
Trends in Concurrency
Theory

The Tester’s Perspective
Jan Peleska

University of Bremen and Verified Systems International GmbH

peleska@uni-bremen.de

The 6th IFIP WG 1.8 Workshop on Trends in Concurrency Theory

September 9, 2017, Berlin, Germany

mailto:peleska@uni-bremen.de

New Age Concurrency?
• Several observations lead us to the conviction that “time is

right” to invest into changes of paradigm in the field of
concurrency and its semantic foundations

• Multi-core systems – the need for weak memory models

• E-commerce – new notions of distributed database
consistency

• Cyber-physical systems (CPS) – dynamic re-
configuration, adaptive, emergent properties,
collaborative, multi formalism development and V&V …

Three Topics to Address

• Multi-formalism support for CPS modelling and
verification

• Dynamicity – changing CPS configurations

• Evolving behaviour of CPS components

All this is presented from the perspective of model-based testing

Multi-formalism support
for CPS modelling and

verification

Problem Statement

• Different CPS components are developed and verified
with different formalisms

• This produces “local” verification results, presented in
different formalisms

• How can we assert the validity of the required emergent
properties of the CPS?

Two Approaches
• Application of the

• Theory of (Grothendiek) Institutions

• Unifying Theory of Programming (UTP)

to translate

• theories between different formalisms

• verification obligations and test cases

• verification results and test results

between different formalisms

Application scenario

• CPS consists of several components

• Some components are modelled by finite state
machines (FSMs)

• Other components are modelled by SysML state
machines with Kripke structure semantics

Application scenario – train onboard
speed control

Current
speed

Current
maximum

speed

Emergency
brake

Automated braking command

Onboard main controller

PLC brake controller

auto_on, auto_off

man_on, man_off

trigger, release

Train engine driver
brake command

Application scenario – train onboard speed control

Current
speed

Current
maximum

speed

Emergency
brake

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off/trigger

auto_on/trigger

auto_off/release

man_off,man_on/trigger

man_on, man_off

auto_on,
auto_off

trigger, release

Train engine driver
brake command

RELEASED auto_off,man_off/release

TRIGGERED

man_on/trigger

TRIGGERED_AUTO

auto_on/trigger

man_off/release

auto_off/trigger

auto_on/trigger

auto_off/release

man_off,man_on/trigger

• Discrete inputs

• Discrete internal state

• Discrete outputs

• Complete testing
strategies available

Brake controller

• Large input
domains –
speed

• Discrete internal
state

• Discrete outputs

Apply input
equivalence class
testing

Can we also
apply a complete
strategy?

TTT = Testing
Theory
Translation
using
institutions

Onboard main controller

Verification of emergent
properties

• Application scenario

Onboard controller has been verified and tested using SysML
models with Kripke semantics

PLC has been verified and tested using FSM models

Verification objective. System satisfies emergent property

EP. „As long as the speed is above emergency threshold,
the emergency brakes stay active and cannot be manually
released“

Technical side condition. EP shall be specified in CSP trace
logic

Verification of emergent
properties

• Problems to be solved

• EP can only be specified by referring to properties of both the
onboard main controller and the brake controller

• Properties related to brake controller are specified by FSM I/O
sequences x/y – e.g. via intersection with testing automaton

• Properties related to Onboard speed controller are specified
by, e.g. LTL formulas with shared I/O variables as free
symbols

• CSP trace logic formulas are specified over traces of events
and refusal sets

Linking Theories by UTP

Ana Cavalcanti, Wen-ling Huang, Jan Peleska, Jim Woodcock: 
CSP and Kripke Structures. ICTAC 2015: 505-523

Galois Connections

FSM

↵

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan
http://dblp.uni-trier.de/pers/hd/w/Woodcock:Jim
http://dblp.uni-trier.de/db/conf/ictac/ictac2015.html#CavalcantiHPW15

Dynamicity – changing
CPS configuration

Problem Statement

• CPS need cooperating components in dynamically
changing configurations

• Each component needs to be prepared to

• accept/set up/destroy new communication links
from/to other components entering/leaving the
configuration

• enter/leave the configuration itself (mobility)

Major Contributions

• pi-calculus for dynamic creation of channels

• Augmented CSP allowing to simulate Pi-calculus with
the means of a “conventional process algebra”

• Bigraphs for presenting both topography and
communication structure

pi-Calculus and CSP
• Milner’s pi-calculus

(⌫x)
�
xhzi.0 | x(y).yhxi.x(y).0

�
| z(v).vhvi.0

allows for dynamic channel creation and
communication of channel names

A.W.Roscoe: 
CSP is Expressive Enough for pi.
C.B.Jones et. al. (eds.), Reflections on the work
of C.A.R. Hoare, dog 10.1007/978-1-84882-912-1 16,
Springer 2010

• Roscoe showed that pi-calculus can be simulated by CSP
augmented with throw operator

P⇥AQ

pi-Calculus and CSP
• Milner’s pi-calculus

(⌫x)
�
xhzi.0 | x(y).yhxi.x(y).0

�
| z(v).vhvi.0

allows for dynamic channel creation and
communication of channel names

A.W.Roscoe: 
CSP is Expressive Enough for pi.
C.B.Jones et. al. (eds.), Reflections on the work
of C.A.R. Hoare, dog 10.1007/978-1-84882-912-1 16,
Springer 2010

• Roscoe showed that pi-calculus can be simulated by CSP
augmented with throw operator

P⇥AQ

As a consequence,
“conventional” model
checking (e.g. with FDR) can
be used to verify mobile
process systems

Bigraphs

• Bigraphs allow for representation of

• process topography

• communication topology

• dynamic changes of the former

Bigraphs

R. Milnor: 
Bigraphs as a Model for Mobile Interaction
A. Corradini et al. (Eds.): ICGT 2002, LNCS 2505,
pp. 8–13, Springer 2002.

How to Test Dynamic CPS
Configurations

• Some things are easier in testing than in general
verification

• Only safety properties matter

• Tests terminate after finite amount of time

• Finite variability of HW components implies that only a
finite number of configurations can be covered during
test execution

How to Test Dynamic CPS
Configurations

• Model a CPS configuration tree

• Construct equivalence classes for configuration changes

• Elaborate complete testing theory guaranteeing full fault
coverage with finitely many test cases, provided that

• equivalence classes are adequate

• CPS components do not have more state equivalence
classes than assumed

CPS (or SoS) configuration tree

[1.1] [1.2]

Pre-post-condition guarding
a configuration change

Evolving behaviour of
CPS components

Problem Statement
• CPS components act according to the rely-guarantee

paradigm

• The assumptions component C relies on may be
violated after some time, due to

• configuration changes

• evolving behaviour of other components

• C needs to adapt its behaviour to the new environment
conditions

What is to be Solved?

• Detection. Component needs to “understand” that its
assumptions no longer hold

• Change of belief. Component needs to update its
assumptions about the environment

• Adaptation. Component needs to “optimise” its
behaviour w.r.t. the new assumptions

Detection
• For regular safety properties, the detection problem is

completely solved

• Can be implemented efficiently for hard real-time
applications

Recall. A safety property

over atomic propositions AP is regular,

if its bad prefixes in (2

AP
)

⇤

form a regular language.

Detection
• Therefore, the bad prefix set can be represented by

accepting states of an FSM

• One more problem to solve. CPS component may not
know the trace of system observations from the start,
since it may join the configuration at a later state

• Use a homing algorithm to determine the FSM state
by a sequence of observations

• The detection problem is a passive testing problem

Detection – an Example
• Suppose, component C relies on the environment to fulfil

safety condition

� ⌘ s0 ^G
�
(s0 ^X(s1 ^ a)) _

(s1 ^X((s0 ^ b) _ (s2 ^ a))) _
(s2 ^X(s1 ^ b))

�

with internal state variable sj and assumption that a or b
must occur in every step

Example trace. a.b.a.a.b.a.b.b . . .

Detection – an Example
• Suppose, component C relies on the environment to fulfil

safety condition

� ⌘ s0 ^G
�
(s0 ^X(s1 ^ a)) _

(s1 ^X((s0 ^ b) _ (s2 ^ a))) _
(s2 ^X(s1 ^ b))

�

with internal state variable sj and assumption that a or b
must occur in every step

Example trace. a.b.a.a.b.a.b.b . . .

b follows a – at most
two more a’s than b’s

Example (continued). FSM modelling bad prefixes of the safety
condition

s0 s1 s2
a a

a

a, b

b

b b

Example (continued). FSM modelling bad prefixes of the safety
condition

s0 s1 s2
a a

a

a, b

b

b b

Can be generated, for
example with ltl2ba from

¬�

Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Initial checking state

Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Observation b

Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Observation b – post-state

Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Observation b.b

Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Observation b.b – post-state

Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Observation b.b.b – safety-violation

Change of Belief
• Different options with different complexity

• Assumptions are just “true” – components can adapt to
any environment behaviour (examples from control theory)

• Expected violations of assumptions – fault-tolerant
adaptation of behaviour under new, pre-defined
assumptions

• Unexpected violations of assumptions – new valid
assumptions need to be extracted from observations
(apply machine learning, construct temporal properties
reflecting environment behaviour)

Change of Belief
• Different options with different complexity

• Assumptions are just “true” – components can adapt to
any environment behaviour (examples from control theory)

• Expected violations of assumptions – fault-tolerant
adaptation of behaviour under new, pre-defined
assumptions

• Unexpected violations of assumptions – new valid
assumptions need to be extracted from observations
(apply machine learning, construct temporal properties
reflecting environment behaviour)

Can this be achieved in
hard real-time?

Adaptation
• Solved, as far as

• basic laws of control theory can be applied

• optimal behaviour can be specified as mathematical
boundary value problem or general optimisation
problem

• Can be modelled by Hybrid Automata, if discrete
changes between different control laws/optimisation
methods are required

Adaptation

• Open questions

• Q1. After change of belief system consisting of
(temporal) logic formulas: how can we defined the
optimal behaviour w.r.t. goals and belief system ?

• Q2. If such a temporal logic formula for optimal
behaviour could be found, could it become possible to
synthesise the new component behaviour on the fly in
hard real-time?

A Tentative Solution for Q1
• Specialised problem statement

• If, due to changes in the environment behaviour, a CPS component
can no longer fulfil its original guarantees, is there a possibility to
specify a graceful degradation of behaviour in a well-founded way?

• Suggestion from testing theory

• Classify component outputs according to criticality

• Identify outputs of “negligible” criticality

• Realise behaviour that is equivalent to the original specification,
with all outputs of negligible criticality identified

Conclusion
• We discussed 3 topics of new-age concurrency

• Multi-formalism support for CPS development and verification

• Modelling and testing of dynamically changing CPS
configurations

• Modelling and testing evolving behaviour of CPS

• We have seen that many “mechanisms” and approaches already
exist to tackle these challenges

• Do we need more –– a comprehensive new theory & formalism,
instead of a “bag of special solutions” ?

Further Reading
• About cyber-physical systems and mobile and channels

A.W. Roscoe. CSP is Expressive Enough for π. In C.B. Jones et al. (eds.),
Reflections on the Work of C.A.R. Hoare, DOI 10.1007/978-1-84882-912-1 16,
Springer, 2010.

Jim Woodcock, Andy Wellings, and Ana Cavalcanti. Mobile CSP.
In M. Cornelio and B. Roscoe (Eds.): SBMF 2015, LNCS 9526, pp. 39–55,
2016. DOI: 10.1007/978-3-319-29473-5 3, Springer, 2016.

• About testing and equivalence classes

Wen-ling Huang and Jan Peleska. Complete model-based equivalence class
testing for nondeterministic systems. DOI 10.1007/s00165-016-0402-2 BCS
© 2016 Formal Aspects of Computing (2017) 29: 335–364

Acknowledgements

I would like to thank Mohammad Reza Mousavi and all
organisers of the IFIP 1.8 workshop for the invitation to
present this keynote.

Special thanks go to Ana Cavalcanti and Jim Woodcock for
pointing out to me some crucial facts about mobile system
and their semantics.

The material about testing presented here is based on joint
work with Wen-ling Huang.

