
The Theory of Hybrid Automata�y

Thomas A. Henzingerz

Electrical Engineering and Computer Sciences

University of California at Berkeley

Abstract. A hybrid automaton is a formalmodel for a mixed discrete-continuous
system. We classify hybrid automata acoording to what questions about their
behavior can be answered algorithmically. The classi�cation reveals structure
on mixed discrete-continuous state spaces that was previously studied on purely
discrete state spaces only. In particular, various classes of hybrid automata in-
duce �nitary trace equivalence (or similarity, or bisimilarity) relations on an un-
countable state space, thus permitting the application of various model-checking
techniques that were originally developed for �nite-state systems.

1 Hybrid Automata

A hybrid system is a dynamical system with both discrete and continuous com-
ponents. For example, an automobile engine whose fuel injection (continuous)
is regulated by a microprocessor (discrete) is a hybrid system. As embedded
computing becomes ubiquitous, hybrid systems are increasingly employed in
safety-critical applications, thus making reliability a prime concern. Rigorous
reliabilty analysis requires formal modeling. For this purpose, the hybrid au-
tomaton has been proposed as a formal model for hybrid systems.

1.1 Syntax

A paradigmatic example of a mixed discrete-continuous system is a digital con-
troller of an analog plant. The discrete state of the controller is modeled by the

�This research was supported in part by the O�ce of Naval Research Young Investigator

award N00014-95-1-0520, by the National Science Foundation CAREER award CCR-9501708,
by the National Science Foundation grant CCR-9504469, by the Air Force O�ce of Scienti�c
Research contract F49620-93-1-0056, by the Army Research O�ce MURI grant DAAH-04-96-
1-0341, by the Advanced Research Projects Agency grant NAG2-892, and by the Semicon-
ductor Research Corporation contract 96-DC-324.036.

yA preliminary version of this paper appeared in the Proceedings of the 11th Annual IEEE

Symposium on Logic in Computer Science (LICS 96), pp. 278{292.
zEmail: tah@eecs.berkeley.edu.

1

vertices of a graph (control modes), and the discrete dynamics of the controller
is modeled by the edges of the graph (control switches). The continuous state of
the plant is modeled by points in Rn, and the continuous dynamics of the plant
is modeled by
ow conditions such as di�erential equations. The behavior of
the plant depends on the state of the controller: each control mode determines
a
ow condition, and each control switch may cause a discrete change in the
state of the plant, as determined by a jump condition. Dually, the behavior of
the controller depends on the state of the plant: each control mode continuously
observes an invariant condition of the plant state, and by violating the invariant
condition, a continuous change in the plant state will cause a control switch.

De�nition 1.1 [Hybrid automata] [5, 43, 3] A hybrid automaton H consists of
the following components.

Variables. A �nite set X = fx1; : : : ; xng of real-numbered variables. The
number n is called the dimension ofH. We write _X for the set f _x1; : : : ; _xng
of dotted variables (which represent �rst derivatives during continuous
change), and we write X0 for the set fx01; : : : ; x

0
n
g of primed variables

(which represent values at the conclusion of discrete change).

Control graph. A �nite directed multigraph (V;E). The vertices in V are
called control modes. The edges in E are called control switches.

Initial, invariant, and
ow conditions. Three vertex labeling functions init ,
inv , and
ow that assign to each control mode v 2 V three predicates.
Each initial condition init(v) is a predicate whose free variables are fromX.
Each invariant condition inv(v) is a predicate whose free variables are
from X. Each
ow condition
ow (v) is a predicate whose free variables
are from X [_X .

Jump conditions. An edge labeling function jump that assigns to each control
switch e 2 E a predicate. Each jump condition jump(e) is a predicate
whose free variables are from X [X 0.

Events. A �nite set � of events, and an edge labeling function event : E ! �
that assigns to each control switch an event. 2

Example 1.1 [Temperature control] The hybrid automaton of Figure 1 models
a thermostat. The variable x represents the temperature. In control mode O� ,
the heater is o�, and the temperature falls according to the
ow condition
_x = �0:1x. In control mode On, the heater is on, and the temperature rises
according to the
ow condition _x = 5 � 0:1x. Initially, the heater is o� and
the temperature is 20 degrees. According to the jump condition x < 19, the
heater may go on as soon as the temperature falls below 19 degrees. According
to the invariant condition x � 18, at the latest the heater will go on when the
temperature falls to 18 degrees. 2

2

x > 21

_x = �0:1x _x = 5� 0:1x

x � 18 x � 22

x = 20

O� On

x < 19

Figure 1: Thermostat automaton

1.2 Safe Semantics

The execution of a hybrid automaton results in continuous change (
ows) and
discrete change (jumps). The mixed discrete-continuous dynamics can be ab-
stracted by a fully discrete transition system.

De�nition 1.2 [Labeled transition systems] A labeled transition system S con-
sists of the following components.

State space. A (possibly in�nite) set Q of states, and a subset Q0 � Q of
initial states.

Transition relations. A (possibly in�nite) set A of labels, and for each label
a 2 A, a binary relation

a
! on the state space Q. Each triple q

a
!q0 is

called a transition.

A subset R � Q of the state space is called a region. Given a region R and
a label a 2 A, we write post

a
(R) = fq0 j 9q 2 R: q

a

!q0g for the region of a-
successors of R, and we write pre

a
(R) = fq j 9q0 2 R: q

a

!q0g for the region of
a-predecessors of R. 2

For a given hybrid automaton, we de�ne two labeled transition systems. Both
transition systems represent discrete jumps by transitions. The timed transition
system abstracts continuous
ows by transitions, retaining only information
about the source, the target, and the duration of each
ow. The time-abstract

transition system abstracts also the duration of
ows.

De�nition 1.3 [Transition semantics of hybrid automata] The timed transition
system St

H
of the hybrid automatonH is the labeled transition system with the

components Q, Q0, A, and
a

! for each a 2 A, de�ned as follows.

� De�ne Q;Q0 � V � Rn such that (v;x) 2 Q i� the closed predicate
inv (v)[X := x] is true, and (v;x) 2 Q0 i� both init(v)[X := x] and
inv (v)[X := x] are true. The set Q is called the state space of H, and the
subsets of Q are called H-regions.

� A = � [R�0.

3

� For each event � 2 �, de�ne (v;x)
�
!(v0;x0) i� there is a control switch

e 2 E such that (1) the source of e is v and the target of e is v0, (2) the
closed predicate jump(e)[X;X0 := x;x0] is true, and (3) event(e) = �.

� For each nonnegative real � 2 R�0, de�ne (v;x)
�

!(v0;x0) i� v = v0 and
there is a di�erentiable function f : [0; �] ! Rn, with the �rst derivative
_f : (0; �)! Rn, such that (1) f(0) = x and f(�) = x0, and (2) for all reals
" 2 (0; �), both inv(v)[X := f(")] and
ow (v)[X; _X := f("); _f (")] are
true. The function f is called a witness for the transition (v;x)

�
!(v0;x0).

The time-abstract transition system Sa
H

of H is the labeled transition system
with the components Q, Q0, B, and

b

! for each b 2 B, de�ned as follows.

� Q and Q0 are de�ned as above.

� B = � [f�g, for some event � 62 �.

� For each event � 2 �, de�ne
�

! as above.

� De�ne (v;x)
�

!(v0;x0) i� there is a nonnegative real � 2 R�0 such that
(v;x)

�

!(v0;x0).

The time-abstract transition system Sa
H

is called the time abstraction of the
timed transition system St

H
. 2

Remark. [De�nition 1.3] The state space Q and the timed label set A are
in�nite. The time-abstract label set B is �nite. For all states q of a hybrid
automaton, q

0
!q. Sequences of event transitions and time transitions with du-

ration (label) 0 are permitted, which generalizes the interleaving semantics for
discrete concurrent systems [7]. 2

Remark. [Time vs. phase view] The time-abstract transition system Sa
H
,

which projects away the time dimension, can be viewed as the phase portrait of
the timed transition system St

H
[25]. 2

Remark. [Time-silent transition semantics] None of the results presented in
this paper change if the � -transitions of time-abstract transition systems are
considered silent [30]. 2

1.3 Live Semantics

If we consider the in�nite behavior of a hybrid automaton, then we are interested
only in in�nite sequences of transitions which do not converge in time. The
divergence of time is a liveness assumption, and it is the only liveness assumption
we need to consider [24, 33]. A hybrid automaton is nonzeno if it cannot prevent
time from diverging. Clearly, only nonzeno designs of real-time systems can be
realized.

4

De�nition 1.4 [Live transition systems] Consider a labeled transition system
S and a state q0 of S. A q0-rooted trajectory of S is a �nite or in�nite sequence
of pairs hai; qiii�1 of labels ai 2 A and states qi 2 Q such that qi�1

ai!qi for all
i � 1. If q0 is an initial state of S, then hai; qiii�1 is an initialized trajectory
of S. A live transition system (S; L) is a pair consisting of a labeled transition
system S and a set L of in�nite initialized trajectories of S. The set L of in�nite
initialized trajectories ismachine-closed for S if every �nite initialized trajectory
of S is a pre�x of some trajectory in L.1 If (S; L) is a live transition system,
and hai; qiii�1 is either a �nite initialized trajectory of S or a trajectory in L,
then the corresponding sequence haiii�1 of labels is called a (�nite or in�nite)
trace of (S; L). 2

De�nition 1.5 [Trace semantics of hybrid automata] We associate with each
transition of the timed transition system St

H
a duration in R�0. For events

� 2 �, the duration of q
�
!q0 is 0. For reals � 2 R�0, the duration of q

�
!q0

is �. An in�nite trajectory hai; qiii�1 of the timed transition system St
H

di-
verges if the in�nite sum

P
i�1 �i diverges, where each �i is the duration of

the corresponding transition qi�1
ai!qi. An in�nite trajectory hbi; qiii�1 of the

time-abstract transition system Sa
H

diverges if there is a divergent trajectory
hai; qiii�1 of St

H
such that for all i � 1, either ai = bi or ai; bi 62 �. Let Lt

H
be

the set of divergent initialized trajectories of the timed transition system St
H
,

and let La
H
be set of divergent initialized trajectories of the time-abstract tran-

sition system Sa
H
. The hybrid automaton H is nonzeno if Lt

H
is machine-closed

for St
H

(or equivalently, La
H

is machine-closed for Sa
H
). Each trace of the live

transition system (St
H
; Lt

H
) is called a timed trace of H, and each trace of the

live transition system (Sa
H
; La

H
) is called a time-abstract trace of H. 2

Remark. [Traces vs. tubes] It may be argued that hybrid automata are un-
realistically expressive in that they can enforce or detect an event at a speci�c
real-numbered instance of time. Such instabilities can be avoided by interpret-
ing the possible behaviors of a hybrid automaton not as a collection of timed
traces but as a collection of timed tubes, which are bundles of almost identical
timed traces. The resulting theory of \fuzzy" hybrid automata does not di�er
signi�cantly from the results presented in this paper [22]. 2

1.4 Composition

For two hybrid automata H1 and H2, we de�ne the timed semantics and the
time-abstract semantics of the parallel composition H1kH2. The two hybrid
automataH1 and H2 interact via joint events: if event a is both an event of H1

and an event ofH2, then H1 andH2 must synchronize on a-transitions; if a is an
event of H1 but not an event of H2, then each a-transition of H1 synchronizes
with a 0-duration time transition of H2, and vice versa. For each real � > 0, a

1Assuming that every initial state of S has a successor state.

5

x = 1000

Past

x = 0exit

approach

�50 � _x � �30

x � �100

�50 � _x � �40

Far

x � 1000

Near

�50 � _x � �30

x � 0

x = �100 ! x :2 [1900; 4900]

x � 5000

Figure 2: Train automaton

time transition of H1 with duration � must synchronize with a time transition
of H2 with the same duration.

De�nition 1.6 [Product of transition systems] A consistency check for two
labeled transition systems S1 and S2 is an associative partial function
 on
pairs consisting of a transition from S1 and a transition from S2. The product
S1�S2 with respect to the consistency check
 is the labeled transition system
with the state space Q1 � Q2, the set Q0

1 � Q0
2 of initial states, the label set

range(
), and the following transition relations: for each label a 2 range(
),
de�ne (q1; q2)

a

!(q01; q
0
2) i� there is a label a1 2 A1 and a label a2 2 A2 such that

a is the (de�ned) result of applying
 to the two transitions q1
a1!q01 and q2

a2!q02.
2

De�nition 1.7 [Composition of hybrid automata] Consider two hybrid au-
tomata H1 and H2. A transition q1

a1!q01 of St
H1

and a transition q2
a2!q02 of

St
H2

are consistent if one of the following three conditions is true.

1. a1 = a2. In this case, the consistency check
= applied to the transitions
q1

a1!q01 and q2
a2!q02 yields a1.

2. a1 2 �1n�2 and a2 = 0. In this case, the consistency check
= yields a1.

3. a1 = 0 and a2 2 �2n�1. In this case, the consistency check
= yields a2.

The timed transition system St
H1kH2

is de�ned to be the product St
H1

� St
H2

with respect to the consistency check
=. The time-abstract transition system
Sa
H1kH2

is de�ned to be the time abstraction of St
H1kH2

. 2

Example 1.2 [Railroad gate control] The hybrid automaton of Figure 2 models
a train on a circular track with a gate. The variable x represents the distance
of the train from the gate. Initially, the speed of the train is between 40 and

6

approach

raisez := 0

exit

z := 0

approach

Idle

lower

_z = 1 ^ _u = 0

_z = 1 ^ _u = 0

z � uz � u

_z = 1 ^ _u = 0

exitexit

approach

Figure 3: Controller automaton

50 meters per second. At the distance of 1000 meters from the gate, the train
issues an approach event and may slow down to 30 meters per second. At the
distance of 100 meters past the gate, the train issues an exit event. The circular
track is between 2000 and 5000 meters long. We write jump conditions as
guarded commands, which allows us to suppress conjuncts of the form x0 = x.
In particular, the jump condition of the control switch from Near to Past is
x = 0 ^ x0 = x, and the jump condition from Past to Far is x = �100 ^ 1900 �
x0 � 4900. The hybrid automaton of Figure 3 models the gate controller.
The variable u is a symbolic constant that represents the reaction delay of the
controller. The variable z is a clock for measuring elapsed time. When an
approach event is received, the controller issues a lower event within u seconds,
and when an exit event is received, the controller issues a raise event within
u seconds. The hybrid automaton of Figure 4 models the gate. The variable
y represents the position of the gate in degrees. Initially, the gate is open
(y = 90). When a lower event is received, the gate starts closing at the rate of 9
degrees per second, and when a raise event is received, the gate starts opening
at the same rate. Which values of the symbolic constant u ensure that the
gate is fully closed (y = 0) whenever the train is within 10 meters of the gate
(�10 � x � 10)? 2

Remark. [Shared variables] The consistency check
= depends only on the
transition labels, and not on the source and target states of transitions. Alterna-
tive consistency checks can be used to model read-shared and even write-shared
variables of hybrid automata [9]. 2

Remark. [Time-abstract hybrid automata] The time-abstract transition sys-
tem Sa

H1kH2

is generally di�erent from the product Sa
H1

� Sa
H2

of the time-
abstract component systems. This is not the case for time-abstract hybrid au-

7

_y = 9 _y = 0

_y = �9

y � 90

y � 0

y = 90

y = 0

lower

raise

OpenMoveUp

MoveDown Closed

lower raise

raise

lower

raise

lower

_y = 0

y = 0

y = 90

Figure 4: Gate automaton

tomata [25]. Time-abstract design is desirable, because many useful properties
of time-abstract component systems are inherited by the compound system. 2

Remark. [Receptiveness] The composition of two nonzeno hybrid automata
is not necessarily nonzeno. It is an interesting modeling problem for real-time
systems to guarantee the liveness of compound designs [1, 21, 39, 8]. 2

2 On the Trace Languages of Hybrid Automata

We identify which requirements on the traces of a hybrid automaton can be
checked algorithmically, and which cannot.

2.1 Veri�cation Tasks

We study four paradigmatic questions about the traces of a hybrid automaton.
The reachability problem is a fundamental subtask for the veri�cation of safety
requirements, and the emptiness problem is a fundamental subtask for the ver-
i�cation of liveness requirements. The timed trace inclusion problem compares
the traces of a hybrid automaton against a timed speci�cation, and the time-
abstract trace inclusion problem compares the traces of a hybrid automaton
against a time-abstract speci�cation.

De�nition 2.1 [Reachability, emptiness, and trace inclusion] The reachability
problem for a class H of hybrid automata asks, given a hybrid automaton H

fromH and a control mode v of H, if there is an initialized trajectory of St
H
(or

equivalently,Sa
H
) that visits a state of the form (v;x). The emptiness problem for

H asks, given a hybrid automaton H from H, if there is a divergent initialized
trajectory of St

H
(or equivalently, Sa

H
). The (�nitary) timed trace inclusion

8

problem for H asks, given two hybrid automata H1 and H2 from H, if every
(�nite) timed trace of H1 is also a timed trace of H2. The (�nitary) time-
abstract trace inclusion problem for H asks, given two hybrid automata H1 and
H2 from H, if every (�nite) time-abstract trace of H1 is also a time-abstract
trace of H2. 2

Remark. [De�nition 2.1] Some of these problems are harder than others. In
particular, reachability can be reduced to �nitary time-abstract trace inclusion,
and emptiness can be reduced to time-abstract trace inclusion. Also, �nitary
trace inclusion can be reduced to trace inclusion. 2

2.2 Rectangular Automata

A hybrid automaton is rectangular if the
ow conditions are independent of the
control modes, and the variables are pairwise independent. Speci�cally, in each
control mode of a rectangular automaton, the �rst derivative of each variable is
given a range of possible values, and that range does not change with control
switches. With each control switch of a rectangular automaton, the value of
each variable is either left unchanged, or changed nondeterministically to a new
value within a given range of possibilities. The behaviors of the variables are
decoupled, because the ranges of possible values and derivative values for one
variable cannot depend on the value or derivative value of another variable.

De�nition 2.2 [Rectangular automata] [45, 32] A rectangle I =
Q

1�i�n Ii of
dimension n is the product of n intervals Ii � R of the real line, each with
rational or in�nite endpoints. The rectangle I is bounded (a singleton) if each
interval Ii, for 1 � i � n, is bounded (a singleton). A hybrid automaton
H is a rectangular automaton if the following three restrictions are met. Let
X = fx1; : : : ; xng be the set of variables of H.

1. For each control mode v of H, the initial condition init(v) has the form
X 2 Iinit(v) for a bounded n-dimensional rectangle Iinit(v), and the in-
variant condition inv(v) has the form X 2 Iinv(v) for an n-dimensional
rectangle Iinv(v).

2. There is a bounded n-dimensional rectangle I
ow such that for each control
mode v of H, the
ow condition
ow (v) has the form _X 2 I
ow .

3. For each control switch e of H, the jump condition jump(v) has the form
X 2 Ipre(e) ^ Y 0 = Y ^ X0 2 Ipost(e) for two n-dimensional rectangles
Ipre(e) and Ipost(e), and a set Y � X of variables. The control switch e is
said to reinitialize the variables in XnY . For all 1 � i � n, if the variable

xi is reinitialized by e, then the interval I
post(e)
i

must be bounded.

The rectangular automatonH is a singular automaton if the
ow rectangle I
ow

is a singleton. The singular automatonH is a timed automaton if I
ow = [1; 1]n.
2

9

Remark. [Clocks and drifting clocks] A clock can be modeled by a variable

xi with the
ow interval I
ow
i

= [1; 1]. All variables of a timed automaton are
clocks [6]. A clock with drift ", for " 2 Q�0, can be modeled by a variable with
the
ow interval [1� "; 1 + "] [13, 37]. 2

Remark. [Composition] Timed, singular, and rectangular automata are closed
under composition: for two timed (singular; rectangular) automataH1 and H2,
we can construct a timed (singular; rectangular) automaton H such that St

H
=

St
H1kH2

(and therefore, Sa
H

= Sa
H1kH2

). If the dimension of H1 is n1 and the
dimension of H2 is n2, then the dimension of H is n1 + n2. 2

We de�ne two generalizations of rectangular automata. Multirectangular au-
tomata allow
ow conditions that vary with control switches, and triangular
automata allow the comparison of variables.

De�nition 2.3 [Multirectangular and triangular automata] A hybrid automa-
ton H is a multirectangular automaton if the restrictions of De�nition 2.2 are
met, except that di�erent control modes v and v0 of H may have di�erent
ow
rectangles I
ow(v) and I
ow(v0). The multirectangular automaton H is a multi-
singular automaton if all
ow rectangles of H are singletons. The intersection
of an n-dimensional rectangle with any number of half-spaces of Rn that are de-
�ned by inequalities of the form xi � xj, for 1 � i; j � n, is called a triangle of
dimension n. A hybrid automaton is a triangular automaton if the restrictions
of De�nition 2.2 are met, except that every rectangle may be a triangle. 2

Remark. [Stopwatches and symbolic constants] A stopwatch can be mod-

eled by a multisingular variable xi with the two
ow intervals I

ow(v)

i
= [1; 1]

(the stopwatch is turned on) and I

ow(v0)
i

= [0; 0] (the stopwatch is turned o�).
Stopwatches are useful for measuring accumulated durations, such as the cu-
mulative amount of time that is spent in control mode v [38, 4]. An unknown
system constant can be modeled by a singular variable xj with the
ow interval

I

ow
j

= [0; 0] such that (1) xj is not reinitialized by any control switch, and
(2) the behaviors of other variables may depend on the (unknown but constant)
value of xj [10]. 2

Remark. [Initialized multirectangular automata] Some multirectangular au-
tomata can be translated to rectangular automata by increasing the dimension.
In particular, this is the case for initialized multirectangular automata, where

for each variable xi and each control switch e, if the
ow interval I

ow(v)
i

of the

source v of e is di�erent from the
ow interval I

ow(v0)
i

of the target v0 of e, then
xi is reinitialized by e [45]. 2

Example 2.1 [Railroad gate control] The train automaton of Figure 2 is an
initialized 1D multirectangular automaton and can be translated to a 2D rect-
angular automaton with the same timed traces. The controller automaton of

10

Figure 3 is a 2D triangular automaton with a clock z and a symbolic con-
stant u. If the reaction delay u of the controller is known (say, 5 seconds), then
the controller can be modeled by a 1D timed automaton. The gate automaton
of Figure 4 is a 1D multisingular automaton (not initialized). If the direction of
the gate cannot be reversed midway, then the gate can be modeled by a singular
automaton. 2

Remark. [Abstract interpretation] Nonsingular
ow intervals permit the con-
servative approximation of complex continuous behavior with arbitrary accu-
racy [26]: we may split the state space into regions and within each region, use
lower and upper bounds on the �rst derivatives of all variables. 2

2.3 Veri�cation Results

The following theorem ensures the veri�ability of rectangular automata against
time-abstract �nite-state speci�cations.

Theorem 2.1 [Time-abstract traces] [32] For every rectangular automaton H,
the set of �nite time-abstract traces of H is regular, and the set of in�nite time-
abstract traces of H is !-regular.

Proof. Given an rectangular automaton H of dimension n, we can construct
a singular automaton H0 of dimension 2n such that H and H0 have the same
timed traces. The construction replaces each variable xi of H by a variable x`

i

of H0 that tracks the smallest possible value of xi, and a variable xu
i
of H0 that

tracks the largest possible value of H0. In particular, if xi has the
ow interval
[`; u], then x`

i
has the
ow interval [`; `] and xu

i
has the
ow interval [u; u]. Alur

and Dill have shown that for every timed automaton H0 one can construct a
B�uchi automaton H00 whose traces are exactly the time-abstract traces of H0

(see Theorem 3.2 below). Their construction can be generalized to singular
automata. 2

Corollary 2.1 [Time-abstract trace inclusion] The time-abstract trace inclu-
sion problem for rectangular automata can be decided in EXPSPACE.

Remark. [Emptiness] The emptiness problem for rectangular automata is
in PSPACE, and the additional exponential for time-abstract trace inclusion is
caused by an intermediate complementation step. PSPACE emptiness checking
is optimal, because already the reachability problem for timed automata (and
other real-time formalisms) is PSPACE-hard [6]. 2

Rectangular automata characterize an exact boundary between the decidability
and undecidability of veri�cation problems. If the
ow conditions are allowed
to vary with control switches (multirectangular automata), or if the values of
di�erent variables may be related (triangular automata), then already the reach-
ability problem cannot be decided.

11

Theorem 2.2 [Reachability] [5] The reachability problems for multisingular au-
tomata and for triangular automata are undecidable.

Proof. Reduction from the halting problem for 2-counter machines. 2

Remark. [Theorem 2.2] Theorem 2.2 can be sharpened to more speci�c state-
ments [10, 32]. For example, the combination of clocks with a single stopwatch
causes undecidability, and so does the combination of clocks with symbolic con-
stants. 2

We have focused on time-abstract trace inclusion, because there is no hope for
deciding timed trace inclusion.

Theorem 2.3 [Timed trace inclusion] [6] The �nitary timed trace inclusion
problem for timed automata is undecidable.

Remark. [Complementation] Theorem 2.3 does not contradict the decidability
of the emptiness problem for timed automata (which follows from Theorem 2.1),
because the (�nitary) timed trace sets of timed automata are not closed under
complement [6]. 2

3 On the State Spaces of Hybrid Automata

Since the state space of a nontrivial hybrid automaton is in�nite, it cannot
be explored by enumerating states. We analyze the state space of a hybrid
automaton by computing with �nite symbolic representations of in�nite regions.
For example, if x is a real-numbered variable, then the predicate 1 � x � 5 is a
�nite symbolic representation of an in�nite set of real numbers.

3.1 Symbolic Analysis of Transition Systems

A labeled transition system can be analyzed using symbolic representations of

regions if there are algorithms for performing certain operations on the symbolic
representations.

De�nition 3.1 [Theories for transition systems] Consider a labeled transition
system S with the state space Q. A theory T for S is a set of predicates that
are assigned truth values by the states in Q. Given a predicate p of T , we write
[[p]] for the set of states in Q that satisfy p, and we say that p de�nes the region
[[p]]� Q. A set � of predicates from T induces an equivalence relation �� on Q:
for all states q and r of S, de�ne q �� r i� q and r satisfy the same predicates
in �. The theory T is decidable if for each predicate p of T , it can be decided
whether [[p]] is empty. The theory T is e�ectively closed under boolean operations
if for all predicates p1 and p2 of T , one can construct a predicate Or(p1; p2) of
T that de�nes the region [[p1]] [[[p2]], and a predicate Not(p1) that de�nes the

12

region Qn[[p1]]. The theory T is e�ectively closed under transitions if for each
predicate p of T , and each label a of S, one can construct a predicate Post(p; a)
of T that de�nes the region post

a
([[p]]),2 and a predicate Pre(p; a) that de�nes

the region pre
a
([[p]]). The theory T permits the symbolic analysis of S if (1) T is

decidable, (2) T is e�ectively closed under boolean operations and transitions,
and (3) there is a predicate of T that de�nes the set of initial states of S. 2

De�nition 3.2 [Similarity, bisimilarity, and trace equivalence] Consider a la-
beled transition system S with the state space Q, and an equivalence relation
� on Q. A �-simulation � of S is a binary relation on Q such that q � r

implies (1) q � r and (2) for each label a of S, if q
a

!q0, then there exists a
state r0 such that r

a

!r0 and q0 � r0. A symmetric �-simulation is called a �-
bisimulation. Two states q and r of S are �-similar if there is a �-simulation
� such that q � r and r � q. The two states q and r are �-bisimilar if there is
a �-bisimulation' such that q ' r. The two states q and r are trace equivalent
if the labeled transition systems S[Q0 := fqg] and S[Q0 := frg] have the same
�nite traces. If T is a theory for S, and � is a set of predicates from T , then
the ��-(bi)similarity relation of S is called �-(bi)similarity. 2

Remark. [De�nition 3.2] We remind the reader of some well-known facts from
concurrency theory. If two states q and r are �-bisimilar, then q and r are
also �-similar. If there is an equivalence relation � such that the two states q
and r are �-similar, then q and r are trace equivalent. The converse of either
statement is not necessarily true. 2

Bisimilarity and similarity relations of a labeled transition system S can be
de�ned as greatest �xpoints of a monotonic operator, and approximated by
iterating the operator. The iteration can be performed in a theory that per-
mits the symbolic analysis of S. The iteration terminates i� the approximated
equivalence relation has �nitely many equivalence classes.

De�nition 3.3 [Finitary equivalences] An equivalence relation ' is called �ni-
tary if there are �nitely many '-equivalence classes. 2

Proposition 3.1 [Symbolic bisimilarity approximation] Let S be a labeled tran-
sition system with a �nite label set, let T be a theory that permits the symbolic
analysis of S, and let � be a �nite set of predicates from T . Each step of
the procedure BisimApprox (Figure 5) is e�ective, and upon termination the
procedure returns the �-bisimilarity relation of S. Furthermore, the procedure
BisimApprox terminates i� the �-bisimilarity relation of S is �nitary. 2

Proposition 3.2 [Symbolic similarity approximation] [23] Let S, T , and � be
as in Proposition 3.1. Each step of the procedure SimApprox (Figure 6) is

2E�ective closure under post is not required for the results presented in this paper.

13

procedure BisimApprox :
Input: a labeled transition system S with label set A, and a set
� of predicates.
Output: the set � of equivalence classes of the �-bisimilarity re-
lation of S.

let � be the set of ��-equivalence classes;
while there are two regions R;R0 2 � and a label a 2 A such that

both R \ pre
a
(R0) and Rnpre

a
(R0) are nonempty do

(R1; R2) := (R \ pre
a
(R0); Rnpre

a
(R0));

� = (�nfRg) [fR1; R2g
od;

return �.

Figure 5: Symbolic bisimilarity computation

e�ective, and upon termination the procedure returns the �-similarity relation
of S. Furthermore, the procedure SimApprox terminates i� the �-similarity
relation of S is �nitary. 2

Remark. [Proposition 3.2] For two states q and r of S, there is a �-simulation
� with q � r i� upon termination of the procedure SimApprox , q 2 R and
r 2 sim(R) for some region R 2 �. 2

If a �nitary bisimilarity or similarity relation of an in�nite-state transition sys-
tem S can be computed, then many veri�cation problems for S can be reduced
to �nite-state problems. Alternatively, if a veri�cation task can be stated in the

�-calculus, then we may compute directly on the in�nite state space without
computing a �nitary reduction. The �-calculus de�nes monotonic operators on
regions, and the iteration of these operators can be performed in a theory that
permits the symbolic analysis of S. The iteration is guaranteed to terminate if
a suitable �nitary reduction of the state space exists.

De�nition 3.4 [The �-calculus] Consider a labeled transition system S with
the state space Q, and a theory T for S. The formulas of the (S; T)-based
�-calculus are generated by the grammar

� ::= p j �1 _ �2 j :� j 9 a
� j �R: � j R

for predicates p of T , labels a of S, and region variables R. A formula of
the (S; T)-based �-calculus is legal if each occurrence of a region variable is
bound by a �-quanti�er and separated from the quanti�er by an even number
of negations. Given a map F that assigns to each region variable a region
of S, every subformula of a legal formula of the (S; T)-based �-calculus de�nes
a region [[�]]F � Q:

14

procedure SimApprox :
Input: a labeled transition system S with label set A, and a set
� of predicates.
Output: the set � of equivalence classes of the �-similarity rela-
tion of S.

let � be the set of ��-equivalence classes;
for each region R 2 � do sim(R) := R od;
while there are two regions R;R0 2 � and a label a 2 A such that

both R \ pre
a
(sim(R0)) and sim(R)npre

a
(sim(R0)) are

nonempty do
(R1; R2) := (R \ pre

a
(sim(R0)); Rnpre

a
(sim(R0)));

� = (�nfRg) [fR1g;
sim(R1) := sim(R) \ pre

a
(sim(R0));

if R2 is nonempty then � := � [fR2g; sim(R2) := sim(R) �
od;

return �.

Figure 6: Symbolic similarity computation

[[p]]F = [[p]]
[[�1 _ �2]]

F = [[�1]]
F [[[�2]]

F

[[:�]]F = Qn[[�]]F

[[9 a
�]]F = pre
a
([[�]]F)

[[�R: �]]F =
T
fQ0 � Q j Q0 = [[�]]F [R:=Q0]g

[[R]]F = F (R)

The legal formula � of the (S; T)-based �-calculus de�nes the region [[�]] = [[�]]F ,
for some map F . The formula � is existential if every occurrence of an 9

connective lies within an even number of negations, and � is universal if every
occurrence of an 9
 connective lies within an odd number of negations. 2

Remark. [Negation-free �-formulas] Let 8 a
� stand for :9 a
:�, and let �R: �
stand for (:�R::�[R := :R]). Using the de�ned connectives ^, 8
, and �,

every formula of the �-calculus can be translated into an equivalent formula in
negation-free form, where all : connectives occur in front of predicates. If � is a

formula in negation-free form, then � is existential i� � contains no occurrence
of the 8
 connective, and � is universal i� � contains no occurrence of the 9

connective. 2

Remark. [Reachability and controllability] We mention two of the many
system requirements that can be checked using the �-calculus. Let S be a
labeled transition system with a �nite label set A, let p0 be a predicate that
de�nes the set of initial states of S, and let p� be a predicate that de�nes a

15

procedure MuApprox (S; �):
Input: a labeled transition system S, and a legal formula � of the
�-calculus.
Output: a predicate p such that p and � de�ne the same region
of S.

case � is a predicate p:
return p

case � has the form �1 _ �2:
return Or(MuApprox (S; �1);MuApprox (S; �2))

case � has the form :�0:
return Not(MuApprox (S; �0))

case � has the form 9 a
�0:
return Pre(MuApprox (S; �0); a)

case � has the form �R: �0:
p1 := false;
repeat

p2 := p1; p1 :=MuApprox (S; �0[R := p2])
until [[p1]] = [[p2]];

return p1
end case.

Figure 7: Symbolic �-calculus model checking

set of error states of S. There is no trajectory from an initial state to an error
state i� the existential �-formula p0 ^ (�R: p� _

W
a2A 9 a
R) de�nes the empty

region. Suppose that the behavior of S can be in
uenced by applying a control
map that maps each state of S to a label in A [41]: during the execution of S,
in each state q, the control map chooses a label a, and the system proceeds to
an a-successor of q. There is a control map that keeps the system from entering
an error state i� the existential �-formula p0 ^ (�R: p� _

V
a2A 9 a
R) de�nes

the empty region. 2

Proposition 3.3 [Symbolic �-calculus approximation] Let T be a theory that
permits the symbolic analysis of the labeled transition system S, let � be a le-
gal formula of the (S; T)-based �-calculus, and let � be the set of predicates
that occur in �. Each step of the procedure MuApprox (Figure 7) is e�ec-
tive, and upon termination the procedure returns a predicate p of T such that
[[p]] = [[�]]. Furthermore, the procedure MuApprox is guaranteed to terminate if
the �-bisimilarity relation of S is �nitary. If � is existential or universal, then
the procedure MuApprox is guaranteed to terminate if the �-similarity relation
of S is �nitary. 2

16

Proof. For termination, observe that each predicate that is generated by the
procedure MuApprox de�nes a union of equivalence classes of the �-bisimilarity
relation of S. Furthermore, if � is existential, then the operator Pre is applied
only to regions R that are closed under simulators; that is, if q 2 R and q � r

for some �-simulation �, then r 2 R. 2

Remark. [Termination] If the procedure BisimApprox terminates, then the
procedure SimApprox terminates also. The converse is not necessarily true. For
any given input formula, the procedure MuApprox may terminate even if the
procedures SimApprox and BisimApprox do not terminate. This encourages
practical experimentation, especially since in practice, with concrete time and
space constraints, strong termination guarantees are always elusive. 2

3.2 Linear Hybrid Automata

The hybrid automata that can be analyzed symbolically in the theory of the
reals with addition are called linear.

De�nition 3.5 [Linear hybrid automata] A linear term is an expression of the
form k0+k1x1+ � � �+kmxm, for real-numbered variables x1; : : : ; xm and integer
constants k0; : : : ; km. If t1 and t2 are linear terms, then t1 � t2 is a linear
inequality. A hybrid automaton H is linear if the following two restrictions are
met.

1. The initial, invariant,
ow, and jump conditions of H are boolean combi-
nations of linear inequalities.

2. If X is the set of variables of H, then the
ow conditions of H contain
free variables from _X only. 2

Remark. [De�nition 3.5] The linear hybrid automata are closed under compo-
sition. All (multi)rectangular automata and all triangular automata are linear
hybrid automata. The use of general linear hybrid automata for approximating
complex continuous behavior can be more e�cient than the use of rectangular
automata [35, 44]. 2

De�nition 3.6 [Theories for hybrid automata] Consider a hybrid automaton

H with the set X of variables and the set V of control modes. An H-predicate
is a predicate whose free variables are boolean-valued variables from V and
real-valued variables from X. A state (v;x) of H satis�es the H-predicate p if
the closed predicate p[v; V nfvg; X := true; false;x] is true. The H-predicate p
is linear if p is a boolean combination of (1) boolean-valued variables from V

and (2) linear inequalities whose (real-valued) variables are from X. The linear
H-predicate p is a rectangular H-predicate if each linear inequality in p can be
written in the form x � k or x � k, for a variable x and a rational constant k.
An H-formula of the rectangular �-calculus is a formula of the (Sa

H
; T)-based

�-calculus, for the set T of rectangular H-predicates. 2

17

Theorem 3.1 [Symbolic analysis of linear hybrid automata] [5, 9] For every
linear hybrid automaton H, the set of linear H-predicates permits the symbolic
analysis of the time-abstract transition system Sa

H
.

Proof. The linear H-predicates are quanti�er-free formulas of the �rst-order
theory (R;+;�;0;1) of the reals with addition, comparison, and integer con-
stants. Each time transition of a linear hybrid automaton has a witness that can
be decomposed into a �nite sequence of straight lines. Then, using quanti�ca-
tion over the reals, the Post and Pre operations can be expressed in the theory
(R;+ �; 0; 1). The proof concludes with the observation that the �rst-order
theory (R;+;�; 0;1) admits quanti�er elimination. 2

Remark. [Timed automata] The symbolic analysis of singular automata does
not require the full theory of linear predicates, which leads to more e�cient
implementations [20, 11, 12, 19]. For a hybrid automatonA, a linearH-predicate
p is a triangular H-predicate if each linear inequality in p can be written in the
form x � k, x � k, x � y + k, or x � y+ k, for variables x and y and a rational
constant k. For every timed automaton H, the set of triangular H-predicates
permits the symbolic analysis of the time-abstract transition system Sa

H
[34]. 2

Remark. [Polynomial hybrid automata] Since the theory of the reals with
addition and multiplication is decidable, it is possible to de�ne a class of hy-
brid automata that are more general than linear hybrid automata and can be
analyzed symbolically in the more powerful theory. The practicality of such a
generalization has not been studied. 2

3.3 Bisimilarity and Similarity Relations

From Theorem 2.1 it follows that for every rectangular automaton H, the trace
equivalence relation of the time-abstract transition system Sa

H
is �nitary. If we

can identify subclasses of rectangular automata whose time-abstract transition
systems have �nitary similarity or bisimilary relations, then we obtain termina-
tion guarantees for the procedure MuApprox applied to hybrid automata.

De�nition 3.7 [Timed and time-abstract (bi)similarity] Consider a hybrid au-
tomaton H and a set � of H-predicates. The �-(bi)similarity relation of the
timed transition system St

H
is called the timed �-(bi)similarity relation of H,

and the �-(bi)similarity relation of the time-abstract transition system Sa
H

is
called the time-abstract �-(bi)similarity relation of H. 2

The fundamental theorem of timed automata shows the existence of �nitary
time-abstract bisimilarity relations for timed automata. This result can be
extended to singular automata.

Theorem 3.2 [Time-abstract bisimilarity of singular automata] [6, 5] If H is
a singular automaton, and � is a �nite set of rectangular H-predicates, then the
time-abstract �-bisimilarity relation of H is �nitary.

18

10

1

0 x1

x2

Figure 8: Four �nitary equivalence relations on the unit square

Proof. A rectangular automaton H and a �nite set � of rectangular H-

predicates are normalized if all non-
ow interval endpoints in H and all con-
stants in � are integers. Normalization can be achieved by multiplying all non-

ow interval endpoints in H and all constants in � by a suitably chosen integer
constant. Assuming that H and � are normalized, let K be the largest integer
constant that occurs in H and �. If H is a timed automaton, then the (�nite)
set � of triangularH-predicates with integer constants no larger than K induces
a �nitary �-bisimulation on the time-abstract transition system Sa

H
. The �rst

panel of Figure 8 shows the induced bisimulation on the unit square [0; 1]2 for
a 2D timed automaton H. For instance, if v = v0 and 0 < x1 < x2 < 1 and
0 < x01 < x02 < 1, then the two states (v;x) and (v0;x0) of H are time-abstract
�-bisimilar. If H is a singular automaton, then a slight extension of triangular
H-predicates needs to be considered. For example, the second and third panels
of Figure 8 show the induced bisimulations on the unit square for 2D singular
automata with the
ow rectangles [2; 2]� [1; 1] and [1; 1]� [3; 3], respectively. 2

Corollary 3.1 [Symbolic�-calculus model checking for singular automata]The
procedure MuApprox terminates if given the time-abstract transition system of
a singular automaton H and an H-formula � of the rectangular �-calculus.

Remark. [Nonsingular automata and nonrectangular predicates] Singular au-
tomata with rectangular predicates identify a boundary between the existence
and nonexistence of �nitary bisimilarity relations. In fact, for the following three
generalizations, bisimilarity degenerates to equality on in�nite state spaces. Let
�1 = fx1 = 1; x2 = 1; x1 � x2g and �2 = fx1 = 1; x2 = 1g.

1. There is an (in�nite-state) singular automaton H such that the time-
abstract �1-bisimilarity relation of H is equality.

2. There is an (in�nite-state) multisingular automatonH such that the time-
abstract �2-bisimilarity relation of H is equality.

3. There is an (in�nite-state) 2D rectangular automaton H such that the
time-abstract �2-bisimilarity relation of H is equality. 2

19

The boundary between the existence and nonexistence of �nitary similarity
relations lies at 2D rectangular automata.

Theorem 3.3 [Time-abstract similarity of 2D rectangular automata] [23] If H
is a 2D rectangular automaton, and � is a �nite set of rectangular H-predicates,
then the time-abstract �-similarity relation of H is �nitary.

Proof. The structure of the �nitary time-abstract similarity relation is best
illustrated with an example. Let H be a 2D rectangular automaton with the

ow rectangle [1; 2]� [1; 3]. Assuming that H and � are normalized, the fourth
panel of Figure 8 shows a �nitary kernel of a time-abstract �-simulation on the
unit square. The simulation is obtained by intersecting the bisimulations for
the two cases of extremal
ow: maximal _x1 and minimal _x2, and vice versa. 2

Corollary 3.2 [Symbolic �-calculus model checking for 2D rectangular au-
tomata] The procedure MuApprox terminates if given the time-abstract tran-
sition system of a 2D rectangular automaton H and an existential or universal
H-formula � of the rectangular �-calculus.

Theorem 3.3 does not generalize to rectangular automata of arbitrary dimension.

Theorem 3.4 [Time-abstract similarity of 3D rectangular automata] [30] Let
� = fx1 = 1; x2 = 1; x3 = 1g. There is an (in�nite-state) 3D rectangular
automaton H such that the time-abstract �-similarity relation of H is equality.

In summary, rectangular automata are a maximal class of hybrid automata
with �nitary time-abstract trace equivalence relations, 2D rectangular automata
are a maximal class of hybrid automata with �nitary time-abstract similarity
relations, and singular automata are a maximal class of hybrid automata with
�nitary time-abstract bisimilarity relations.

Remark. [Context-free equivalences] We have restricted ourselves to decidabil-
ity results that can be obtained by relating hybrid automata to �nite automata.
Additional decidability results can be obtained by relating hybrid automata to
pushdown automata [14, 16]. Little is known, however, about which classes
of hybrid automata are time-abstract trace equivalent (similar; bisimilar) to
pushdown automata. 2

Remark. [Timed (bi)similarity]We have focused on time-abstract state space
equivalences, because the timed counterparts are in�nitary already for nontrivial
timed automata. From Theorem 2.3 it follows that for timed automata, the
timed trace equivalence of two states cannot be decided. It should be noted,
however, that timed similarity and timed bisimilarity can be decided for timed
automata. Speci�cally, ifH is a timed automaton, � is a �nite set of rectangular
H-predicates, and q and r are two states of H, then it can be decided if q and
r are timed �-(bi)similar [17, 48, 47]. 2

20

Remark. [Dense vs. discrete time] In our model, jumps may happen at any
real-numbered times. By contrast, in sampling control, all control switches occur
at multiples of a rational sampling interval. Sampling control can therefore be
modeled by discrete-time hybrid automata, where all jumps happen (without
loss of generality) at integer times [31]. For discrete-time hybrid automata,
veri�cation questions can be answered even in the multirectangular case. This
is because for every discrete-time multirectangular hybrid automatonH, the set
of rectangular H-predicates permits the symbolic analysis of the time-abstract
transition system Sa

H
. It follows that if H is a discrete-time multirectangular

hybrid automaton with either bounded invariant rectangles or nonnegative
ow
rectangles, and � is a �nite set of rectangular H-predicates, then the time-
abstract �-bisimilarity relation of H is �nitary. 2

3.4 Computation Tree Logics

We have studied the structure of the timed and time-abstract transition systems
of hybrid automata. These transition systems, however, may not be directly
useful for (dis)proving assertions about the behavior of a hybrid automaton H,
because each trajectory of St

H
and Sa

H
only samples a piecewise-continuous tra-

jectory of H at certain discrete points. In the following, we restrict ourselves to
the time-abstract view. Since each time transition of Sa

H
abstracts all informa-

tion about intermediate states that are visited, by looking only at a trajectory
of Sa

H
, it is impossible to check if the corresponding piecewise-continuous tra-

jectory of H visits any given state or region. We solve this problem by de�ning
(time-abstract) observational transition systems, where each time transition is
labeled with a region: the time transition t is labeled with the region R i�
all intermediate states and the target state of t lie within R. Thus, an obser-
vational transition system results from the continuous observation of a hybrid
automaton, with limited observational power: for a given set R of regions, it
can be observed whether a continuous trajectory fragment stays within any of
the regions from R.

De�nition 3.8 [Piecewise-continuous semantics of hybrid automata] Consider
a hybrid automatonH and a set R ofH-regions. The R-observational transition
system SR

H
of H is the labeled transition system with the components Q, Q0,

A, and
c

! for each c 2 C, de�ned as follows.3

� Q and Q0 are de�ned as in De�nition 1.3.

� C = � [R.

� For each event � 2 �, de�ne
�

! as in De�nition 1.3.

3If R = fRg for a single H-region R, then we write SR
H

for the R-observational transition

system S
R

H
.

21

� For each region R 2 R, de�ne (v;x)
R
!(v0;x0) i� there is a nonnegative

real � 2 R�0 and a witness f for the transition (v;x)
�

!(v0;x0) such that
for all reals " 2 (0; �], (v; f(")) 2 R. The real � is a possible duration of
the transition (v;x)

R

!(v0;x0).

An in�nite trajectory hci; qiii�1 of the R-observational transition system SR
H

diverges if there is an in�nite sequence h�iii�0 of reals such that (1) the in�nite
sum

P
i�1 �i diverges, and (2) for all i � 0, either ai 2 � and �i = 0, or

ai 2 R and �i is a possible duration of the corresponding transition qi�1
ai!qi. A

set � of H-predicates permits the observational symbolic analysis of the hybrid
automaton H if � permits the symbolic analysis of the observational transition
system SR

H
, where R is the set ofH-regions that are de�nable by predicates in �.

An equivalence relation ' on Q is an observational �-(bi)similarity relation of
H if ' is the �-(bi)similarity relation of the observational transition system SR

T
,

where R is the set of '-equivalence classes. 2

Since observational transition systems are de�ned in a time-abstract way, the
results of Theorems 3.1, 3.2, and 3.3 carry over from time-abstract to observa-
tional transition systems.

Proposition 3.4 [Observational symbolic analysis of linear hybrid automata]
For every linear hybrid automaton H, the set of linear H-predicates permits the
observational symbolic analysis of H. Consider a �nite set � of rectangular H-
predicates. If H is a singular automaton, then there is a �nitary observational
�-bisimilarity relation of H. If H is a 2D rectangular automaton, then there is
a �nitary observational �-similarity relation of H.

For (dis)proving assertions about the in�nite behavior of hybrid automata, we
need to take into account the liveness assumption that time diverges. Compu-
tation tree logics for hybrid automata are branching-time temporal logics for
stating requirements about divergent piecewise-continuous trajectories.

De�nition 3.9 [Computation tree logics] Consider a linear hybrid automaton
H with the state space Q. The H-formulas of linear Ctl are generated by the
grammar

� ::= p j �1 _ �2 j :� j �19U�2 j 92�

for linear H-predicates p. Every H-formula of linear Ctl de�nes an H-region
[[�]]� Q:

[[�1 _ �2]] = [[�1]] [[[�2]]
[[:�]] = Qn[[�]]

q 2 [[�19U�2]] i� the observational transition system S
[[�1_�2]]

H
has a

(�nite) q-rooted trajectory that visits a state in [[�2]]

q 2 [[92�]] i� the observational transition system S
[[�]]

H
has a divergent

q-rooted trajectory

22

The H-formula � of linear Ctl is an H-formula of rectangular Ctl if all pred-
icates that occur in � are rectangular H-predicates. The H-formula � of rect-
angular Ctl is an H-formula of rectangular 9Ctl if each occurence of the 9U
connective in � and each occurrence of the 92 connective in � lies within the
scope of an even number of negations, and � is an H-formula of rectangular
8Ctl if all occurrences of 9U and 92 lie within the scope of odd numbers of
negations. 2

Remark. [De�nition 3.9] The semantics of linearCtl is de�ned to be piecewise-
continuous (it refers to trajectories of observational rather than time-abstract
transition systems), live (it refers to divergent trajectories), and strict (the tem-
poral connectives do not impose requirements on the current state; for example,
a nonstrict version of �19U�2 can be de�ned as �2 _ (�19U�2)). The disjunc-
tion in the semantic clause for the 9U connective is necessary, because a switch
from �1 being true to �2 being true may occur from a right-closed to a left-open
interval. In the following, we write 93� for true9U�, and 82� for :93:�. 2

If a system requirement is given as a formula of a computation tree logic, then
the corresponding veri�cation task is a model-checking problem.

De�nition 3.10 [Model checking] The model-checking problem for a class H of
hybrid automata and a computation tree logic L asks, given a hybrid automaton
H from H and an H-formula � from L, if [[�]] contains all initial states of H. 2

For a linear hybrid automaton H, an H-formula � of linear Ctl can be trans-
lated into a formula �0 of the �-calculus. The piecewise-continuity of linear Ctl
is taken care of by interpreting �0 over an observational transition system SR

H
.

The liveness of linear Ctl is taken of by interpreting �0 over an extension of SR
H

with a clock variable that can observe the divergence of time. The translation
leads to a model-checking procedure for linear hybrid automata and linear Ctl.

De�nition 3.11 [Clock extension] A clock automaton Hz is a timed automaton
with a single variable, z, a single control mode with the initial condition z = 0
and the invariant condition true, and a single control switch with the jump
condition z0 = 0. If H is a hybrid automaton and z is not a variable of H,
then the composition HkHz is called a clock extension of H. A procedure
is an e�ective procedure for the observational symbolic analysis of the hybrid
automaton H if each step of the procedure is either e�ective or a subroutine

call of the form MuApprox (S
[[p]]

H0 ; �), for a clock extension H0 of H, a linear H0-

predicate p, and a formula � of the (S
[[p]]

H0 ; T)-based �-calculus, where T is the
set of linear H0-predicates. 2

Theorem 3.5 [From Ctl to the �-calculus] [34, 9] Let H be a linear hybrid
automaton and let � be an H-formula of linear Ctl. There is an e�ective
procedure for the observational symbolic analysis of H which, upon termination,

23

returns a linear H-predicate p with [[p]] = [[�]]. Furthermore, the procedure is
guaranteed to terminate if H is a singular automaton and � is a formula of
rectangular Ctl, and if H is a 2D rectangular automaton and � is a formula
of rectangular 9Ctl or of rectangular 8Ctl.

Proof. The Ctl formula�19U�2 can be translated to the formula (�R: 9 c
(�2_
R)), for c = [[�1 _ �2]] of the �-calculus. The H-formula 92� can be trans-
lated to the H0-formula (�R: �9U(� ^ z = 1 ^ �9U(� ^ z = 0 ^ R))), where
H 0 = HkHz is a clock extension of H. The latter formula asserts that � is
true throughout some in�nite trajectory along which z = 1 is true in�nitely
often and z = 0 is true in�nitely often. This can be the case if and only if the
trajectory diverges. 2

Corollary 3.3 [Ctl model checking] The model-checking problem for rectan-
gular Ctl is PSPACE-decidable for singular automata. The model-checking
problems for rectangular 9Ctl and rectangular 8Ctl are PSPACE-decidable
for 2D rectangular automata.

Remark. [HyTech] The procedure of Theorem 3.5 for checking linear Ctl re-
quirements of linear hybrid automata has been implemented in the toolHyTech
[27, 28, 29]. The procedure has been found to terminate on several examples
of practical interest that do not fall into any of the classes for which a priori
termination guarantees can be given [37, 42, 18, 36, 46]. 2

Example 3.1 [Railroad gate control] Recall the safety requirement for the rail-
road gate controller from Example 1.2, namely, that the gate is fully closed
whenever the train is within 10 meters of the gate. This requirement is ex-
pressed by the formula (Far ^ Idle ^Open) ! 82(�10 � x � 10 ! Closed)
of rectangular 8Ctl. HyTech simpli�es this Ctl formula, fully automatically,
to a linear predicate whose projection onto the u-dimension is 5u < 49. It fol-
lows that the safety requirement is met if and only if the reaction delay u of the
controller is less than 9.8 seconds. 2

Remark. [Nonzenoness] The semantics of the 9U connective of linear Ctl is
de�ned over �nite trajectories. The alternative interpretation of 9U over �nite
pre�xes of divergent trajectories requires that the underlying hybrid automaton

is nonzeno. For a linear hybrid automaton H and a clock extension HkHz, the
rectangular existential formula �nz = (�R: 93(z = 1 ^ 93(z = 0 ^ R))) de�nes
the set of states q with divergent q-rooted trajectories. Hence, if �nz can be
simpli�ed to a linear H-predicate pnz , then the addition of pnz as a conjunct to
all invariant conditions of H results in a nonzeno linear hybrid automaton Hnz

such that H and Hnz have the same divergent timed traces. From Theorem 3.5
it follows that this is always possible for singular and 2D rectangular automata.
2

24

Remark. [Ctl with clocks, stopwatches, and symbolic constants] The H-
formulas of linear Ctl can be generalized to permit real-numbered variables
that are not variables of the hybrid automaton H. In this way, linear Ctl has
been extended to include clocks (Tctl) [7, 2], stopwatches [15, 9], and symbolic
constants [49]. The symbolic-analysis result of Theorem 3.5 continues to hold
for these logics, and the decidability results of Corollary 3.3 continue to hold for
Tctl. Isolated decidability results are known also for computation tree logics
with a limited use of stopwatches or symbolic constants [49, 4]. 2

Acknowledgments. My view of mixed discrete-continuous systems has been
shaped in collaborations with Rajeev Alur, Costas Courcoubetis, Nicolas Halb-
wachs, Pei-Hsin Ho, Peter Kopke, Zohar Manna, Xavier Nicollin, Amir Pnueli,
Anuj Puri, Joseph Sifakis, Howard Wong-Toi, Pravin Varaiya, Moshe Vardi,
and Sergio Yovine. My special thanks go to Oded Maler, Zohar, and Amir for
introducing me to the problem domain [40], to Pei-Hsin and Howard for imple-
menting HyTech, and to Peter for many valuable comments on several drafts
of this manuscript.

References

[1] M. Abadi and L. Lamport. An old-fashioned recipe for real time. ACM
Transactions on Programming Languages and Systems, 16(5):1543{1571,
1994.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time.
Information and Computation, 104(1):2{34, 1993.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138:3{34, 1995.

[4] R. Alur, C. Courcoubetis, and T.A. Henzinger. Computing accumulated
delays in real-time systems. Formal Methods in System Design, 11(2):137{

156, 1997.

[5] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata:
an algorithmic approach to the speci�cation and veri�cation of hybrid sys-
tems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors,
Hybrid Systems I, Lecture Notes in Computer Science 736, pages 209{229.
Springer-Verlag, 1993.

[6] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183{235, 1994.

[7] R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors,

25

Real Time: Theory in Practice, Lecture Notes in Computer Science 600,
pages 74{106. Springer-Verlag, 1992.

[8] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In
A. Mazurkiewicz and J. Winkowski, editors, CONCUR 97: Concurrency
Theory, Lecture Notes in Computer Science 1243, pages 74{88. Springer-
Verlag, 1997.

[9] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic veri�ca-
tion of embedded systems. IEEE Transactions on Software Engineering,
22(3):181{201, 1996.

[10] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning.
In Proceedings of the 25th Annual Symposium on Theory of Computing,

pages 592{601. ACM Press, 1993.

[11] R. Alur and R.P. Kurshan. Timing analysis in cospan. In R. Alur, T.A.
Henzinger, and E.D. Sontag, editors, Hybrid Systems III, Lecture Notes in
Computer Science 1066, pages 220{231. Springer-Verlag, 1996.

[12] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal:
a tool-suite for automatic veri�cation of real-time systems. In R. Alur, T.A.
Henzinger, and E.D. Sontag, editors, Hybrid Systems III, Lecture Notes in
Computer Science 1066, pages 232{243. Springer-Verlag, 1996.

[13] D. Bosscher, I. Polak, and F. Vaandrager. Veri�cation of an audio-control
protocol. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors,
FTRTFT 94: Formal Techniques in Real-time and Fault-tolerant Systems,
Lecture Notes in Computer Science 863, pages 170{192. Springer-Verlag,
1994.

[14] A. Bouajjani, R. Echahed, and R. Robbana. Veri�cation of context-free
timed systems using linear hybrid observers. In D.L. Dill, editor, CAV 94:

Computer-aided Veri�cation, Lecture Notes in Computer Science, pages
118{131. Springer-Verlag, 1994.

[15] A. Bouajjani, R. Echahed, and J. Sifakis. On model checking for real-time
properties with durations. In Proceedings of the Eighth Annual Symposium
on Logic in Computer Science, pages 147{159. IEEE Computer Society
Press, 1993.

[16] A. Bouajjani and R. Robbana. Verifying !-regular properties for sub-
classes of linear hybrid systems. In P. Wolper, editor, CAV 95: Computer-
aided Veri�cation, Lecture Notes in Computer Science 939, pages 437{450.
Springer-Verlag, 1995.

26

[17] K. �Cer�ans. Decidability of bisimulation equivalence for parallel timer pro-
cesses. In G. von Bochmann and D.K. Probst, editors, CAV 92: Computer-
aided Veri�cation, Lecture Notes in Computer Science 663, pages 302{315.
Springer-Verlag, 1992.

[18] J.C. Corbett. Timing analysis of Ada tasking programs. IEEE Transac-
tions on Software Engineering, 22(7):461{483, 1996.

[19] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In
R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems III,
Lecture Notes in Computer Science 1066, pages 208{219. Springer-Verlag,
1996.

[20] D.L. Dill. Timing assumptions and veri�cation of �nite-state concurrent

systems. In J. Sifakis, editor, CAV 89: Automatic Veri�cation Methods
for Finite-state Systems, Lecture Notes in Computer Science 407, pages
197{212. Springer-Verlag, 1989.

[21] R. Gawlick, R. Segala, J.F. Sogaard-Andersen, and N.A. Lynch. Liveness
in timed and untimed systems. In S. Abiteboul and E. Shamir, editors,
ICALP 94: Automata, Languages, and Programming, Lecture Notes in
Computer Science 820, pages 166{177. Springer-Verlag, 1994.

[22] V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed automata. In
O. Maler, editor, HART 97: Hybrid and Real-time Systems, Lecture Notes
in Computer Science 1201, pages 331{345. Springer-Verlag, 1997.

[23] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations
on �nite and in�nite graphs. In Proceedings of the 36rd Annual Symposium
on Foundations of Computer Science, pages 453{462. IEEE Computer So-
ciety Press, 1995.

[24] T.A. Henzinger. Sooner is safer than later. Information Processing Letters,
43(3):135{141, 1992.

[25] T.A. Henzinger. Hybrid automata with �nite bisimulations. In Z. F�ul�op and
F. G�ecseg, editors, ICALP 95: Automata, Languages, and Programming,
Lecture Notes in Computer Science 944, pages 324{335. Springer-Verlag,
1995.

[26] T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid sys-
tems. In P. Wolper, editor, CAV 95: Computer-aided Veri�cation, Lecture
Notes in Computer Science 939, pages 225{238. Springer-Verlag, 1995.

[27] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next gener-
ation. In Proceedings of the 16th Annual Real-time Systems Symposium,
pages 56{65. IEEE Computer Society Press, 1995.

27

[28] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In
E. Brinksma, W.R. Cleaveland, K.G. Larsen, T. Margaria, and B. Ste�en,
editors, TACAS 95: Tools and Algorithms for the Construction and Anal-
ysis of Systems, Lecture Notes in Computer Science 1019, pages 41{71.
Springer-Verlag, 1995.

[29] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi.HyTech: a model checker for
hybrid systems. In O. Grumberg, editor, CAV 97: Computer-aided Veri�-
cation, Lecture Notes in Computer Science 1254, pages 460{463. Springer-
Verlag, 1997.

[30] T.A. Henzinger and P.W. Kopke. State equivalences for rectangular hybrid
automata. In U. Montanari and V. Sassone, editors, CONCUR 96: Con-
currency Theory, Lecture Notes in Computer Science 1119, pages 530{545.
Springer-Verlag, 1996.

[31] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hy-
brid automata. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela,
editors, ICALP 97: Automata, Languages, and Programming, Lecture
Notes in Computer Science 1256, pages 582{593. Springer-Verlag, 1997.

[32] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable
about hybrid automata? In Proceedings of the 27th Annual Symposium on
Theory of Computing, pages 373{382. ACM Press, 1995.

[33] T.A. Henzinger, P.W. Kopke, and H. Wong-Toi. The expressive power
of clocks. In Z. F�ul�op and F. G�ecseg, editors, ICALP 95: Automata,
Languages, and Programming, Lecture Notes in Computer Science 944,
pages 417{428. Springer-Verlag, 1995.

[34] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111(2):193{
244, 1994.

[35] T.A. Henzinger and H. Wong-Toi. Linear phase-portrait approximations
for nonlinear hybrid systems. In R. Alur, T.A. Henzinger, and E.D. Sontag,
editors, Hybrid Systems III, Lecture Notes in Computer Science 1066, pages

377{388. Springer-Verlag, 1996.

[36] T.A. Henzinger and H. Wong-Toi. UsingHyTech to synthesize control pa-
rameters for a steam boiler. In J.-R. Abrial, E. B�orger, and H. Langmaack,
editors, Formal Methods for Industrial Applications: Specifying and Pro-
gramming the Steam Boiler Control, Lecture Notes in Computer Science
1165, pages 265{282. Springer-Verlag, 1996.

[37] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control pro-
tocol. In P. Wolper, editor, CAV 95: Computer-aided Veri�cation, Lecture
Notes in Computer Science 939, pages 381{394. Springer-Verlag, 1995.

28

[38] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class
of decidable hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and
H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer Science
736, pages 179{208. Springer-Verlag, 1993.

[39] N.A. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid I/O
Automata. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hy-
brid Systems III, Lecture Notes in Computer Science 1066, pages 496{510.
Springer-Verlag, 1996.

[40] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors,
Real Time: Theory in Practice, Lecture Notes in Computer Science 600,
pages 447{484. Springer-Verlag, 1992.

[41] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In E.W. Mayr and C. Puech, editors, STACS 95: The-
oretical Aspects of Computer Science, Lecture Notes in Computer Science
900, pages 229{242. Springer-Verlag, 1995.

[42] S. Nadjm-Tehrani and J.-E. Str�omberg. Proving dynamic properties in an
aerospace application. In Proceedings of the 16th Annual Real-time Systems
Symposium, pages 2{10. IEEE Computer Society Press, 1995.

[43] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the
description and analysis of hybrid systems. In R.L. Grossman, A. Nerode,
A.P. Ravn, and H. Rischel, editors, Hybrid Systems I, Lecture Notes in
Computer Science 736, pages 149{178. Springer-Verlag, 1993.

[44] A. Puri, V. Borkar, and P. Varaiya. "-approximation of di�erential inclu-
sions. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems
III, Lecture Notes in Computer Science 1066, pages 362{376. Springer-
Verlag, 1996.

[45] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular
di�erential inclusions. In D.L. Dill, editor, CAV 94: Computer-aided Ver-
i�cation, Lecture Notes in Computer Science 818, pages 95{104. Springer-

Verlag, 1994.

[46] T. Stauner, O. M�uller, and M. Fuchs. Using HyTech to verify an auto-
motive control system. In O. Maler, editor, HART 97: Hybrid and Real-
time Systems, Lecture Notes in Computer Science 1201, pages 139{153.
Springer-Verlag, 1997.

[47] S. Ta�siran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstrac-
tions of timed systems. In U. Montanari, editor, CONCUR 96: Concur-
rency Theory, Lecture Notes in Computer Science, pages 546{562. Springer-
Verlag, 1996.

29

[48] K. �Cer�ans, J.C. Godskesen, and K.G. Larsen. Timed modal speci�ca-
tion: Theory and tools. In C. Courcoubetis, editor, CAV 93: Computer-
aided Veri�cation, Lecture Notes in Computer Science 697, pages 253{267.
Springer-Verlag, 1993.

[49] F. Wang. Timing behavior analysis for real-time systems. In Proceedings
of the Tenth Annual Symposium on Logic in Computer Science, pages 112{
122. IEEE Computer Society Press, 1995.

30

