specification
of Embedded Systems is provided.

This document is structured as follows. Overview

• In Section 2 it is explained how a block can be associated with different
variants of behaviour.

• In Section 3, an introduction to modelling behaviour with SysML state
machines is given. But beware! The syntactic variants for modelling
states and transitions are numerous, and their interpretation is quite
complex. Therefore, you need to study the literature referenced there
as well.

• An example how to use opaque behaviour as the classifier behaviour of
an active block is given in Section 4.

• In Section 5, design guidelines for modelling blocks whose classifier
behaviour is specified by means of state machines.

• As usual, these lecture notes end with questions and exercises in Sec-
tion 6.

1

Contents

1 Preface 1

2 Associating Blocks With Behaviour 5

3 Specifying Behaviour With State Machines 8
3.1 Introductory Remarks on State Machines 8
3.2 State Machines With Simple States 9
3.3 Composite States and Submachine State 12
3.4 Summary: Comparison Between SysML State Machines and

Mealy Machines . 13

4 Using Opaque Behaviour Specifications as Classifier Be-
haviours of Active Blocks 14

5 Design Guidelines for Blocks and State Machines 16
5.1 Separate Blocks vs. Nesting of Blocks 16
5.2 Block Configuration . 17
5.3 State Machine Initialisation 18
5.4 Hierarchic State Machines . 21

5.4.1 Hierarchy for Prioritised Behaviour 21
5.4.2 Composite States With Nested Regions 22
5.4.3 Remarks on Submachine States 22

6 Questions and Exercises 26
6.1 Questions . 26

6.1.1 Hierarchic Composite State vs. Submachine State . . . 26
6.1.2 Nested Blocks in Hardware Design? 26

6.2 Exercises . 26

2

6.2.1 Block and State Machine Control Logic 26
6.2.2 CAN Output Control and Flash Cycles 27
6.2.3 Reuse of the PowerSource and LampControlSlave Blocks 27

3

List of Figures

2.1 Advanced specification page for an active block with a state
machine specifying the classifier behaviour. 7

3.1 LampCtrlSlave: a state machine with simple states. 10

4.1 Advanced specification page for an active block with function
behaviour as classifier behaviour. 15

5.1 State machine PowerSourceCtrl, allocated in each of the con-
trollers. 19

5.2 Subordinate state machine for state machine BAT-
TERY VOLTAGE OK. 21

5.3 Submachine LRFlashing. 25

4

Chapter 2

Associating Blocks With
Behaviour

You may recall from Session 2, Section 2.2, that behaviour can be modelled Variants

of

behaviour

in SysML using activities, interactions, state machines and use cases. In
addition to these, there is opaque behaviour consisting of a textual speci-
fication of behaviour in syntax which is outside the UML/SysML. Typically,
opaque behaviour is specified in the syntax of some programming language,
we will always use C for this purpose. When a code generator creates code
from a model, the opaque behaviours are used “as is” and inserted into the
generated code without further modification. A specific language subclass of
opaque behaviour is function behaviour which contains opaque specifica-
tions about input-to-output transformations without referencing or modify-
ing state data in the execution context. Therefore, function behaviour can
be described as a function in the mathematical sense, mapping arguments to
image values.

While blocks have been introduced as the central SysML language ele-
ments for modelling structure, they can be associated with behaviour in the
following ways.

• Instances of each of the behavioural modelling variants can be asso- Owned

behaviour

vs. nested

classifier

ciated as owned behaviour with a block. “Owned” means in this
context that the behavioural models can refer to the block context
(value properties, ports, operations, . . .) when evaluating expressions
or changing state.

In the Papyrus tool, owned behaviour is created by the following steps.

5

1. In the model explorer, open the context menu of the block to be
associated with a new behaviour.

2. Select one of the behaviour variants listed above in the context
menu.

3. For each of these behaviour variants, it is possible to select As
owned Behaviour, or, alternatively, As nestedClassifier.

4. Choose “As owned Behaviour” to create the selected behaviour
variant, so that it becomes owned behaviour of the block.

• Blocks can be used as containers for behaviours that do not use the
block as a context but only as a namespace. These behavioured clas-
sifiers are created as and denoted by nested classifiers. We will not
apply nested classifiers in this course, their more detailed description
is given in [3, 13.2.3.4].

Blocks can be active in the sense that they can execute one specific Active

blocks

and

classifier

behaviour

owned behaviour as soon as an instance of the block is created. If the block
represents software, this means that the instance starts to run as soon as it is
instantiated as an independent thread or process. To model an active block,
two modelling steps are necessary.

1. The block attribute Is Active must be set to true

2. One of the block’s owned behaviours must be identified as the classifier
behaviour: this is the behaviour which immediately becomes active
when the block instance is created.

In the Papyrus tool, the classifier behaviour is selected in the Advanced
menu of the block by double clicking the Value entry which is initially
empty. Then it is possible to select one of the block’s owned behaviours
as classifier behaviour. Note that this only works if the Is Active flag
has been set.

Example 1. In the TurnIndication model for Session 3, you can find an ac-
tive block TurnIndicationJP::turnindicationsystem::PowerSource. Its
Advanced specification looks as shown in Fig. 2.1. Its classifier behaviour is
modelled by state machine PowerSourceCtrl which has been introduced before
as an owned behaviour of the block. Its Is Active flag is set to true. �

6

Figure 2.1: Advanced specification page for an active block with a state
machine specifying the classifier behaviour.

The explanations given above and in Section 4 blow should suffice for Further

readingthe modelling activities in this course. If you would like to read more about
blocks and associated behaviours, please consult [1, 7.5].

7

Chapter 3

Specifying Behaviour With
State Machines

3.1 Introductory Remarks on State Machines

Both in computer science and engineering, state machines are the pre-
ferred means for modelling so-called reactive behaviour in discrete control
problems:

• The state machine resides in a given state1 and waits for any input to
occur.

• If an input occurs, the machine reacts by producing a (possibly empty)
output and by transiting into the next control state (which may be a
new state or the same as before).

• The input-output behaviour is determined by the control state the ma-
chine currently resides in.

If you are not familiar with state machines, please study the definition
of a Mealy Machine, for example, in https://en.wikipedia.org/wiki/

Mealy_machine. Otherwise, the concepts to be introduced next might be
too complex to understand. The state machines used in UML and SysML
are based on the Statecharts originally invented by David Harel, who has
written a very precise article about their behavioural semantics [2]. I have

1often also called control state, to distinguish them from state information stored in
value properties, ports and other attributes of a block

8

https://en.wikipedia.org/wiki/Mealy_machine
https://en.wikipedia.org/wiki/Mealy_machine

made this article available in Stud.IP, together with the other material for
Session 3.

3.2 State Machines With Simple States

To start with the explanation of SysML state machines,
consider the state machine LampCtrlSlave in Fig. 3.1,
which is used to specify the classifier behaviour of block
TurnIndicationJP::turnindicationsystem::software::LampCtrlSlave.
The state machines reacts on CAN messages by set-
ting the output port switchOut to true or false, respec-
tively. As can be seen from the internal block diagram
TurnIndicationJP::turnindicationsystem::DoorController::DoorControllerIbd,
this output port is connected to a corresponding input port of block
TurnIndicationJP::turnindicationsystem::PowerSource: value true

transmitted from switchOut to switchIn has the effect that the PowerSource
opens the 2mA power supply for the lamps. On switch value false, the
power source is closed again.

The states depicted as boxes with rounded corners are called simple Simple

statesstates, as opposed to composite states to be discussed below. When entering
such a state, an entry action is executed, if such an action has been defined.
We specify entry actions as opaque behaviours in C-style syntax, reading from
and writing to value properties or ports. In simple (and composite) states,
time passes, until another transition becomes enabled.

The initial state marked by a black bullet • is one of the pseudo states Initial

pseudo

state

available SysML state machine syntax. Pseudo states are characterised by
the fact that they must be left immediately, so that no time is spent while
residing in a pseudostate. The transition arrow emanting from the initial
pseudo state marks the first simple state to be entered when the state machine
is executed.

9

Figure 3.1: LampCtrlSlave: a state machine with simple states.

Transitions are labelled by Transitions

labels
1. An optional trigger which may represent one of the event types

change-event, signal-event, time-event, call-event, any-
receive-event

We will use only the first three of these event types.

Please read [3, 13.3] for an explanation of these events. Their basic
intuition is

• A change-event indicates that some constraint changed from
false to true, because some of the value properties, ports, or
other symbols referenced in the constraint changed their values.

10

• A signal-event indicates the occurrence of some event similar to
an interrupt.

• A time-event indicates that a certain time has passed after the
source state of the associated transition had been entered (after
200ms means “200ms after the source state had been entered), or
that an absolute/date time event has been reached (at 2020-05-17,
11:45).

2. An optional guard condition which is a constraint over value prop-
erties, ports etc. in the scope of the block owning the state machine
behaviour. We will always use opaque expressions to specify con-
straints.

3. An optional action to be executed if the transition fires (i.e. the tran-
sition is executed). We will always use opaque behaviour to specify the
effect of such an action.

In Fig. 3.1, the transition from simple state LAMPS OFF to LAMPS ON
is labelled as follows.

• The transition has a signal event as trigger, the associated signal is
named CANSignal an we use it to indicate that a new CAN bus messages
has arrived and can be read from the port CANinSW.2

• In the guard condition, Boolean block operation onConditionFulfilled()
is called. You can inspect in the model how this operation is declared
in block LampControlSlave, and you can inspect that its behaviour is
again opaque (OnCndCheck) and has been specified in C-style by

1 return

2 (CANinSW.cmd == ON &&

3 ((CANinSW.applyLeft && PinProgram == LEFT) ||

4 (CANinSW.applyRight && PinProgram == RIGHT)));

This means that the guard evaluates to true if and only if

1. the CAN message command is ON, and

2. the CAN message indicates that flashing should occur on the left-
hand side and pin programming specifies that this lamp control
slave handles a left-hand-side lamp, or

2For reasons unknown, the Papyrus tool does not show the signal event (which is
CANMsgReceived in this case), but the signal name itself.

11

3. the CAN message indicates that flashing should occur on the right-
hand side and pin programming specifies that this lamp control
slave handles a right-hand-side lamp.

• As associated action, duration value of the CAN message is read from
the port and written to a value property of the block, called onDuration.

A transition is enabled if Enabling

transitions
1. the state machine resides in the transition’s source state3,

2. the trigger has occurred, and

3. the guard condition evaluates to true.

If several transitions are simultaneously enabled, then only one of them fires,
and this choice is nondeterministic.

By using fork and junction pseudo states compound transitions can Compound

transitionsbe created. For a valid SysML model, at least one guard condition emanating
from a pseudo state must evaluate to true, since we must not get stuck in
pseudo states: they shall be left in zero time. For this reason, transitions
emanating from pseudo states may not possess any triggers, since it is not
allowed to wait for event occurrences in a pseudo state.

Compound transitions and ordinary transitions are executed in zero time, Run-to-

completion

paradigm

and all transitions that may simultaneously fire (from concurrent state ma-
chines) must come to an end in a simple state, before the next input or event
can be processed. Loops of compound transitions containing pseudo states
only are forbidden, since this would model an infinite loop taken infinitely
fast (a so-called livelock).

3.3 Composite States and Submachine State

States are called composite if they are decomposed hierarchically or into
parallel regions containing sub-ordinate state machines. A submachine
state s is a state which is not decomposed, but references a sub-state machine
to be executed while the high-level state machine resides in s.

The combination of composite states with compound transitions results Further

reading –

manda-

tory!

3For transitions emanating from a composite state, this means that the machine resides
in a simple state “underneath” this composite state.

12

in more complex firing rules. These lecture notes only give a short sum-
mary of what can be done with SysML state machines. You need to be-
come acquainted with the details; therefore, please read [3, 14.1, 14.2] to
get a comprehensive understating about available pseudo states, compound
transitions, and compound states. In addition (and because it is easier to
understand) read [1, Chapter 11].

3.4 Summary: Comparison Between SysML

State Machines and Mealy Machines

Summarising the most important extensions distinguishing SysML state ma- Comparison

SysML

state

machines

vw. Mealy

Machines

chines from simple Mealy Machines are as follows.

• SysML state machines react on and produce different classes of events
(signal events, change events, time events, call events), and events may
carry data, whereas Mealy Machines only distinguish between atomic
input events and likewise atomic output events.

• SysML state machine transitions not only depend on an event occur-
rence, but also on a guard condition.

• SysML state machines may change value properties and port states by
writing to them in the form of assignments.

• SysML state machines distinguish between simple states, composite
(hierarchic or parallel) states, submachine states, and pseudo states.

• SysML simple and composite states can have entry actions, exit actions,
and do actions.

13

Chapter 4

Using Opaque Behaviour
Specifications as Classifier
Behaviours of Active Blocks

.
As an example where opaque behaviour is used to specified classifier be-

haviour, please inspect block PowerSourceAlternative in the TurnIndication
model for Session 3: as owned behaviour, the (opaque) function behaviour
PowerSourceControl has been specified with C-code

1 while (1) {

2 currentOut = (switchIn) ? 2 : 0;

3 }

This is the body of a non-terminating thread running in the context of
PowerSourceAlternative. In each loop cycle, the currentOut port is set to 2,
if the switchIn-port carries value true. Otherwise, currentOut is set to 0.

In Fig. 4.1, the block’s Advanced specification page is shown.

14

Figure 4.1: Advanced specification page for an active block with function
behaviour as classifier behaviour.

15

Chapter 5

Design Guidelines for Blocks
and State Machines

5.1 Separate Blocks vs. Nesting of Blocks

You have noticed when working with the Papyrus tool that blocks can be Nested

classifiers

. . .

created within blocks: a block (like an UML class) may have nested classi-
fiers. The word ‘classifier’ is a general term for language elements describing
different features. Block, ports, properties, signals are all specific variations
of classifiers, and therefore, they are allowed to nest inside a block. The
most important aspect of nesting is that the block “hosting” all these nested
classifiers provides a namespace for them: the classifiers nested in a block
have access to the block’s attributes (which may all be nested classifiers),
and so a state machine nesting in a block has access to its ports and value
properties, just to name one example.

However, blocks nesting in blocks do not automatically become parts of . . . vs

partsthe host block. You remember from the first sessions that an instance of
a block becomes part of another block by specifying a directed (composite
or shared) association between the block denoting “the whole thing” and
the block whose instances are parts of the whole. As an example, please
study again the TurnIndicationConttroller block and check how instances of
front controller, door controllers, and rear controller became parts of the the
TurnIndicationConttroller, as can be seen both in the project explorer and in
the block definition diagram of the TurnIndicationConttroller.

16

As a guideline, do not nest blocks B inside another block A, if instances Design

guidelineof B are intended to become parts of A. Instead, specify B separately and
introduce the part relations later on in a BDD associated with A. This gives
you also more freedom to decide where to “allocate” a part after your have
designed its block. If the B-instances that become parts of A need information
from A, this should be conveyed via ports and flows.

So when should you use nesting blocks? To answer this, it helps to Nesting

blocks are

like inner

classes

understand that UML understands classes nesting in other classes as so-
called inner classes, as we know them from Java or nested classes as they
are called in C++. Inner classes are only used in cases where they require the
complete context of their host classes and perform a specific service for the
host class. For example, in a Java class representing a collection, its iterator
is typically implemented as an inner class of the collection class.

As you can see, this example is focused on software. For HW/SW code-
sign, the context of the “outer box” (which is typically HW), as far as rele-
vant to “inner boxes” (hardware parts and/or software parts should always
be provided via ports and flows.

5.2 Block Configuration

When re-using a block owning a classifier behaviour by creating different Reuse

requires

configura-

tion

instances as parts to be integrated in other blocks, it is often important to
configure these parts differently, in order to adapt their behaviour to the
specific part allocation. As an example, we have already seen that the Lamp-
ControlSlave could be modelled as a re-usable block with classifier behaviour
specified by a state machine. This block, however, is sometimes instantiated
as a part controlling a left-hand side lamp, sometimes as a part controlling
a right-hand side lamp.

As a guideline to model configurations I suggest to proceed in the follow- Modelling

configura-

tions

ing steps.

1. Collect all configuration parameters and specify them as value param-
eters (boolean flags, enumeration codes, integer codes, name strings
. . .) of an output port nested in a block C specialised on providing
configuration data.

In our turn indication controller project, we have created the PinPro-

17

gramBlock for this purpose.1 It is associated with a single port PinPro-
gramOut which just conveys a single value of type LeverPosition (the
concrete values are LEFT and RIGHT).

2. For every configuration needed, create a new block Ci which is a spe-
cialisation of C. This is best done on a block definition diagram for C,
where a generalisation association is drawn from each Ci to C.

In our turn indication controller project, this can be seen in BDD Pin-
ProgramBlockBdd: we need one configuration for flashing on the left-
hand side and one for the right-hand side.

3. In the derived blocks Ci, specify a constraint property2 as an opaque
Boolean expression which specifies the value as required for the specific
configuration.

In BDD PinProgramBlockBdd, you can see how the derived block
PinProgramBlockLeft has a constraint PinProgramOut == LEFT. This
means that the port can only convey the constant value LEFT. Anal-
ogously, a constraint has been specified for derived block PinProgram-
BlockRight.

5.3 State Machine Initialisation

Cyber-physical control systems come with various challenges that may lead
to considerable model complexity. One of these challenges is that every
component in a complex control system may be restarted while the system is
in operation. Think of an aircraft flying from Hamburg to Chicago: it occurs
quite often that one of the many aircraft controllers (there are more than 200
in modern aircrafts) needs to be re-booted during flight. As a consequence,
when modelling controller behaviour, it cannot be expected that a component
start only happens when the whole system is started and all interfaces have
default values.

1The term pin programming comes from the old days where computers or computer
boards were configured using mechanical switches on the board to set some processor pins
to constant zero or constant one. The value of these pins determined the behaviour of the
computer board.

2This is done by opening the context menu of the block in the model explorer and
selecting {?} Constraint from the New Child sub-menu.

18

Therefore, when modelling state machines, it is advisable to specify a
collection of choice pseudo states and associated transitions that decide in
which simple state the state machine should commence. Typically, the guard
conditions involved check the current value of each interface that may influ-
ence the state machine behaviour. As an example, consider state machine
ControlLogic in Fig. 5.1.

Figure 5.1: State machine PowerSourceCtrl, allocated in each of the con-
trollers.

When being initialised, the Boolean operation isVoltageInRange is eval-
uated in choice pseudo state isVoltageOk. This operation checks whether the
battery voltage is in admissible range, it has an opaque behaviour specified
by

return (BatVolIN.voltage >= 10 &&

BatVolIN.voltage <= 15);

This means that the operation returns true if and only if the voltage is
greater or equal than 10V and less or equal than 15V.

19

If the voltage is out of range, simple state BATTERY VOLTAGE NOT OK
is entered, and the lamp current is switched off, regardless of any switch
commands coming from the LampControlSlave. If the voltage is ok, however,
the hierarchic machine state BATTERY VOLTAGE OK is entered, where lamp
current is switched off and on according to the commands of LampControl-
Slave.

It is usually a design error to enter always the same initial state (for Don’t rely

on change

events

example, BATTERY VOLTAGE NOT OK) and then rely on a change event
occurring and transferring the machine in the appropriate state. Suppose for
this example, that the voltage is ok when PowerSourceCtrl is activated. Then
the change event isVoltageInRange() will only occur if

1. the battery voltage goes out of range and then

2. the voltage goes back into admissible range.

As a consequence, the state machine will never leave state BAT-
TERY VOLTAGE NOT OK, as long as the battery voltage is ok. This is
certainly not the desired behaviour!

As we can see from this example, it is mandatory to provide these choice
states and guard conditions for state machine initialisation in most cases.

Remember that all pseudo states must be left immediately. This requires
that

• transitions leaving pseudo states must never be labelled by a trigger
(absence of the trigger could block the transition), and

• the disjunction of all guard conditions associated with transitions leav-
ing the choice state must always evaluate to true (this means that at
least one transition must always be enabled).

20

5.4 Hierarchic State Machines

5.4.1 Hierarchy for Prioritised Behaviour

Let us analyse state machine PowerSourceCtrl (Fig. 5.1) further. The state Hierarchic

composite

states for

handling

prioritised

events

BATTERY VOLTAGE OK is associated with a subordinate state machine
shown in Fig. 5.2.

Figure 5.2: Subordinate state machine for state machine BAT-
TERY VOLTAGE OK.

When entering composite state BATTERY VOLTAGE OK, the subordi-
nate state machin OnOffControl is activated and branches immediately to
one of the states LAMP CURRENT OFF or LAMP CURRENT ON, depending
on the Boolean value on port switchIn. Then the normal behaviour

• Switch lamp current of when switch status changes to false,

• Switch lamp current on when switch status changes to true.

21

is executed by this state machine until the composite state BAT-
TERY VOLTAGE OK is left via the higher-level transition from BAT-
TERY VOLTAGE OK to BATTERY VOLTAGE NOT OK.

It is correct syntax to use the same transition triggers with lower-level Don’t use

the same

triggers

on

different

levels

and higher-level transitions. However, this may be quite confusing, because

• The UML standard says that if this trigger occurs and both higher-
level and lower-level transition are enabled, the lower-level transition
is taken. This is usually confusing for people studying the model, since
they associate higher priority with higher transition levels.

5.4.2 Composite States With Nested Regions

Recall from [1, 11.6]3 that a state machine state s becomes composite if
we nest one or more state machines in one or more regions inside s. For
very simple applications, this looks quite appealing, since the hierarchy of
composite states and nested state machines becomes visible in one diagram.
Please study the examples given in [1, 11.6.1, 11.6.2]. This, however, only Use sub-

machines

instead of

nested

machines

works for very simple state machines, otherwise the diagram becomes ex-
tremely cluttered and unreadable. Therefore, we did not give any examples
for composite states with nested regions in our turn indication model. In-
stead, we always use submachines as you can see in the turn indication
model and read in the next paragraphs.

5.4.3 Remarks on Submachine States

When associating a subordinate state machine with a state, the latter be-
comes submachine state. This term is slightly confusing: A submachine
state is not a state of the subordinate state machine, but a composite state
which owns or is associated with a submachine. Submachines may be asso-
ciated with the

• do action,

• entry action, or

• exit action

3Yes, dear friends, you were supposed to read this.

22

of a state.
If the state machine is non-terminating, you should declare it as the do Guidelines

for do/en-

try/exit

action of the state s: it will run as long as the state machine resides in
s. If a transition leading away from s is triggered, the do action is aborted.
State machines used as entry actions or exit action should terminate, because
otherwise the state cannot be left again: an outgoing transition of s can
only reach its destination state after the exit action has terminated. Recall
that there exists a special symbol ‘×’ for modelling termination states of a
machine. Alternatively, the exit points explained below can be used.

It is stated in [1, 11.6.5] (please study this section for further explanations) Re-use of

subma-

chines

that submachines are intended for re-use. Please note that this kind of re-use
is on a more localised level than re-use of blocks (that may have their owned
classifier behaviour modelled by a state machine): state machines refer to
ports or other properties of the owning block. Therefore, it is impossible to
re-use them in another block. Therefore, submachines are typically applied
if

• different hierarchic states of the same state machine should be associ-
ated with the same entry action, exit action, or do action, or

• simply because the submachine is too complex to be displayed as a
nested region in a composite state.

When displaying state hierarchy with nested state machines, it is al- Inter-level

transitionslowed to model a transition from state of the nested machine to a state of
the higher-level machine or vice versa. These transitions are called inter-
level transitions, because the cross the boundaries between lower-level and
higher-level state machines. Using inter-level transitions is rightfully frowned
upon, since they are quite similar to goto statements on C++ programs and,
therefore, make state machines extremely hard to verify.

In submachines, a more elegant substitute for inter-level transitions can Entry

points,

exit

points,

connec-

tion point

references

be specified by means of entry points and exit points. An example of exit
point usage is given in Fig. 5.3. Recall from our discussions during the tutori-
als, that submachine LRFLashing is associated as a do action with submachine
state LRFlashing in the ControlLogic state machine. Submaschine LRFLashing
handles the ON/OFF criteria for left/-right turn indication flashing, includ-
ing tip flashing: When the submachine state LRFLashing is entered, the do
action modelled by submachine LRFLashing starts operating, always begin-
ning at the initial pseudo state. When entering successor state SendLR-

23

FlashCommand, the output port properties applyLeft and applyRight are set
according to the position of the turn indication lever. Now we remember the
tip flashing requirement: if the turn indication lever is put immediately back
into neutral position, then the flashing on the left or right-hand side is only
terminated after 3 ON/OFF cycles have passed. These three cycles have a
duration 1980ms. During this time, we still remain in state SendLRFlashCom-
mand, disregarding change events indicating that the turn indication lever is
back in neutral position. After 1980ms, state SendLRFlashCommand is left,
and the successor choice state is evaluated: if the lever position is still not
in neutral, we transit to state TipFlashing Completed. Otherwise (guard con-
dition [LeverPositionINSW == NEUTRAL] evaluates to true), we transit to
the exit point ExitLRFlashing. This exit point can also be reached by a tran-
sition from TipFlashing Completed, when a change event occurs after the tip
flashing time interval has passed, indicating that the lever is back in position
neutral.

In order to specify what happens when a submachine transition reaches
the exit point, a connection point reference is specified for submachine
state LRFlashing. This is performed by selecting New Child → Connection
Point Reference in the context menu of state LRFlashing. A good convention
is to name the connection point reference just like the exit or entry point it is
associated with. Then the Advanced menu of the connection point reference
properties is opened, and the Exit property to be found there is linked to
the exit point ExitLRFlashing of submachine LRFlashing. In the associated
pop-up menu, you can only select exit points of an appropriate submachine.
On the upper level, a transition is drawn from the connection point reference
to a consecutive state. In the ControlLogic state machine, this is the choice
state ifEmerOn.

Analogously, additional exit points and entry points (symbol ◦) can be
introduced for the sub machine and linked to connection points of the sub-
machine state. Please read further details in [1, 11.6.5].

24

Figure 5.3: Submachine LRFlashing.

25

Chapter 6

Questions and Exercises

6.1 Questions

6.1.1 Hierarchic Composite State vs. Submachine
State

A hierarchic composite state sc has a lower-level state machine which is
executed while the state machine resides in sc. Submachine states are also
associated with a lower-level state machine. Why is it a good idea to have
both constructs, instead of only allowing for hierarchic state machines?

For answering this question, it is advisable to study [3, 14.2.3.4.7].

6.1.2 Nested Blocks in Hardware Design?

Suppose you are using SysML for some HW design. Can you think of a situ-
ation where modelling the system with nested blocks woukld be appropriate?

6.2 Exercises

6.2.1 Block and State Machine Control Logic

The control logic of the turn indication function evaluates the inter-
faces TurnIndicationLever, EmergencySwitch, IgnitionSwitch, and BatteryVolt-
age. Based on these information and on its internal state, the control logic
decides whether flashing should be activated on the left-hand side, right-hand

26

side, or on both sides. This decision is communicated to a component driv-
ing the CAN bus by means of an output port containing Boolean Properties
leftOn, rightOn. Note that the control logic does not handle the on-off phases,
nor does it take care of tip flashing. It just determines the required flashing
status by setting the port properties in the appropriate way.

1. Create a block ControlLogic which becomes part of the rear controller.

2. Associate a state machine as classifier behaviour for this block, so that
the requirements concerning decisons about flashing on left, right, or
both sides are correctly modelled.

It is recommended to use both hierarchic and parallel states to model
this behaviour, because the machine will become quite complex other-
wise.

6.2.2 CAN Output Control and Flash Cycles

As specified in the requirements, a second block CANCtrl needs to be allo-
cated in the rear controller which sends the appropriate CAN bus messages to
all slave recipients (ON commands with duration and applyLeft, applyRight
information, OFF commands when required). This component is responsible
for the proper flashing cycles and for tip flashing. On an input port, the
Boolean Properties leftOn, rightOn are received from the control logic. As
output port, the CAN interface is used.

Create a state machine as classifier behaviour of this block in accordance
with the applicable requirements.

6.2.3 Reuse of the PowerSource and LampControl-
Slave Blocks

In one of our lectures, it has been explained how the blocks PowerSource and
LampControlSlave can be re-used to control all turn indication lamps in the
four controllers. This has been exemplified in the current turn indication
model using the two door controllers. Integrate the blocks PowerSource and
LampControlSlave into the front and rear controller, together with appropriate
configuration blocks PinProgramBlockLeft and PinProgramBlockRight.

For the rear controller, you may assume that the CAN bus has a loop
back capability: the messages sent away over the CAN software port of block

27

CANCtrl may be fed back into the CAN input port CANinSW of the two
LampControlSlave instances allocated in the rear controller.

28

Bibliography

[1] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML, Third Edition: The Systems Modeling Language. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2014.

[2] David Harel and Amnon Naamad. The statemate semantics of state-
charts. ACM Transactions on Software Engineering and Methodology,
5(4):293–333, October 1996.

[3] Object Management Group. OMG Unified Modeling Language (OMG
UML), version 2.5.1. Technical report, OMG, 2017.

29

	Preface
	Associating Blocks With Behaviour
	Specifying Behaviour With State Machines
	Introductory Remarks on State Machines
	State Machines With Simple States
	Composite States and Submachine State
	Summary: Comparison Between SysML State Machines and Mealy Machines

	Using Opaque Behaviour Specifications as Classifier Behaviours of Active Blocks
	Design Guidelines for Blocks and State Machines
	Separate Blocks vs. Nesting of Blocks
	Block Configuration
	State Machine Initialisation
	Hierarchic State Machines
	Hierarchy for Prioritised Behaviour
	Composite States With Nested Regions
	Remarks on Submachine States

	Questions and Exercises
	Questions
	Hierarchic Composite State vs. Submachine State
	Nested Blocks in Hardware Design?

	Exercises
	Block and State Machine Control Logic
	CAN Output Control and Flash Cycles
	Reuse of the PowerSource and LampControlSlave Blocks

