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Chapter 1

Preface

In this document, the material for Session 7 of the course Specification
of Embedded Systems is provided. This session introduces the topic of
automated code generation from SysML models. You will learn how
to write your own code generator for producing C-code which runs in a given
domain framework.

This document is structured as follows. Overview

• In Section 2, the utilisation of domain frameworks for code generation
is described. We introduce the special framework to be used in this
lecture. The general structure of the code generator is explained.

• In Section 3, we describe how to create C++ class types from composite
(block) types in the SysML model.

• In Section 4, the generation of code for executing SysML state machines
is explained.

• As usual, these lecture notes end with questions and exercises in Sec-
tion 5.

A sample code generator program using the Libxml2 for evaluating XMI-
files is provided for this session. Moreover, the files of the domain framework
are provided as well. The domain framework has to be compiled and linked
together withe the generated code. Please download this material for pro-
gramming the solutions for the exercises.
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Chapter 2

Domain Frameworks for Code
Generation

2.1 Domain Frameworks

Code generation from models is most efficient, when performed for a well-
defined application domain and associated well-defined target platform with
HW components, operating system, and software libraries. It is obvious that
model-based code generation will not comprise every software component
running on the target platform:

• If a software component (say, a library like the LIBC or the JDK, an
operating system, or a device driver) already exists, why should you
create a model for this component and re-generate the code from the
model?

• Some types of software are not well-suited for being modelled in SysML:
for example, graphical user interfaces are typically created according
to the virtual prototyping paradigm, using GUI wizards.

As a consequence, model-based code generation usually produces the core
applications, while service software (GUI, libraries, database software, com-
munication software, . . . ) and operating system are integrated with the gen-
erated code in a second step. The service and operating system components
typically represent a reusable collection of code applied for a whole family of
products. Therefore, this collection is called the domain framework.
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Since we only have PCs or laptops available to run the turn indication Our

domain

framework

controller, our domain framework consists of

1. Windows, Linux, or MacOS operating system

2. UDP/IP communication library

3. A small library to exchange data between global variables (representing
connectors between ports) and the UDP/IP communication library.

2.2 Designing the Domain Framework

It is efficient to design a code generator with a specific domain framework in
mind [2]. The design process for the framework proceeds along the following
steps.

1. Identify network connections. In a distributed system, the con-
trollers involved may communicate over different networks and associ-
ated protocols, like

• Ethernet with TCP/IP

• Ethernet with UDP/IP

• CAN

• FlexRay (used in the automotive domain, see https://en.

wikipedia.org/wiki/FlexRay)

• AFDX (Avionic Full Duplex Switched Ethernet; this is used
today for inter-controller communication in civil aircrafts,
see https://en.wikipedia.org/wiki/Avionics_Full-Duplex_

Switched_Ethernet).

The connectors in the model connecting ports to be deployed in HW
need to be associated with the network/communication drivers to be
used.

In our turn indication controller example, we will only use UDP/IP.

2. Identify HW interfaces to peripherals. Peripheral elements in the
operational environment of the target system will not always have bus
interfaces: they are often controlled or monitored using discrete I/O
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or analogue I/O. There is a general trend, however, to turn peripheral
devices into more intelligent “systems on a chip” which have similar
interfaces as the controllers themselves.

For example, the smoke detectors in an Airbus A350 aircraft commu-
nicate with the smoke detection controllers via CAN, and the fasten
seatbelt signs, reading lights and many other peripheral devices in the
passenger cabin are controlled by means of an Ethernet-based network.

For the turn indication controller, we will also use UDP/IP to realise the
interfaces from/to the peripherals lamps, dashboard, turn indication
lever, ignition key, battery voltage indication, emergency switch.

3. Identify operating system. Controllers for highly safety-critical
tasks typically run on bare metal: this means, that powering the sys-
tem just activates a main program which performs all duties of interface
management and task scheduling.1 For control systems of medium and
low criticality, multi tasking operating systems are used, since they al-
low for the utilisation of simpler application programming paradigms.

In our example, you will use your Windows or Linux or MacOS as
operating system, whatever runs on your PC or laptop.

4. Identify SW processes. Processes run in their own address space
and have their own resources. This has the advantage, that errors
produced in one process cannot affect other processes.

For our example, all software designated to run on one controller will
be executed in the same main process. As a consequence, we do not
rely on any scheduling capabilities of the underlying operating system.
We just expect Windows, Linux, MacOS to start the main program
on a CPU core and leave it there. Apart from that, we only need the
UDP/IP communication stack provided by the operating system.

5. Identify threads. As an alternative to processes, classifier behaviours
can run as threads inside a common main process providing the context.
Threads can interact with each other more easily (and much faster) via
shared variables, but they can also affect each other in unpredictable
ways when addresses are miscalculated.

1You can learn how to do this in my lecture on Real-Time Operating Systems Devel-
opment.
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For the turn indication controller, we will use simple C++ methods
as threads running inside each controller’s only main process. Recall
that all classifier behaviours are represented as state machines in this
course, so threads are C++ methods executing SysML state machines
in a transition-by-transition manner.

6. Identify inter-process communication mechanisms. For embed-
ded systems in general, we distinguish between inter-process com-
munication and intra-process communication. The former pro-
vides mechanisms to exchange data between separate processes, such
as shared memory, message queues, shared files, and sockets. The lat-
ter provides mechanisms to exchange data between threads running
in the same process context, such as shared variables, and local (and,
therefore, faster) message queues.

For the turn indication controller, we will use the UDP/IP protocol
with sockets for inter-process communication and shared variables for
intra-process communication.

7. Identify scheduler. Depending on the underlying operating system,
several scheduling strategies are available.2 For embedded control sys-
tems, the main characteristics of schedulers should be

• low latency – the task to be scheduled next should get the CPU
with the shortest possible delay, and

• high-precision periodic task activation – tasks that should run
every k ms should get the CPU periodically at the designated
point in time with minimal jitter and without any drift.

For the turn indication controller, each process should get the CPU and
keep it permanently until the system is shut down. By using multi-core
PCs and a cooperative scheduling strategy with high priority, this can
be achieved very nicely in Linux, in Windows and MacOS it is more
difficult to ensure that a runnable process is never de-scheduled.

Threads will be scheduled as method calls from the main process to
the C++ objects executing classifier behaviour.

2Linux, for example, provides the Completely Fair Scheduler for normal application
scheduling, and a round-robin scheduler, as well as a cooperative scheduler with static
priorities for soft real-time applications.
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2.3 Designing the Code Generator

With the framework-related design decisions at hand, the code generator
design can proceed along the following steps.

1. Identify HW components. Which parts of the model should be
realised in HW? How are the blocks from which these parts are instan-
tiated identified? Recall that the model also contains parts belonging
to the context, i.e. to the operational environment of the target sys-
tem to be developed. It is therefore useful to identify a sub-model by
its root, so that “everything underneath the root” should be deployed
somewhere in the target system, and therefore has to be processed by
the code generator, as long as the part has to be realised in software.
A suitable root could be

(a) a package inside the model,

(b) a block inside the model representing the complete target system,

(c) a model element decorated with a new stereotype, such as
�TargetSystem �3.

In our turn indication controller example, the parts to be realised in
HW are identified by being

• parts of block TurnIndicationController4, and

• typed by blocks possessing full ports (i.e. “real” HW interfaces).

This means that we prefer variant (b) for identifying the target system,
and, consequently, our code generated main interface is specified as

1 extern void generateCode(xmlChar* rootBlockName);

We expect that the target system’s root block has a unique name; if this
assumption would not be fulfilled, we would use the qualified name
of the root block, like

1 TurnIndicationJP :: turnindicationsystem :: TurnIndicationController

3This, however, would mean that the code generator relies on a profile extension of the
SysML, where this stereotype has been introduced.

4These parts are F:FrontController, DL:DoorController, DR:DoorController,
R:RearController.
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The qualified name consists of model name, package path, and block
name; each element separated by C++-style double colons.

The generateCode() function calls auxiliary function

1 static void findMainParts(searchResult_t mainPartsList ,

2 xmlNodePtr rootBlock);

for looking up the parts underneath the root block that correspond
to HW components. It gets the handle of an empty list as input
and the XMI node representing the root from where to look up the
main parts. It looks for parts that are children of the rootBlock, are
typed as classes, and which possess full ports. These parts are en-
tered into the list to be processed further by the caller. The caller
(i.e. generateCode()) then invokes function

1 static void createMainProg(xmlNodePtr part);

for each part of this list, and the latter function will create the associ-
ated main programs.

When trying out the generated code, we could distribute the software
on several PCs, each representing one controller. Alternatively, we can
run everything on one PC without changing the software structure:
since we are choosing UDP/IP for inter-controller communication, the
distribution of software on hardware can be changed just by modifying
IP addresses and UDP ports.

2. Translate primitive types. There are only a few primitive types
pre-specified in UML/SysML (Integer, Boolean, . . . ). Therefore, we
insert C-style type declarations into a designated header file called
projectTypes.hpp, using an auxiliary function

1 static void createPrimitiveTypes(void);

The type declaration introducing Integer, for example, looks like

1 typedef int Integer;

3. Translate enumeration types. For enumerations, the code genera-
tor uses auxiliary function

1 static void createEnums(void);
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As you can see when studying the code generator, file codegen.c, this
function creates a list of all XMI nodes typed as uml:Enumeration;
these nodes are used in the XMI file for starting new enumeration type
declarations. For each of these nodes, the function traverses the sub-
nodes to find nodes named ownedLiteral. These specify the names of
an enum literal in node attribute name.

The generated enumeration type declarations are also inserted into file
projectTypes.hpp and look, for example, like

1 typedef enum {

2 NEUTRAL ,

3 LEFT ,

4 RIGHT

5 } LeverPosition_t;

Observe that function createEnums() does not evaluate the No

specific

int-values

for enum

literals

specification nodes which may reside underneath ownedLiteral

nodes: there, it is possible to specify specific integer values to be as-
sociated with each literal. We did not use this feature in our models,
so the first literal defined is always associated with integer value 0, the
second with 1, and so on, as in the default case for enum declarations
in the C programming language.

Further observe that all our type names (also value types and blocks No

specific

name

spaces

(i.e. class types)) carry unique names, so that we do not have to con-
sider different name spaces during code generation. Of course, for an
industrial-strength code generator, the consideration of name spaces is
mandatory, but it is quite cumbersome to implement and requires to
add many lines of code5 to the generator that do not really help for
increasing the general understanding of code generation.

4. Translate value types. Value types specified in the model are also
inserted into file projectTypes.hpp by the code generator, which uses
function

1 static void createValueTypes(void)

for this purpose. The function first collects all value types (these are
variants of blocks in the SysML profile) in a list. For each value type,
the function looks up its associated UML base DataType which also

5You can believe me, we are doing this in our company, and it’s quite a big chunk of
extra work.
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contains the name of the value type/UML data type. In the program-
ming language, we wish to associate the value type name with its defin-
ing type. This is stored in the generalization node underneath each
uml:DataType node. The value types we have specified in the turn in-
dication model are all generalised as integers, so the generated C/C++

type declarations look like like
1 typedef Integer BatteryVoltage;

2 typedef Integer Duration;

3 typedef Integer LampCurrent;

5. Translation of aggregated types. More complex types are repre-
sented in SysML by blocks and their UML counterpart classes. This
is the most complex aspect of type generation and is discussed in the
separate Section 3.

6. Translate ports and connectors. In our SysML model, ports of
parts are connected by UML Connectors. We do not use additional
item flows, though they would be practical to indicate the direction of
the data flow. Instead, the flow direction is implicitly determined as
follows:

• The state machine performing assignments to the port in an
opaque behaviour (this may also occur in an operation called by
the state machine) acts as writer (or source or sender) to the con-
nector.

• The state machine reading from its port in an opaque expression
(guard condition or right-hand side of an opaque assignment) acts
as reader (or target or receiver).

Since we adhere to the rule that at most one write is performed to a port
in one transition step (run-to-completion), we can represent connectors
as global variables, and the state machine writing to the port performs
assignments to the variable, and the state machine reading from its
port performs variable reads in the generated code.

7. Translate behaviour. Since classifier behaviour is represented by
SysML state machines and block operations in our model, the code
generator needs to transform state machines into C++ code. This is the
most complex part of the generation and is explained in the separate
Section 4.
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Chapter 3

Generation of Block/Class
Types

This section is new in Issue 2.

In SysML, aggregated types are created using blocks or interface blocks.
Note that these blocks may be distributed over all packages of the model;
there is not restriction that they should be declared underneath the root
block from where code is generated. Therefore, the generateCode() func-
tion collects all blocks and interface blocks declared anywhere in the model,
identifies the associated UML base class declarations and calls function

1 static void createClassDeclaration(xmlNodePtr theClass)

for each of these base classes, with the XMI node representing the class as
input.

Function createClassDeclaration starts with a check whether the class Skip

existing

project

types

has already been declared in projectTypes.hpp:
1 if ( nameListContains(projectTypesList , className) ) return;

The type declarations contained there are collected in the list
projectTypesList, and need not be re-declared as class types. This hap-
pens when (interface) blocks are typed by a single value property which is
a of primitive type or enumeration type. In this case, the type is already
contained in projectTypes.hpp and does not need to be re-declared.

Next, it is checked whether the class under consideration has a parent Lookup

parent

classes

and ports

class. In our models, we have applied the restriction that ports should be
declared already on the level of the parent class, so they have to be looked
up at the parent.
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1 xmlChar* parentClassName;

2 xmlNodePtr parentClassNode;

3 int hasGeneralisation = findGeneralisation(theClass ,

4 &parentClassName ,

5 &parentClassNode);

6

7 int numberOfPorts = 0;

8 searchResult_t portList;

9 iterator_t portIte;

10 ...

11 createNodeList (& portList);

12 portIte = getMyPorts(portList ,

13 (( hasGeneralisation) ? parentClassNode : theClass),

14 &numberOfPorts);

To this end, function findGeneralisation() looks up whether a parent
exists. If this is the case, 1 is returned, and class name and xml node pointer
of the parent class are written to the out parameters parentClassName,

parentClassNode (lines 1—5). Then the list of all ports declared for the
class or the parent, respectively, written by function getMyPorts() to a new
node list portList (lines 11—14).

The next step is to create a C++ header file for the class to be declared. Create

header fileIt gets the same file name as the class, with extension .hpp. The classes will
be represented by header files only, with method code inserted to the header
file. Therefore, no implementation files (.cpp-files) need to be created.

Since classes may need other types, the following include directives are Insert

include

directives

written to the header file.

• The projectTypes.hpp file with the primitive types, value types, and
enumeration types.

• If a parent class exists, the header file of the parent class.

• The header files of aggregated port types, if they are not already in-
cluded by the parent.

• The header files of class types associated with parts or other aggregated
properties whose type is not already contained in projecktTypes.hpp.

Next, the proper class declaration starts. We use the C/C++ keyword Class dec-

larationstruct instead of class to start this declaration, since struct-classes have
all their attributes, constructors, and operations declared as public by de-
fault, and this is what we prefer for generated code: The private keyword
helps during software development to avoid unwanted access to attributes
and methods that might be subject to change later on. In our context, there
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is no manual software development, the code is generated directly from the
model, so there is no reason for hiding anything to anybody.

For every generated class, the following principle is applied regarding
ports and their connectors created when instantiating the block as a part.
and connectors. Port and

connector

represen-

tation

principle

1. The outer class interface ports (CANin, BatVolIN, CurrentOUT,

PinProgram in Fig. 3.1) modelled on the boundary of the block/class
need to be bound by references to variables of the surrounding con-
text. If the surrounding context is a main program (this is the case for
parts that are instances of the DoorController in Fig. 3.1), the main
program needs to declare global variables storing the port data.

2. Now consider inner ports of parts inside the class under consideration
that are not connected to a boundary port, but are linked by inner
connectors of the surrounding class. These inner ports are bound by
reference to class attributes representing the inner connectors (ports
switchIn and switchOut and the associated connector in Fig. 3.1).

Figure 3.1: Internal block diagram of the door controller.
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Therefore, the code generator for a class needs to declare all its inner Declare

inner

connectors

connectors as attributes. This is done by means of a call to

1 static void declareInnerConnectors(xmlNodePtr theClass)

This function traverses the nodes of all children underneath XMI node
theClass. For each connector found (connectors reside in XML nodes with
node name ownedConnector), it is checked whether it is an inner connector.
This is the case when both connector ends have attribute partWithPort de-
fined. If one connector end does not associate a partWithPort, then the port
linked to this connector end is a boundary port. The type of the connector
attribute is the type of any of its attached ports. The ports at both ends
must have the same type. For the example of class DoorController shown
in Fig. 3.1, just one connector attribute has to be declared:

1 // Declarations of inner connectors

2 Boolean Connector9;

From the model you can see that this is the inner connector linking ports
switchIn and switchOut.

If the class has its own ports, we declare the interface ports (CANin, Declare

portsBatVolIN, CurrentOUT, PinProgram in Fig. 3.1) of the class as C++ ref-
erences. When the class is instantiated, the concrete variables (connector
attributes or global variables) of the context instantiating the class need to
be provided as constructor parameters, so that the reference variables can be
immediately bound to the variable addresses. For the example from Fig. 3.1,
the generated port declarations in header file DoorController.hpp looks like
this:

1 // Port declarations

2 FlashCmdMsg& CANin;

3 LampCurrent& CurrentOUT;

4 LeverPosition& PinProgram;

5 BatteryVoltage& BatVolIN;

These declarations are done by function

1 static void declarePorts(searchResult_t portList)

which runs through the list of all ports of the class, gets their name and type1

and writes the declaration in the format shown above.
Now the part declarations and other property declarations are performed Declare

parts and

other

properties

using function

1We have auxiliary function static xmlChar* extractTypeFromNode(xmlNodePtr

theNode) for this purpose.
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1 static void declareParts(xmlNodePtr theClass)

The parts and properties are found in the XMI file as children of the class
under consideration. The XMI nodes are named ownedAttribute, and their
xmi:type is uml:Property. Their property type is extracted again using
function extractTypeFromNode().

Parts and value properties are represented as “normal” class attributes.
For example, the part declarations of class DoorController look like this.

1 // Part declarations

2 PowerSource powersource;

3 LampControlSlave lampcontrolslave;

The most “tricky” part during class generation is the creation of the Constructor

Declarationconstructor. This is because

• the constructor needs a parameter list of variables to be bound by
reference to the ports of the class,

• the constructor has to call the constructor of a parent class if it exists,
and

• the constructor needs to initialise all parts, supplying the variable ad-
dresses to be associated with the outer ports of each part.

For class DoorController, the generated constructor looks like this.

1 DoorController(FlashCmdMsg& CANin ,

2 LampCurrent& CurrentOUT ,

3 LeverPosition& PinProgram ,

4 BatteryVoltage& BatVolIN) :

5 CANin(CANin),

6 CurrentOUT(CurrentOUT),

7 PinProgram(PinProgram),

8 BatVolIN(BatVolIN),

9 powersource(CurrentOUT ,Connector9 ,BatVolIN),

10 lampcontrolslave(Connector9 ,CANin ,PinProgram)

11 { }

Each instance of the DoorController gets the variable references for storing
the port data as parameters in the constructor invocation (CANin, ...,

BatVolIN). In the first four initialisations following the colon ‘:’, the variable
addresses are written to the reference variable used as ports. Do not be
confused by both parameter and port names being the same: for example,
in initialisation expression CANin(CANin), the first CANin denotes the class
attribute (i.e. the port reference) to be initialised, and the second (CANin)

is the first call parameter used in the constructor.
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After the four port initialisations, the part initialisations follow, using the
part names and providing their constructor parameters:

1 powersource(CurrentOUT ,Connector9 ,BatVolIN),

2 lampcontrolslave(Connector9 ,CANin ,PinProgram)

You can see from Fig. 3.1 that ports of part powersource are initialised as
follows.

• Port powersource.currentOut gets the address of port variable
DoorController.CurrentOUT.

• Port powersource.switchIn gets the address of inner connector at-
tribute DoorController.Connector9.

• Port powersource.BatVolIN gets the address of port variable
DoorController.batVolIN.

To see that this matches properly, you can check the constructor of the part’s
class, PowerSource:

1 PowerSource(LampCurrent& currentOut ,

2 Boolean& switchIn ,

3 BatteryVoltage& BatVolIN) :

4 currentOut(currentOut),

5 switchIn(switchIn),

6 BatVolIN(BatVolIN)

7 { }

The constructor declaration is performed by function

1 static void declareConstructor(searchResult_t portList ,

2 int hasGeneralisation ,

3 int numberOfPorts ,

4 xmlNodePtr theClass ,

5 xmlChar* className ,

6 xmlChar* parentClassName)

19



Furthermore, consider how the main programs initialise the instances with Part

instantia-

tion in the

main

program

full ports. We show this using the example of the left door controller instance
DL : DoorController which is created by main program DL/DL.cpp.

1 #include "projectTypes.hpp"

2 #include "DoorController.hpp"

3

4 FlashCmdMsg CANin;

5 LampCurrent CurrentOUT;

6 LeverPosition PinProgram;

7 BatteryVoltage BatVolIN;

8

9 int main(int argc , const char * argv []) {

10

11 DoorController DL(CANin ,CurrentOUT ,PinProgram ,BatVolIN);

12 ...

13 }

You can see that the main program provides the global variables
CANin,...,BatVolIN to the constructor of the DoorController instance
DL, where they are linked to the ports of the instance by means of the con-
structor, as explained above.

20



Chapter 4

Code and Data Generation for
SysML State Machines

– This section is new in Issue 3 —

Among the various possibilities to specified classifier behaviour in UML,
state machines are the most important ones [3, 14.2.1], as discussed in this
course.

4.1 Scheduling Strategy

Before creating a code generator, it has to be decided how conceptually con-
current behaviour should be realised in the target environment. UML/SysML
allows for modelling concurrent behaviour by

• specifying activities with concurrent threads represented in so-called
swim lanes (not covered by this course),

• specifying state machines with concurrent regions, and

• interpreting classifier behaviour executed by different blocks to be con-
current.

For the context of this course, we assume that our target platforms are
simple single-core one-board controllers and systems on a chip, where appli-
cations can only be scheduled in round-robin fashion according to the concept
of cooperative multi tasking: applications need to return from operation
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execution, in order to give way to the next application to run for a certain
number of processing steps.

This serialised behaviour is enforced by our code generator through the
creation of main programs executing all state machines deployed is one-by-
one fashion in a non-terminating main loop. To be more detailed, the main
loop (see Listing 4.1 for an example) commands the deployed part to perform
a processing step, and the deployed part then passes this command on to all
of its sub-parts with own classifier behaviour, see Listing 4.2 for an example.

Each state machine in turn just checks whether it can perform one run to
completion: from the actual simple state the SM resides in1, it is checked
whether one of the outgoing transitions may be triggered. If this is the
case, the resulting compound transition is executed, potentially transiting
across several pseudo states and leaving/entering different regions until a
simple state is reached. Our code generator encapsulates this behaviour in
so-called step functions that are defined for each state and each region and
execute at most one compound transition. After that the operation returns,
so that the next state machine can execute within the main-loop cycle.

Listing 4.1: Main-loop of the generated main-function for part R of type
RearController.

1 while (1) {

2 commandReceptionR;

3 R.step();

4 dataTransmissionR;

5 }

1For concurrent state machines, the SM can reside in several simple states simultane-
ously, then each of these states are checked for possible transitions.
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Listing 4.2: Invocation of step functions for parts of class RearController.
1 struct RearController

2 {

3 ...

4 // Part declarations

5 CANdriverSM candriver;

6 ControlLogicSM controllogic;

7 LampControlSlaveSM lampCtrlSlaveR;

8 LampControlSlaveSM lampCtrlSlaveL;

9 PowerSourceCtrlSM pwrRightLamp;

10 PowerSourceCtrlSM pwrLeftLamp;

11 PinProgramBlockLeft pinprogramblockleft;

12 PinProgramBlockRight pinprogramblockright;

13 ...

14 void step() {

15 candriver.step();

16 controllogic.step();

17 lampCtrlSlaveR.step();

18 lampCtrlSlaveL.step();

19 pwrRightLamp.step();

20 pwrLeftLamp.step();

21 pinprogramblockleft.step();

22 pinprogramblockright.step();

23 }

24 ...

25 };

4.2 Finding Blocks With Classifier Behaviour

Before generating code for state machines, it is necessary to know from where
to invoke this code. To this end, we need to find blocks whose UML base
classes

1. are declared as active by setting class attribute isActive to true,

2. are associated with ta classifier behaviour by setting class attribute
classifierBehavior to the xmi:id of the state machine modelling this
behaviour, and

3. have an owned behaviour with xmi:type="StateMachine", whose
xmi:id equals the one specified in the classifier behaviour.

We exploit these facts is a “reversed” fashion:

• First we look for any state machine in the model, and then
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• we look for the class possessing this machine as classifier behaviour.

• The associated SysML-block is disregarded: all its behavioural details
are represented by its base class anyway.

UML/SysML allows for state machines being used to specify, for example, Restrictions

the behaviour associated with an operation or with an activity node. Such
state machines are disregarded by our generator. Our state machines, how-
ever, may posses hierarchic nodes or parallel regions containing subordinate
state machines.

4.3 State Machine Generator –

Software Structure

The overall structure of the state machine code generator is as follows.

Invocation of the SM Generator. State machine generation is in-
voked from the main function generateCode() of the code generator, as
shown in Listing 4.3. A loop over all state machines of the model is
performed (Ziele 5—7). For each machine, their SM generation function
createSmDeclaration(theSm) is invoked with the XMI-node representing
the SM as input.

Listing 4.3: Invocations of the state machine generator.
1 // C++ Class types derived from state machines

2 searchResult_t smList;

3 iterator_t smIte = findNodesByType (&smList , (xmlChar *)"uml:StateMachine");

4 xmlNodePtr theSm;

5 while ( (theSm = nextSearchResult(smList , smIte)) ) {

6 createSmDeclaration(theSm);

7 }

In the next paragraphs, the main steps performed by
createSmDeclaration(theSm) are explained.

Check for classifier behaviour. The state machine’s parent is checked,
whether it is a class which has the SM as classifier behaviour. If the SM is
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just a sub-machine to another state, it is simply skipped, since its code will
be generated together with the higher-level SM. All other state machine will
be reported by an error message, and they are also skipped by the SM code
generator.

SM class declaration. All remaining state machines have a parent class,
so they are declared as sub-classes of the parent.

Attributes. Three kinds of auxiliary attributes are declared by recursively
visiting (depth-first search) all XMI nodes below theSm and applying a func-
tion for producing declaration code. This is shown in Listing 4.4.

Listing 4.4: Declaration of auxiliary attributes by the SM code generator.
1 recursiveSubNodeActions(theSm ,createStateNumDeclaration);

2 recursiveSubNodeActions(theSm ,createEnterStateTimerDeclaration);

3 createNameList (& oldEventNameList);

4 recursiveSubNodeActions(theSm ,createChgCndStatusVar);

• The first kind of auxiliary attributes represents internal numbers for
simple states, one attribute per SM region.

• The second kind stores time stamps of the most recent entry of a (simple
or hierarchic) state. It is associated with a flag indicating whether an
associated time event has already occurred.

With respect to time events, we only allow one transition per state to be Restriction

triggered by a time event. This fits for many applications. However,
there are sophisticated cases where transitions with time events are
additionally guarded by conditions about data. Then it can be the
case that the transition whose time event occurs first cannot be taken,
because its guard condition evaluates to false. Then another timed
transition, whose time event elapses later could be taken. This situation
is not yet covered by the code generator.

• The third kind of attributes consists of Booleans stating whether the
last evaluation of a change condition resulted in true or false. One
attribute per change condition is introduced.
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In the next paragraphs, it will become clear how these attributes are used.
As an example, Listing 4.5 shows the attributes generated for state machine
ControlLogicSM in our turn indication model.

Listing 4.5: Resulting attribute declarations in generated file
ControlLogicSM.hpp.

1 ...

2 struct ControlLogicSM : public ControlLogic {

3 // State number attributes for each region used by the SM

4 size_t stateNumRegion1;

5 size_t stateNumRegion1LRFlashingLRFlashingRegion1;

6

7 // Last entry -to-state time stamps and "timer elapsed" flags

8 unsigned long long entryTimerEMERGENCY_FLASHING;

9 bool entryTimerEMERGENCY_FLASHINGElapsed;

10 unsigned long long entryTimerNO_FLASHING;

11 bool entryTimerNO_FLASHINGElapsed;

12 ...

13 // Last evaluation results for change conditions associated

14 // with change events

15 bool IgnOffEventOld;

16 bool EmerOnEventOld;

17 bool toLEventOld;

18 ...

Constructor declaration. Since our SMs implement owned behaviour of
some block/class, they are realised as C++ sub-classes, so that they auto-
matically find all symbols (attributes, operations) of the parent class in their
scope. The constructor of the parent class needs to be called, and the refer-
ences to ports need to be passed on to the paren. In the constructor body,
an initialisation function is called which activates the enter-region operations
for the top-level region(s), as described below.

Operations of the SM class – an overview. When implementing an SM
in C++ or some other programming languages, the following variants of class
operations are needed, since these are directly induced by the behavioural
semantics of UML/SysML state machines, as explained in this course and
described in [1, 3].

Enter-region operations. The immediate sub-structure of a state machine
consists of one region for sequential state machines or several regions
in case of parallel state machines with so-called orthogonal states.
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Moreover, states associated with sub-machines realising do-actions are
associated with lower-level regions. When the SM starts to run, its ini-
tial region(s) to be entered have to be identified, and these regions need
to be entered by executing the chain of pseudo states from the initial
pseudo state to the first non-pseudo state. If the latter is a hierar-
chic state with associated sub-machine behaviour, then the underlying
behaviour needs to be activated as well. The

1 enter_ <region -name >()

methods are created by the code generator to initiate these initial steps
(more details about this below), and they are re-used during SM oper-
ation when one region is left and another is entered.

Enter-state operations. When a state which is not a pseudo state is en-
tered, its entry action has to be executed, and a do-action implemented
in a sub-machine might have to be entered, the latter also involving the
entry into another region. The

1 enter_ <state -name >()

methods are created by the code generator to manage the state entry
and the potential entry into a sub-machine with its regions.

Step operations for SMs. The main program described above activates
the “global” step operation of the part deployed by the main program.
The latter delegates this command to the step operations of the state
machines, as shown in Listing 4.2 above. These operations delegate
step processing to the SM’s top-level regions who in turn delegate the
processing step to sub-regions or to the current simple state the SM
resides in.

Step operations for regions. The step operations for regions operate ac-
cording to the following pattern:

• If a simple state inside the region is active (to this end, the current
state numbers are evaluated), the state’s step function is activated.

• If a state outside the region is active, the processing steps of the
existing sub-regions are activated.

In Listing 4.6, an example of a region step function is shown.
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Step operations for states. The step operation of a simple state checks
all transitions by calling their trigger-transition operations. As soon
as a transition could fire, the state’s step function terminates. The
trigger-transition operation determines the new state reached by the
compound transition. If no transition emanating from the simple state
could fire, it is checked whether a transition emanating from a higher-
level state could fire. This check is performed by calling a trigger-
transition operation for higher-level states.

There are no step functions for hierarchic states, since steps from these
are always incorporated in the simple states’ step function. More-
over, no step functions for pseudo-states exist, since these are only
visited during a run-to-completion, and no time passes while residing
in pseudo-states.

Listing 4.7 gives an example of a step function for a simple state which
includes the potential firing of higher-level transitions.

Trigger-transition operations. The trigger-transition operations follow
the naming schema

1 trigger <transition -name >()

For checking whether the transition can fire,

• the guard condition,

• a trigger defined by a signal event, or

• a trigger defined by a change event, or

• a trigger defined by a time event need to be evaluated.

If the transition can fire, the associated compound transition needs to
be executed, finally ending up in another simple state. This is the most
complex part of the generator, and it is described in more detail below.

Trigger-transition operations for higher-level transitions. The
trigger-transition function for a transition emanating from a higher-
level state depends on both the lower-level simple state and the
transition’s higher-level source state. The former dependency occurs
since the simple state’s exit action needs to be executed first before
leaving the higher-level state. Therefore, the naming schema for these
operations is
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1 trigger <transition -name >From <simple -state -name >()

This means that each sub-ordinate state requires a specific trigger-
transition function for each higher-level transition. Observe that there
can be several levels of hierarchic states above the simple state. Con-
sequently, several exit actions need to be executed, and it is non-trivial
to decide which regions are left and which are entered during the com-
pound transition. Therefore, this is also described in more detail below.

Listing 4.6: Generated step function of the top-level regionin SM
ControlLogicSM.

1 void step_Region1 () {

2 // Process state machine state from current state

3 switch(stateNumRegion1) {

4 case 10: step_EMERGENCY_FLASHING ();

5 break;

6 case 12: step_NO_FLASHING ();

7 break;

8 default:

9 // Actual active simple state must be in lower -level region

10 // underneath hierarchic state LRFlashing

11 step_Region1LRFlashingLRFlashingRegion1 ();

12 break;

13 }

14 }

Listing 4.7: Generated step function for simple state TipFlashingCompleted
in SM ControlLogicSM.LRFlashing.

1 bool step_TipFlashingCompleted () {

2 // Try stransitions emanating from this simple state

3 if ( triggerleverPositionNeutralTrans2 () ) return true;

4 if ( triggerignOffTransFromTipFlashingCompleted () ) return true;

5 // Try higher -level transitions

6 if ( triggeremerOverrideTransFromTipFlashingCompleted () ) return true;

7 if ( triggerLtoRchangeTransFromTipFlashingCompleted () ) return true;

8 if ( triggerRtoLchangeTransFromTipFlashingCompleted () ) return true;

9 return false;

10 }
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4.4 Generation of

Trigger-Transition Operations

4.4.1 Trigger Functions for Transitions Starting in
Simple States

The trigger-transition functions are generated by traversing again all sub-
nodes of the SM-node and calling the code generation function for transi-
tions which is called createTriggerTransFunction() (see Listing 4.8) and
takes an XMI transition node as input. Transitions emanating from pseudo-
states and transitions emanting from composite (e.g. hierarchic) states are
skipped by this function: only transitions starting from simple states are
processed. All pseudo states are “encountered” along the way while pro-
cessing the compound transition starting in this simple state. For tran-
sitions emanating from higher-level states, a separate generator function
createTriggerTransFunctionFromSimpleState() is called as described
below.

Listing 4.8: Generator for trigger-transition functions (transitions start in
simple state).

1 static void createTriggerTransFunction(xmlNodePtr trans) {

2 ... skip transitions that do not start from simple states ...

3

4 xmlChar* transName = getName(trans);

5 fprintf(currentClassHeaderFile ,"\n bool trigger%s() {\n",transName);

6 fprintf(currentClassHeaderFile ,"\tbool guard = true;\n");

7 xmlChar* guardCondition = getGuardCondition(trans);

8 if ( guardCondition ) {

9 fprintf(currentClassHeaderFile ,"\tguard = %s;\n",guardCondition);

10 }

11 handleTimeEvents(trans , source);

12 handleChangeEvents(trans ,source);

13 handleSignalEvents(trans ,source);

14 fprintf(currentClassHeaderFile ,"\treturn false;\n }\n");

15 }

The trigger-transition function is declared by the generator (line 5), and
then a Boolean variable guard is declared for carrying the valuation of the
guard condition associated with the transition. If a guard condition is miss-
ing in the model, this is interpreted as “the guard always evaluates to true”,
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so we initialise guard with true (lines 6). If an opaque expression has been
specified for the transition in the model, the code assigning this Boolean
expression to guard is generated (lines 7—10), so that “real” guard condi-
tions are evaluated and assigned to guard at runtime when the trigger-trans
function is called.

Having handled transition guards, the transition triggers need to be pro-
cessed. This is done in three sub-functions (line 11—13) for the trigger types

• time event,

• change event, and

• signal event.

For signal events, only atomic signals are permitted – signal parameters Restrictions

are not allowed. Moreover, we do not consider completion events which
are generated after entering a state and completing its entry action and
do activity (if any). Completion events trigger transitions without visible
triggers [3, 14.2.3.8.3].

To explain how the transition execution code is generated, we use function handleSignalEvents()

handleSignalEvents(trans,source) as an example (see Listing 4.9), the
other functions operate in a similar way.

Listing 4.9: Generator for transition execution code with signal triggers.
1 static void handleSignalEvents(xmlNodePtr trans , xmlNodePtr simpleSource) {

2 xmlNodePtr n;

3 for ( n = trans ->children; n; n = n->next ) {

4 ... skip all nodes that do not specify a signal event ...

5 xmlNodePtr signal = findNodeById(getAttr(event ,"signal"));

6 if ( ! signal ) continue;

7 xmlChar* signalName = getName(signal);

8 fprintf(currentClassHeaderFile ,

9 "\tif ( guard && (% sReception != %s) ) {\n",

10 signalName ,signalName);

11 fprintf(currentClassHeaderFile ,

12 "\t\t%sReception = %s;\n",

13 signalName ,signalName);

14 xmlNodePtr source = findNodeById(getAttr(trans ,"source"));

15 generateTransitionExecutionCode(trans ,source ,simpleSource ,0);

16 fprintf(currentClassHeaderFile ,"\t}\n");

17 }

18 }
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Function handleSignalEvents loops over all children of the transition
until it finds a signal event used by trans as trigger. The code generator
implements (atomic) signals as counters: Sending a new signal increments
the counter. The signal reception attributes of a receiving block in the model
are translated to int-counters with name

1 <signal -name >Reception

These are declared in the parent class representing the block whose clas-
sifier behaviour is given by the state machine currently generated. A new
signal event has occurred when the event number stored in the reception
counter differs from the signal counter. The if-condition evaluating both
the guard and the trigger is generated in lines 8—10. If the conjunction
of guard and trigger condition evaluates to true, the compound transi-
tion associated with trans has to be executed. This is done by function
generateTransitionExecutionCode() which we explain next.

The function uses 4 input parameters (see Listing 4.10): generate-

Transition-

ExecutionCode()
1. the transition whose execution code has to be generated,

2. the source state of the transition which may also be a compound state,

3. the simple state where the compound transition execution started, and

4. a flag indicating whether the region containing the simple state has
already been left.

The function starts by extracting the target state from the transition
(line 5). Then the least common ancestor (LCA) of source (the transi-
tion source) and target is determined (line 7): lca is the lowest compound
state in the state hierarchy containing both source and target. The LCA
is needed to determine which exit actions have to be performed.

• In the first call to generateTransitionExecutionCode() for a new
compound transition, code for the execution of all exit actions from
simpleStateSource and its ancestor states which are still below lca

needs to be generated.

• In consecutive recursive calls to generateTransitionExecutionCode()
for the same compound transition, source is a pseudo state and no
longer a parent of simpleStateSource. In that case, code for all exit
actions above source whose states are still below lca needs to be
generated.
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Listing 4.10: Generator for transition execution code.
1 static void generateTransitionExecutionCode(xmlNodePtr trans ,

2 xmlNodePtr source ,

3 xmlNodePtr simpleStateSource ,

4 int haveLeftSourceRegion) {

5 xmlNodePtr target = findNodeById(getAttr(trans , "target"));

6 if ( !target ) goto lastCmd;

7 xmlNodePtr lca = leastCommonAncestor(source ,target);

8 xmlNodePtr p = (isSubStateOf(simpleStateSource ,source) ?

9 simpleStateSource :

10 source);

11 for ( /* p initialised above */ ; p && p != lca; p = p->parent ) {

12 if ( ! isNodeType(p,"subvertex") ) continue;

13 xmlChar* exitAction = getExitAction(p);

14 if ( exitAction ) {

15 fprintf(currentClassHeaderFile ,"\t\t%s\n",exitAction);

16 }

17 }

18 xmlNodePtr sourceRegion = getRegion(simpleStateSource);

19 xmlNodePtr targetRegion = getRegion(target);

20 if ( sourceRegion != targetRegion && ! haveLeftSourceRegion ) {

21 haveLeftSourceRegion = 1;

22 fprintf(currentClassHeaderFile ,"\t\tstateNum%s = UNDEFINED_STATE ;\n",

23 fullRegionName(sourceRegion));

24 }

25 xmlChar* effect = getTransitionEffect(trans);

26 if ( effect ) {

27 fprintf(currentClassHeaderFile ,"\t\t%s\n",effect);

28 }

29 xmlChar* targetType = getXmiType(target);

30 if ( !targetType ) goto lastCmd;

31

32 if ( isXmiType(target ,"uml:Pseudostate") ) {

33 if ( isNodeType(target ,"connectionPoint") ) {

34 compositeTransFromConnectionPoint(target ,

35 simpleStateSource ,

36 haveLeftSourceRegion);

37 }

38 else {

39 compoundTransFromPseudoState(target ,

40 simpleStateSource ,

41 haveLeftSourceRegion);

42 }

43 }

44 else {

45 fprintf(currentClassHeaderFile ,"\t\tenter_%s();\n",getName(target));

46 }

47 lastCmd:

48 if ( isXmiType(source ,"uml:State") )

49 fprintf(currentClassHeaderFile ,"\t\treturn true;\n");

50 }

The distinction whether to start from the original simpleStateSource
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or from a pseudo-state source is made in line 8—10. The code for execut-
ing these exit actions is generated in lines 11—17 by copying the opaque
behaviour code of these actions into the transition execution code.

Next, it has to be decided whether trans leaves the region where
simpleSourceState resides in and enters another (line 18—24). To this
end, the regions of simpleSourceState and target are compared. If the
former region is left, its state number denoting the active simple state needs
to be set to ‘undefined’.

In line 25—28, the code for the transition effect is generated by copy-
ing the opaque behaviour specifying the transition effect into the transition
execution code.

The code generation for a compound transition needs to be continued if
the target state reached is a pseudo state or a connection point. This is han-
dled in line 32—43, where sub-functions are called (line 34 and 39), creating
code for the evaluation of guard conditions deciding which follow up transi-
tions can be taken from the pseudo state. Applying the depth-first search
principle, these sub-functions call generateTransitionExecutionCode()

again to create code for the transition execution of each transition leaving
the pseudo state or connection point.

If generateTransitionExecutionCode() reaches a “real” state of type
uml:State, the recursion ends by calling the enter-state function for target
(line 45). After that, the execution code for this compound transition has
been completely generated, and it returns true, because a compound tran-
sition has been taken.

4.4.2 Trigger Functions for Transitions Starting in
Composite States

This function createTriggerHigherLevelTransFunctionFromSimpleState()

generates code for executing transitions leaving a compound state,
with a specific simple state underneath. It operates in analogy to
createTriggerTransFunction().

As an example, we consider the generated code for a compound transi- Example 1

tion starting from lower-level state SendLRFlashCmd: let’s analyse the code
for handling the firing of higher-level transition emerOverrideTrans while
residing in that state, see Listing 4.11. No guard condition is specified for
transition emerOverrideTrans (please look this up in the model, state ma-
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chine diagram ControlLogic). Therefore, the guard variable is just set to
true in line 2 and not changed after that. For evaluating the occurrence of
the EmerOnEvent, the change condition EmerSwitchPressedINSW needs to
be evaluated. This is done in line 3. In line 4, the occurrence of the change
event is checked: The event occurs if

• the old value of the EmerOnEvent (i.e., the old value of
EmerSwitchPressedINSW) was false, and

• the new value is true.

If the event occurs the current region is left: this is recorded by setting
the state number variable to UNDEFINED in line 6. The transition’s target
state is again a simple state, so its enter-state function is called, and the
rigger-transition function returns with true. If the event did not occur, the
function returns with false.

In any case, the current status of the EmerOnEvent is recorded in
EmerOnEventOld (line 5 and 12).

Listing 4.11: Generated trigger-transition method for higher-level transition.
1 bool triggeremerOverrideTransFromSendLRFlashCmd () {

2 bool guard = true;

3 bool EmerOnEvent = (EmerSwitchPressedINSW);

4 if ( guard && (! EmerOnEventOld) && EmerOnEvent ) {

5 EmerOnEventOld = EmerOnEvent;

6 stateNumRegion1LRFlashingLRFlashingRegion1 = UNDEFINED_STATE;

7 if ( true ) {

8 enter_EMERGENCY_FLASHING ();

9 }

10 return true;

11 }

12 EmerOnEventOld = EmerOnEvent;

13 return false;

14 }

The following example shows the code for more complex com- Example 2

pound transition executions, see Listing 4.12. Consider transi-
tion leverPositionNeutralTrans2 emanating from simple state
TipFlashingCompleted.
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Listing 4.12: Generated trigger-transition method for compound transition.
1 bool triggerleverPositionNeutralTrans2 () {

2 bool guard = true;

3 bool leverToNeutralEvent = (LeverPositionINSW == NEUTRAL);

4 if ( guard && (! leverToNeutralEventOld) && leverToNeutralEvent ) {

5 leverToNeutralEventOld = leverToNeutralEvent;

6 stateNumRegion1LRFlashingLRFlashingRegion1 = UNDEFINED_STATE;

7 if ( EmerSwitchPressedINSW ) {

8 enter_EMERGENCY_FLASHING ();

9 }

10 else if ( ! EmerSwitchPressedINSW ) {

11 if ( ! IgnitionOnINSW ) {

12 enter_NO_FLASHING ();

13 }

14 else if ( IgnitionOnINSW ) {

15 if ( LeverPositionINSW == NEUTRAL ) {

16 enter_NO_FLASHING ();

17 }

18 else if ( LeverPositionINSW != NEUTRAL ) {

19 enter_LRFlashing ();

20 }

21 }

22 }

23 return true;

24 }

25 leverToNeutralEventOld = leverToNeutralEvent;

26 return false;

27 }

Again, the guard condition is just true. The trigger is given by another
change event with change condition (LeverPositionINSW == NEUTRAL). If
this change event occurs, the code in lines 5—23 is executed. The region is
left via pseudo state ExitLRFlashing. This cannot be seen in the code, since
this pseudo state is traversed without any visible effect (see model). Then
choice state ifEmerOn is reached, and the compound transition branches:

• If EmerSwitchPressedINSW, simple state EMERGENCY FLASHING is en-
tered (line 8).

• Otherwise we traverse further choice states, either entering simple state
NO FLASHING or entering hierarchic state LRFlashing. The latter case
cannot happen, since the compound transition was triggered by a
change event indicating that (LeverPositionINSW == NEUTRAL). The
new state number is set and the entry actions are performed for state
NO FLASHING by its enter-state function.
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Chapter 5

Questions and Exercises

5.1 Questions

5.1.1 Code Generation for a given Domain Framework

Give at least two reasons why it is more efficient to design a code generator
for a specific domain framework.

5.1.2 Programming Paradigms

Why do multi-tasking operating systems allow for simpler application pro-
gramming paradigms than bare metal programming?

5.1.3 Value Types

Consider the value types introduced in our model. All of them are basically
Integer types. Please explain the advantages of working with value types:
why don’t we simply use Integer instead?

5.1.4 Shared Variables for Ports and Connectors

In Section 3, it has been explained how shared variables or class attributes
are declared to store data passed accross ports and connectors. This implies
a restriction for the behavioural model parts. Which restriction is this? How
could we alternatively represent ports and connectors, so that this restriction
could be ignored?
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5.2 Exercises

5.2.1 Function createEnums()

Please study the code of function createEnums() in file codegen.c and insert
comments showing that you have understood what happens in this function.

Note. A typical exam question would be “Please go step-by-step through
this function of the code generator and explain what happens and why.”.

5.2.2 Lookup Function for Main Parts

Please study the code of function

1 static void findMainParts(searchResult_t mainPartsList ,

2 xmlNodePtr rootBlock);

in file codegen.c and insert comments showing that you have understood
what happens in this function.

5.2.3 Programming: Function getConnectorType()

Please study the code of functions createMainProgs() and
declareConnectors() and insert comments as in the exercises above.
The second function has the task to declare global variables corresponding
to connectors. These variables are inserted at the beginning of the main
program associated with each part to be realised in HW (fron controller, rear
controller, . . . ). The file writes are performed in declareConnectors(). In
order to declare the variable, however, the type associated with the ports
linked by the connector needs to be retrieved. This is done in auxiliary
function

1 static xmlChar* getConnectorType(xmlNodePtr connectorNode);

Please program the body of this function. You may assume that the ports at
both ends of a connector have the same type, so you only need to investigate
one port type.

5.2.4 Understanding Function declareConstructor()

Please study the code of function declareConstructor() and insert com-
ments so that you can explain what this function does for declaring a con-
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structor and why all these steps are necessary.

5.2.5 Programming: Find Node Containing Classifier
Behaviour

Some blocks own a classifier behaviour which is specified in our models by
means of state machines. Please write a C function which inputs an XML
node pointer to a SysML block and returns NULL if this block does not
have classifier behaviour. If the block is directly associated with a classifier
behaviour, an XML node pointer to the corresponding state machine should
be returned.
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