
Specification of Embedded Systems
Summer Semester 2020

Session 6
Automated Static Model Analaysis

Jan Peleska
peleska@uni-bremen.de

Issue 1.0
2020-06-22

Note. These lecture notes are free to be used for non-commercial educational
purposes. I did my best to provide scientifically sound material, but no
guarantees whatsoever are given regarding correctness or suitability of the
content for any specific purpose.

All rights reserved c© 2020 Jan Peleska

Chapter 1

Preface

In this document, the material for Session 6 of the course Specification
of Embedded Systems is provided. This session introduces the topic of
static model analysis. You will learn how to write your own program for
evaluating aspects of static model semantics.

This document is structured as follows. Overview

• In Section 2, the standardized XMI-format for representing SysML
models in textual for is described.

• In Section 3, the Libxml2 library is presented. This library will be
used for automatted interpretation of SysML models represented in
XMI-format.

• In Section 4, we give several examples how static model checking is
performed.

• As usual, these lecture notes end with questions and exercises in Sec-
tion 5.

A sample program using the Libxml2 for evaluating XMI-files is provided
for this session. Please download this for programming the solutions for the
exercises.

1

Contents

1 Preface 1

2 SysML Model Representation in XMI Format 5
2.1 The XMI Format . 5
2.2 Some Basic Information About

UML Profiles . 6
2.3 Basic Structure of XMI Files 8

3 The Libxml2 Library 14
3.1 Installation . 14
3.2 Documentation . 14
3.3 Creating Executables Using Libxml2 15

4 Static SysML Model Checking 17

5 Questions and Exercises 20
5.1 Check Atomic and Non-Atomic

Requirements . 20

A List Handling 22

2

List of Figures

3

Listings

2.1 UML class information for SysML block RearConttroller. 11
2.2 UML specification of enumeration type LeverPosition. 12

4

Chapter 2

SysML Model Representation
in XMI Format

2.1 The XMI Format

UML and SysML are modelling languages containing both structured tex-
tual and graphical information. The graphical information, however, only
visualises the textual content, so it does not add anything to the semantic
meaning of models.

By model serialisation, we mean the transformation of models into Model

serialisationone textual document. For UML/SysML, this means “transformation of
everything but the diagrams into one text document”. For UML/SysML,
the well-known XML-format1 has been chosen as a syntactic framework for
representing models and profile specifications. This specialised application of
XML is called OMG XML Metadata Interchange (XMI), see [4, G.3]
and the XMI specification [2].

Please note that it is not necessary for you to read these normative docu-
ments, since we will not need detailed XML-related knowledge in this course,
and everything will be explained from scratch for the more specialised XMI
format used for model serialisation. Just recall that one of the main ob-
jectives of XML is to represent structured documents in standardised form,
without losing any structural information. This is exactly what we need
for textual representation of UML/SysML models, since we which to specify
that a block instance is part of another block, or that a property belongs to

1see https://www.w3.org/TR/REC-xml/

5

https://www.w3.org/TR/REC-xml/

specific block, or a state to a state machine etc.
The XMI format has been created with several objectives in mind. Objectives

of XMI
Model interchange. Models created with one tool should be readable by

another tool, when exported to XMI.

Model checking. The verification of model properties with additional tools
should be facilitated by providing a standardised textual format.

Code Generation. The generation of

• simulation code,

• code deployable in the target system,

• test procedures for model-based testing (MBT)

should be facilitated.

Model transformations. The transformation of one model into another
(e.g. a platform independent model (PIM) into a platform-specific
model (PSM)) should be facilitated by allowing the transformations
to read and write the same standardised format.

This model-interchange objective has never been quite fulfilled until to-
day, since tool vendors often make quite a bad job when creating XMI files,
with insufficient compliance to the XMI standard. In this respect, Papyrus Papyrus

stores

models in

XMI

format

is very good, since the models you create with this tool are already stored
in XMI format: just open the *.uml file of a Papyrus project in the Eclipse
workspace with an editor, and you will see the XMI representation of the
model.

2.2 Some Basic Information About

UML Profiles

You may recall that the SysML is a profile of the UML. Intuitively speaking,
this means that SysML introduces new language elements by explaining their
meaning using UML. As a consequence, a new UML profile never extends
the expressive power of the UML, but specialises it and extends its syntax,
to facilitate modelling for certain application domains.

6

A thorough explanation of the profile mechanism is given in [3, 12.3] and
[1, 15]. We will describe here only the few details that are important to
understand the XMI file structure for representing SysML models.

The main mechanism for creating new language elements in a profile Stereotypes

and explaining them by means of UML is the creation of stereotypes. A
stereotype is a type2 of UML language elements extending the UML language
element type Class. Since it’s a class, stereotypes have names, attributes and
operations that are specific to the new type of language elements they create.
Moreover, each stereotype has a reference to the UML language element type
it specialises.

For example, a SysML requirement is a stereotype named �Requirement� Example:

�Requirement�which is again a subclass of the SysML stereotype �AbstractRequirement�

(since each stereotype is a Class, it can also be a sub-class of another
stereotype). The �AbstractRequirement� has attributes id, text, derived,
satisfiedBy, . . . , that we know from working with requirements in the
Papyrus turn indication model. Moreover, the �AbstractRequirement� spe-
cialises the more general UML language element type NamedElement, so it
has a name, an associated namespace (for referencing the requirement by
name), and a visibility (public, private, . . .). You can gather this informa-
tion from the SysML standard [4, 16.3.2].

I hope that you can see from this example that the expressiveness of the
UML has not been extended (or otherwise changed) by introducing these
stereotypes. We have just introduced a special kind of NamedElement, so
that all instances of this special NamedElement have attributes id, text etc.

As another example, consider the most widely used SysML stereotype Example

�Block��Block�. As one can see from the SysML standard, a block refers to Class

itself as the UML language element to specialise. This means, that a block
is just a UML class with a name that engineers like better.3

2a so-called meta-type
3Engineers want block diagrams, not class diagrams. The latter term sounds too much

like software, and software is for sissies. Real engineers deal with HW, and SW is consid-
ered as a minor detail they will take care of during the weekend. By the way: real engineers
will become extinct by the end of this decade: already today, the software development
and verification/validation for complex cyber-physical systems requires more effort than
the hardware development.

7

2.3 Basic Structure of XMI Files

With the explanations of the previous sections in mind, the following choice
for the main structure of SysML model serialisation files using XMI is not
surprising.

XML document node. Each XMI file starts with an XML node declaring XML dec-

laration

node

that the file is an XML file:

1 <?xml version="1.0" encoding="UTF -8"?>

XML Top-level node. The XML declaration node is followed by an XMI XMI

top-level

node

declaration node, stating that everything inside this node is XMI, and not
any other XML information. The whole model consists of subordinate nodes
located inside the XMI declaration node.

1 <xmi:XMI xmi:version="20131001" . . . >

2 . . . the proper model -related contents comes here . . .

3 </xmi:XMI >

Namespace declarations. The inner XML nodes containing model in- XML

namespacesformation represent all language element instances4 used in the model. The
language elements come from the proper UML or from the SysML profile or
from the so-called StandardProfile5 and, potentially, further profiles. We will
see in the next paragraph, that every language element instance used in the
model is represented as an XML node having

• a general element classification as node name,

• the language element type as XMI type name, and

• either uml or the profile name as the name of the node namespace.

The namespaces used (i.e. uml and the profile names) are introduced in the
xmi:XMI top-level node introduced above and specified like

1 <xmi:XMI xmi:version="20131001"

2 xmlns:xmi="http ://www.omg.org/spec/XMI /20131001"

3 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

4 xmlns:Blocks="http :// www.eclipse.org/papyrus/sysml /1.6/ SysML/Blocks"

4instances of Blocks, requirements, state machines, associations, . . .
5see https://www.omg.org/spec/UML/About-UML/

8

https://www.omg.org/spec/UML/About-UML/

5 xmlns:PortsAndFlows="http ://www.eclipse.org/papyrus/sysml /1.6/ SysML/

PortsAndFlows" xmlns:Requirements="http ://www.eclipse.org/papyrus/sysml

/1.6/ SysML/Requirements"

6 xmlns:ecore="http ://www.eclipse.org/emf /2002/ Ecore"

7 xmlns:standard="http ://www.eclipse.org/uml2 /5.0.0/ UML/Profile/Standard"

8 xmlns:uml="http ://www.eclipse.org/uml2 /5.0.0/ UML"

9 xsi:schemaLocation="http ://www.eclipse.org/papyrus/sysml /1.6/ SysML/Blocks

http ://www.eclipse.org/papyrus/sysml /1.6/ SysML #// blocks http :// www.eclipse

.org/papyrus/sysml /1.6/ SysML/PortsAndFlows http :// www.eclipse.org/papyrus/

sysml /1.6/ SysML #// portsandflows http ://www.eclipse.org/papyrus/sysml /1.6/

SysML/Requirements http ://www.eclipse.org/papyrus/sysml /1.6/ SysML #//

requirements">

In this example taken from our turn indication model, each entry like
xmlns:Blocks introduces a new namespace: keyword xmlns stands for XML
namespace, and the namespace name to be introduced is given after the
colon. The example above introduces the XML namespaces xmi, xsi,

Blocks, PortsAndFlows, Requirements, ecore, standard, uml. As we
can see from this example, the whole SysML is structured into several names-
paces, whereas all UML language elements belong to the same (very large)
namespace uml.

The UML model section. The whole model is structured into

• the proper UML model section containing only language element in-
stances of the UML itself, and

• the profile-specific language element instances appended to UML part.

The UML model part is encapsulated in an XMI node like

1 <uml:Model xmi:id="_bS -eEIL_EeqQ7ILEbQ0thw" name="TurnIndicationJP">

2 . . . the UML model part without profile -specific elements . . .

3 </uml:Model >

You see that Model is a UML language element6 which has a name (in
this example, it’s TurnIndicationJP) and a unique identification which is
marked by xmi:id and uniquely identifies each model element in the given
XMI file. The model node is terminated by </uml:Model>.

The XMI node entries like xmi:id and name are called node attributes7,
and the concept for adding information to nodes by means of these attributes
comes from the XML. We will, however, talk only about XMI nodes in the
remainder of these lecture notes, since – apart from the first node stating

6In fact, it’s a special type of UML Package.
7not to be confused with the attributes of a class that we will introduce below

9

that the file is an XML document – there are only UML-specific and profile-
specific XMI nodes to consider.

Before going into the details what is inside the model node, we will first
discuss the profile-specific model elements appended to the model node. This
is because some UML language element instances inside the model node are
only there since they are needed to represent the detailed information about
the profile language element instance.

Profile-specific model elements. The profile-specific model elements are
appended to the model node in arbitrary order. As first example, we consider Blocks

a language element instance of a block. For example, the block representing
the RearController is specified by the XMI node

1 <Blocks:Block xmi:id="_qbUxwJNcEeqNGJG7YISZag"

2 base_Class="_qbS8kJNcEeqNGJG7YISZag"/>

Oops, there’s not much information provided: we just see that the model
element is a Block and has an id. But, as explained above, a block is
nothing but a UML class. Therefore, we can expect that inside the UML-
specific model part, there is some Class instance containing all the details
of the block under consideration. And this is of course the case: the block
attribute base Class refers to a class instance in the UML model by means
of the unique model element identification _qbS8kJNcEeqNGJG7YISZag.

UML model elements in the model section. Under this identifi-
cation, we find a Class instance in the UML mode section specified as
shown in Listing 2.1. To decode the type, first note that the node name
is packagedElement: no namespace indication, no mentioning about classes.

• The namespace uml is not mentioned for nodes inside the uml:Model

node.

• The node name ‘packagedElement’ is an attribute of the UML model
element Package, because the UML class we wish to investigate re-
sides inside a package. Every model element inside this package is
represented by a packagedElement node inside the package node.
Model elements that may be placed into a package must be of type
PackageableElement. This is a very general class of language el-
ements, and the UML Class element is of course a sub-class of
PackageableElement.

10

Listing 2.1: UML class information for SysML block RearConttroller.
1 <packagedElement xmi:type="uml:Class" xmi:id="_qbS8kJNcEeqNGJG7YISZag" name=

"RearController">

2 <ownedAttribute xmi:type="uml:Port" xmi:id="_JlGDIJN -EeqNGJG7YISZag"

3 name="LeverPositionIN" type="_TbLCoI03Eeq_BtA7y9KmTw"

4 aggregation="composite" isConjugated="true"/>

5 <ownedAttribute xmi:type="uml:Port" xmi:id="_WR8wQJN -EeqNGJG7YISZag"

6 name="EmerSwitchPressedIN"

7 aggregation="composite" isConjugated="true">

8 <type xmi:type="uml:DataType"

9 href="pathmap :// SysML16_LIBRARIES /... _Boolean"/>

10 </ownedAttribute >

11 . . . further ports . . .

12 <ownedAttribute xmi:type="uml:Property" xmi:id="_gA_EEJ6EEeqfg"

13 name="candriver"

14 type="_Sl814J0REeqVNdKVvHl0_A" aggregation="shared"

15 association="_gA5kgJ6EEeqfg -0 S5eTmFw"/>

16 <ownedAttribute xmi:type="uml:Property" xmi:id="_jYl5Ep6EEeqfg"

17 name="controllogic"

18 type="_Wf6mgJ0QEeqVNdKVvHl0_A" aggregation="shared"

19 association="_jYlSAJ6EEeqfg -0 S5eTmFw"/>

20 <ownedAttribute xmi:type="uml:Property" xmi:id="_mtXcg56EEe"

21 name="lampCtrlSlaveR"

22 type="_wQXSsJhjEeqIY5MUq7ZxfQ" aggregation="shared"

23 association="_mtXcgJ6EEeqfg -0 S5eTmFw"/>

24 <ownedAttribute xmi:type="uml:Property" xmi:id="_xNqyg56EEeq"

25 name="lampCtrlSlaveL"

26 type="_wQXSsJhjEeqIY5MUq7ZxfQ" aggregation="shared"

27 association="_xNqygJ6EEeqfg -0 S5eTmFw"/>

28 <ownedAttribute xmi:type="uml:Property" xmi:id="_4IyxkJ6EE"

29 name="pinProgR"

30 type="_5XibsJjpEeqpEYL2Okl47g" aggregation="shared"

31 association="_4IyKgJ6EEeqfg -0 S5eTmFw"/>

32 <ownedAttribute xmi:type="uml:Property" xmi:id="_93Tzkp6EEe"

33 name="pinProgL"

34 type="_5XibsJjpEeqpEYL2Okl47g" aggregation="shared"

35 association="_93TMgJ6EEeqfg -0 S5eTmFw"/>

36 <ownedAttribute xmi:type="uml:Property" xmi:id="_EAXcg56FEeqfg"

37 name="pwrRightLamp"

38 type="_E5MCwJhiEeqIY5MUq7ZxfQ" aggregation="shared"

39 association="_EAXcgJ6FEeqfg -0 S5eTmFw"/>

40 <ownedAttribute xmi:type="uml:Property" xmi:id="_JBIAo56FEeqfg"

41 name="pwrLeftLamp"

42 type="_E5MCwJhiEeqIY5MUq7ZxfQ" aggregation="shared"

43 association="_JBIAoJ6FEeqfg -0 S5eTmFw"/>

44 </packagedElement >

You can see in Listing 2.1, that the rear controller’s concrete type Class

has been specified in the XMI node attribute xmi:type which is always
used to specify the concrete type of language elements which are only de-
scribed as a PackageableElement instances in the node name. As a class,

11

the rear controller has attributes that are wrapped into XMI nodes named
ownedAttribute. Each attribute is an instance of a language element type, Port

attributeand the latter is specified in the xmi:type node attribute. Since types may
come from UML, SysML or other profiles, the type specification is associated
with a name space. For example, the first attribute is of UML type port,
and the port is named LeverPositionIN. Now we remember that ports are
typed, and therefore, a type reference is found under node attribute type.
Please note the subtle difference:

• The language element type (in this example, a UML port) is specified
in node attribute xmi:type, whereas

• the type of the specific language element instance (in this example, a
UML port instance) is specified in the type attribute, that is, without
the xmi prefix.

The type is referenced again by an xmi:id (_TbLCoI03Eeq_BtA7y9KmTw
in our case), so we look up the type definition in the UML model part. In-
deed, we find a node with this id and the following information specified in
Listing 2.2. It is easy to decipher that LeverPositionIN is a UML enumer-
ation type which has enumeration literals NEUTRAL, LEFT, and RIGHT. The
specification XMI node associates an integer constant with each enumer-
ation literal, to look this up, we have to follow another xmi:id reference.

Listing 2.2: UML specification of enumeration type LeverPosition.
1 <packagedElement xmi:type="uml:Enumeration" xmi:id="_TbLCoI03Eeq_BtA7y9KmTw"

2 name="LeverPosition">

3 <ownedLiteral xmi:type="uml:EnumerationLiteral"

4 xmi:id="_byq5EI03Eeq_BtA7y9KmTw" name="NEUTRAL">

5 <specification xmi:type="uml:LiteralInteger" xmi:id="..."/>

6 </ownedLiteral >

7 <ownedLiteral xmi:type="uml:EnumerationLiteral"

8 xmi:id="_f_8KwI03Eeq_BtA7y9KmTw" name="LEFT">

9 <specification xmi:type="uml:LiteralInteger" xmi:id="..."/>

10 </ownedLiteral >

11 <ownedLiteral xmi:type="uml:EnumerationLiteral"

12 xmi:id="_iwwskI03Eeq_BtA7y9KmTw" name="RIGHT">

13 <specification xmi:type="uml:LiteralInteger" xmi:id="..."/>

14 </ownedLiteral >

15 </packagedElement >

12

Back and forth between UML model and profile part This example Further

references

from the

profile

part

of the port attribute for a class has already shown the basic mechanisms of
XMI files: model elements are identified by XMI node names and additional
type information, and further associated information is retrieved via xmi:id

references. There is, however, one more problem to keep in mind: the UML
model elements found in the UML model part of the XMI file, may again
be referenced by other profile element instances. For example, the port at-
tribute associated with class RearController may be a full port in SysML, and
therefore also referenced by the profile section attached to the model sec-
tion in the XMI file. Indeed, this is the case for the port LeverPositionIN

discussed above: In the profile section of the XMI file, we find an XMI node

1 <PortsAndFlows:FullPort xmi:id="_JlH4UJN -EeqNGJG7YISZag"

2 base_Port="_JlGDIJN -EeqNGJG7YISZag"/>

which is a FullPort and references our UML port LeverPositionIN in its
base Port attribute. This is a bit cumbersome: When tracing a SysML
block back to a UML class and analysing the class attributes, then we have
to check whether the class attributes are themselves referenced from other
profile-specific model elements. For example, the class RearController dis-
cussed above also has a part attribute candriver. This is typed by the
UML class CANdriver which can be found in the UML model section under
id _Sl814J0REeqVNdKVvHl0_A. Class CANdriver, however, is associated with
a SysML block specified in the profile section of the XMI file:

1 <Blocks:Block xmi:id="_Sl -rEJ0REeqVNdKVvHl0_A"

2 base_Class="_Sl814J0REeqVNdKVvHl0_A"/>

Unfortunately, we have to accept the XMI file structure as it is, so we
cannot do anything about being forced to continuously go back and forth
between the UML-specific and the profile-specific part. We note, however,
that for the evaluation of XMI files in a program, a map from xmi:id to XMI
nodes will be extremely helpful.

13

Chapter 3

The Libxml2 Library

The Libxml2 library1 has been developed for parsing and changing XML
documents from C or C++ programs. It is a very well-established library
which has been quite stable for years. The basic idea of the library is to
create an abstract syntax tree (ADT) from an XML document and provide
ADT traversal operations, operations for reading XML node content, and for
changing node content.

3.1 Installation

We do not need the source code of the Libxml2 library, precompiled binaries
plus header files are ok. Installation details can be found in http://xmlsoft.

org/downloads.html for all platforms.

3.2 Documentation

Though we will introduce the most important Libxml2 functions here in the
lecture notes, it is advisable to look up the original documentation every now
and then. We will mostly use the so-called Tree-API which is documented
in http://xmlsoft.org/html/libxml-tree.html.

1http://xmlsoft.org

14

http://xmlsoft.org/downloads.html
http://xmlsoft.org/downloads.html
http://xmlsoft.org/html/libxml-tree.html
http://xmlsoft.org

3.3 Creating Executables Using Libxml2

C-programs using the Libxml2 API need to include two files:

1 #include <libxml/xmlmemory.h>

2 #include <libxml/parser.h>

If you are working with a software development IDE, you should be able
to configure your project in such a way that Libxml2 is always linked to your
software code, and that the header files are available in the include path.
The initial code for the model checker to be completed in the exercise below
consists of the files

XmiUtils.c

XmiUtils.h

checker.c

checker.h

list.h

main.c

On my Mac OSX platform, the executable can be generated by the com-
mand

cc -o xmichecker \

-I./ -I/usr/local/opt/libxml2/include/libxml2 \

*.c -lxml2

• cc is the C-compiler invocation command. On my platform, it is linked
to clang, on Linux, it will typically be linked to gcc, or you have to
give the gcc command instead of cc.

• The -o xmichecker option says that the executable program should
be named xmichecker.

• -I./ tells the compiler to look for include files in the local directory
(where the files listed above are located and where you give the cc

command).

• The -I/usr/local/opt/libxml2/include/libxml2 tells the compiler
to look also in this directory for further include files. This is the location
on my computer where the Libxml2 header files are located. On your

15

computer, a prefix of this path needs to be exchanged, depending on
where your library header files have been installed.

Please observe that the Libxml2 include files are always referenced with
root directory libxml, so your include path must be structured in a way
that the header file can be found in the path’s sub-directory libxml.
For example, header file parser.h resides in

/usr/local/opt/libxml2/include/libxml2/libxml

on my computer. Therefore, I use the path prefix

/usr/local/opt/libxml2/include/libxml2

in the -I include option.

• *.c tells the compiler to compile all C-files in the working directory.

• -lxml2 tells the linker to bind the Libxml2 to the other object files
when creating the executable.

On Windows platforms, the compile and link command looks different,
but I expect that you will use an IDE anyway. Note, however, that you can
also compile and link your programs using explicit command in the Windows
command shell.

16

Chapter 4

Static SysML Model Checking

Using Libxml2, we can build simple checkers for the static model semantics.
To this end, a coding framework has been provided with this session in archive
file XMI-tools.zip. This framework contains the files

XmiUtils.c

XmiUtils.h

checker.c

checker.h

list.h

main.c

mentioned above.

Main program main.c This file contains the main function of the pro-
gram. It opens the XMI file using an auxiliary function from XmiUtils.c,
creates the mapping from xmi:id to Libxml2 nodes of the AST, and calls the
model checking functions one by one. As a first exercise, you are asked to
program the checking algorithm for requirements, as specified in Exercise 5.1
in checking function checkRequirements().

Checker library checker.c This file contains all the checking functions
for the static model semantics. At present, it only contains the code frame
for function checkRequirements().

17

Utility library XmiUtils.c This library has been created to facilitate
basic search functions for model checking. The library function interfaces
are specified in XmiUtils.h, but some basic explanations are given here in
the lecture notes.

openModel() opens the specified file, checks whether it is a true XMI docu-
ment, and returns a pointer to the AST created by the Libxml2 while
parsing the document.

setupIdMap() traverses the complete AST and creates a list mapping xmi:id
to the corresponding nodes in the AST.

findNodeById() returns a pointer to the AST node associated with a given
xmi:id. This function is needed in many different situation. We have
discussed, for example, how to find the class associated with a given
SysML requirement by looking up the XMI node with xmi:id specified
in the requirement’s attribute base Class.

findNodesByNsNodeName() This is the first library function having a list
of nodes as search result. Given a namespace name and an XMI
node name (like Block or nestedClassifier), the function collects all
matching AST nodes in a list which is internally created and managed
inside the XmiUtils library. Users provide a pointer to a list handle
which will be written to by this function when the list has been created
and is used for list identification for all subsequent operations on the
list. Moreover, the function returns an iterator that can be used to
retrieve the list elements one by one.

nextSearchResult() This function takes the list handle and an iterator as
input and returns a pointer to the next AST node retrieved from the
list. If the list has been completely traversed, NULL is returned.

newIterator() If a search result list hast to be traversed several times, for
example, in nested loops, additional iterators can be created by means
of function newIterator.

The code frame for function checkAtomicRequirements() shows how
these library functions are applied.

18

List handling header file list.h The Linux kernel has a very elegant con-
cept for generic list handling in the C programming language. The associated
macros are contained in list.h and are re-used here. I have encapsulated
most of the list handling in the list access functions contained in XmiUtils.c.
However, if you are interested in how generic list handling works with the C
programming language, please consult Appendix A. This knowledge is also
required if you wish to understand the details of the XmiUtils library and
desire to make additions to this library.

19

Chapter 5

Questions and Exercises

5.1 Check Atomic and Non-Atomic

Requirements

Please extend the sample code of the xmlchecker handed out with these
lecture notes and complete function checkAtomicRequirements() by pro-
gramming the following checks:

1. Every requirement in the model which has been marked as atomic by
setting the class attribute isLeaf to text string true, is free of any
nested classifiers.

2. Every requirement in the model which has been marked as non-atomic
by setting the class attribute isLeaf to text string false, or by leav-
ing out this attribute1, has at least one nested classifier which is a
requirement.

If an erroneous requirement has been detected, print out

• Requirements id,

• Requirements text,

• Error message

to the console (just use printf for this).

1The attribute has default value false, so it’s not necessary to state this explicitly.

20

Bibliography

[1] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML, Third Edition: The Systems Modeling Language. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2014.

[2] Object Management Group. XML Metadata Interchange (XMI) Specifi-
cation, Version 2.5.1. Technical report, Object Management Group, 2015.
http://www.omg.org/spec/XMI/2.5.1.

[3] Object Management Group. OMG Unified Modeling Language (OMG
UML), version 2.5.1. Technical report, OMG, 2017.

[4] Object Management Group. OMG Systems Modeling Language (OMG
SysML), Version 1.6. Technical report, Object Management Group, 2019.
http://www.omg.org/spec/SysML/1.4.

21

http://www.omg.org/spec/XMI/2.5.1
http://www.omg.org/spec/SysML/1.4

Appendix A

List Handling

The Linux list package re-used here for the XMI-tools is designed as follows.
As a first step, a doubly-linked ring list, whose elements do not contain The

list head

structure

any user data is introduced using the following structure.

1 struct list_head {

2 struct list_head* next;

3 struct list_head* prev;

4 };

An abstract list data type (still without user data) is built with this structure List

handling

macros

as follows.

1. An empty list myList is created by defining a list head and initialising
it with a macro from list.h:

struct list head myList = LIST HEAD INIT(myList);

The initialisation macro lets the next pointer and the prev pointer
point to list head itself, so empty lists are represented by list heads
whose predecessors and successors are again the list head.

2. New list elements are also created by allocating new instances of
struct list head, typically using dynamic memory allocation. The
new elements (let’s say that elemPtr points to the allocated in-
stance) are inserted at the end of the list using the macro call
list add(&myList,elemPtr);. To this end, the macro performs the
following asssignments.

1 elemPtr ->next = &myList;

2 // Let successor of elem point to list head

3 elemPtr ->prev = myList.prev;

22

4 // Let predecessor of elem point to the old last element

5 myList.prev ->next = elemPtr;

6 // The old last element gets elem as its successor

7 myList.prev = elemPtr;

8 // The list head’s predecessor points to elem

The effect of these assignments is that *elemPtr is the new last element
of the list.

3. To traverse a list, recall that the list head does not represent a list ele-
ment, but is used to present the empty list by pointing to itself. There-
fore, list traversal starts at the successor of the list head (in our example
here, at struct list head* p = myList.next and stops when the ac-
tual element pointer p points to the list head. As a consequence, list
traversal is realised by the following loop.

1 struct list_head* p;

2 for (p = myList.next; p != &myList; p = p->next) {

3 ...

4 }

Traversal from last element to first element is performed by a loop of
the form

1 for (p = myList.prev; p != &myList; p = p->prev) {

2 ...

3 }

4. When deleting elements during list traversal, it must be ensured that
the pointer to the current element is updated accordingly. To this end,
the macro list_rm_loopsafe() is used:

1 struct list_head* p;

2 for (p = myList.next; p != &myList; p = p->next) {

3 if (...) {

4 list_rm_loopsafe(p);

5 }

6 }

For creating lists with user data, a structure containg the user data and Create

lists with

user data

a component of type struct list head is created. For example, the meta
classes of the UML are represented in a structure (see file utils.h)

1 typedef struct ClassSpec {

2 /** Element id specified for type in XMI file */

3 char* id;

4 char* pathPrefix;

23

5 char* packagename;

6 char* classname;

7 ...

8 /** List of ClassSpec_t entries */

9 struct list_head h;

10 } ClassSpec_t;

The start of the list is again represented by a variable of type struct

list head. For example, the list of all UML meta classes has list head
definition and initialisation

1 struct list_head allClassesHead=LIST_HEAD_INIT(allClassesHead);

Now suppose that ClassSpec t* cls is a pointer to a user data instance
specifying a new meta class. This instance is inserted into the list of meta
classes by using the list add() macro introduced above as follows:

1 list_add (& allClassesHead ,&cls ->h);

When traversing a list with user data, this is again performed by travers- Retrieve

user data

during list

traversal

ing the struct list head instances. To access the user data of the list
element, however, the pointer to the start of the element has to be recon-
structed from the pointer to list head element. This is done by means of the
container of() macro which in turn uses the offsetof() macro specified
as follows:

1 /**

2 * The following auxiliary macro returns the address offset of a

3 * structure component within the structure. It is evaluated during

4 * compilation time , never at runtime , so NULL -pointer dereferentiation

5 * is "harmless ". Some compilers have this macro as built -in function.

6 */

7 #define offsetof(TYPE , MEMBER) ((unsigned int) &((TYPE *)0)->MEMBER)

8

9 /**

10 * container_of - cast a member of a structure out to the

11 * containing structure

12 * @param ptr: the pointer to the member.

13 * @param type: the type of the container struct this

14 * is embedded in.

15 * @param member: the name of the member within the struct.

16 *

17 */

18

19 #define container_of(ptr , type , member) \

20 ((type *)((char *)ptr - offsetof(type ,member)))

With these macros at hand, list traversal with user data is performed as
follows. Again, we use the list of all UML meta classes as an example.

24

1 struct list_head* lh;

2 for (lh = allClassesHead.next;

3 lh != &allClassesHead;

4 lh = lh->next) {

5 // Get pointer to start of user data

6 // which has type ClassSpec_t

7 ClassSpec_t* cls = container_of(lh, ClassSpec_t , h);

8 ... process cls ...

9 }

25

	Preface
	SysML Model Representation in XMI Format
	The XMI Format
	Some Basic Information About UML Profiles
	Basic Structure of XMI Files

	The Libxml2 Library
	Installation
	Documentation
	Creating Executables Using Libxml2

	Static SysML Model Checking
	Questions and Exercises
	Check Atomic and Non-Atomic Requirements

	List Handling

