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About This Book

The primary objective of this user’s manual is to define the functionality of the PowerPC
604e™ microprocessor for use by software and hardware devel opers. It isimportant to note
that this book is intended as a companion to the Power PC™Microprocessor Family: The
Programming Environments, referred to as The Programming Environments Manual;
contact your local sales representative to obtain a copy. Because the PowerPC architecture
is designed to be flexible to support a broad range of processors, The Programming
Environments Manual provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

In this document, the term ‘604€’ is used as an abbreviation for ‘PowerPC 604e
microprocessor’ . The PowerPC 604e microprocessors are available from IBM as PPC604e
and Motorola as MPC604e.

This document summarizes features of the 604e that are not defined by the architecture.
This document and The Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are asfollows:

e PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA definesthe
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers.

« PowerPC virtual environment architecture (VEA)—TheVEA, whichisthe smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processorsor other devicescan
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resourcesin
an environment in which other processors and other devices can access external
memory.
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» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause afloating-
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For easein reference, thisbook has arranged topics described by the architecture into topics
that build upon one another, beginning with a description and complete summary of 604e-
specific registers and progressing to more specialized topics such as 604e-specific details
regarding the cache, exception, and memory management models. As such, chapters may
include information from multiple levels of the architecture. (For example, the discussion
of the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products using the 604e microprocessors. It is assumed
that the reader understands operating systems, microprocessor system design, the basic
principles of RISC processing, and details of the PowerPC architecture.
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Organization
Following is a summary and a brief description of the major sections of this manual:

Chapter 1, “Overview,” is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the 604e. This chapter
describesthe flexible nature of the PowerPC architecture definition, and providesan
overview of how the PowerPC architecture defines the register set, operand
conventions, addressing modes, instruction set, cache model, exception model, and
memory management model.

Chapter 2, “Programming Model,” provides a brief synopsis of the registers
implemented in the 604e, operand conventions, an overview of the PowerPC
addressing modes, and alist of the instructions implemented by the 604e.
Instructions are organized by function.

Chapter 3, “Cache and Bus Interface Unit Operation,” provides a discussion of the
cache and memory model as implemented on the 604e.

Chapter 4, “Exceptions,” describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the 604e.

Chapter 5, “Memory Management,” describes the 604€’s implementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

Chapter 6, “Instruction Timing,” provides information about |atencies, interlocks,
special situations, and various conditions to hel p make programming more efficient.
This chapter is of special interest to software engineers and system designers.

Chapter 7, “ Signal Descriptions,” provides descriptions of individual signals of the
604e.

Chapter 8, “ System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 604e.

Chapter 9, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 604e.

Appendix A, “PowerPC Instruction Set Listings,” listsall the PowerPC instructions
while indicating those instructions that are not implemented by the 604e; it also
includes the instructions that are specific to the 604e. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is aquick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

Appendix B, “Invalid Instruction Forms,” describes how invalid instructions are
treated by the 604e.

Appendix C, “PowerPC 604 Processor System Design and Programming
Considerations,” provides abrief discussion of the differences between the 604 and
604e.

Thismanual aso includes a glossary and an index.
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Suggested Reading

This section lists additional reading that provides background for the information in this
manual aswell as general information about the PowerPC architecture.

General Information

Thefollowing documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are avail able from the Morgan-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.SA.),
(415) 392-2665 (International); internet address. mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible viathe world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Compuiter, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Compuiter, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

Inside Macintosh: Power PC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

Power PC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

User’'s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorolaorder #) and MPR604UMU-01 (IBM order #)

— MPC750 RISC Microprocessor User's Manual:
MPC750UM/AD (Motorola order #)

— PowerPC 620™ RISC Microprocessor User’s Manual:
MPC620UM/AD (Motorola order #)
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» Programming environments manuals—T hese books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-hit
model.

— PowerPC Microprocessor Family: The Programming Environments, Rev 1:
MPCFPE/AD (Motorolaorder #) and G522-0290-00 (IBM order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1. MPCFPE32B/AD (Motorola order #)

» Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available viathe world-wide web at
http://www.motorola.com/PowerPC/or at http://www.chips.ibm.com/products/ppc.

* Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’'s manuals.

» Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, aswell as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #) and G522-0289-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Soecifications:
MPC603EEC/D (Motorola order #) and G522-0268-00 (IBM order #)
— PowerPC 603e RISC Microprocessor Family: PID7v-603e Hardware
Soecifications:
MPC603E7VEC/D (Motorola order #) and G522-0267-00 (IBM order #)
— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications:
MPC603E7TEC/D (Motorola order #)
— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #) and MPR604HSU-02 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9v-604e Hardware
Specifications:
MPC604E9QVEC/D (Motorola order #) and G522-0296-01 (IBM order #)
— PowerPC 604e RISC Microprocessor Family: PID9g-604e Hardware
Soecifications:
MPC604E9QEC/D (Motorola order #) and G5522-0319-00 (IBM order #)

— MPC750 RISC Microprocessor Hardware Specifications
MPC750EC/D (Motorola order #)
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Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of itsfeatures. Thisdocument isroughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, 604e, and 620 microprocessors
which can be ordered as follows:

— PowerPC 604e RISC Microprocessor Technical Summary:
MPC604E/D (Motorola order #) and SA14-2053-00 (IBM order #)

Power PC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorolaorder #) and G522-0291-00 (IBM order #) provides a
detailed functional description of the 60x businterface, asimplemented on the 601,
603, and 604 family of PowerPC microprocessors. This document isintended to
help system and chipset developers by providing a centralized reference source to
identify the businterface presented by the 60x family of PowerPC microprocessors.

Power PC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) and MPRPPCPRG-01 (IBM order #) is aconcise
reference that includes the register summary, memory control model, exception
vectors, and the PowerPC instruction set.

Power PC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #) and SA14-2093-00 (IBM order #)
Thisfoldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User's Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/SPS/PowerPC/ or at http://www.chips.ibm.com/products/ppc.

Conventions
This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, beetrx.
Book titlesin text are set in italics.

0x0 Prefix to denote hexadecimal number

0Ob0 Prefix to denote binary number

XXViii

PowerPC 604e RISC Microprocessor User's Manual



rA,rB

rA|0

rD

frA, frB, frC
frD
REG[FIELD]

0000

Instruction syntax used to identify a source GPR
The contents of a specified GPR or the value 0.
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronymsfor registers are shown in uppercasetext.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refersto the little-endian mode enable bit in the machine
state register.

In certain contexts, such asasignal encoding, thisindicates adon’t
care.

Used to express an undefined numerical value
NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in aregister. Although these bits
may be written to as either ones or zeros, they are aways read as
Z€Eros.

Acronyms and Abbreviations
Tablei contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ATE Automatic test equipment
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BPU Branch processing unit
BUC Bus unit controller
BUID Bus unit ID
CAR Cache address register
CIA Current instruction address
CMOS Complementary metal-oxide semiconductor
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
COP Common on-chip processor
CR Condition register
CRTRY Cache retry queue
CTR Count register
DAR Data address register
DBAT Data BAT
DCMP Data TLB compare
DEC Decrementer register
DMISS Data TLB miss address
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HASH1 Primary hash address
HASH2 Secondary hash address
IABR Instruction address breakpoint register
IBAT Instruction BAT
ICMP Instruction TLB compare
IEEE Institute for Electrical and Electronics Engineers
IMISS Instruction TLB miss address
1Q Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSuU Load/store unit
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MQ MQ register
MSB Most-significant byte
mshb Most-significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PIR Processor identification register
PLL Phase-locked loop
POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RPA Required physical address
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SLB Segment lookaside buffer
SPR Special-purpose register
SR Segment register
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
SRU System register unit
TAP Test access port
B Time base facility
TBL Time base lower register
TBU Time base upper register
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UIMM Unsigned immediate value
UISA User instruction set architecture
UTLB Unified translation lookaside buffer
uuT Unit under test
VEA Virtual environment architecture
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions
Tableii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSI exception

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU)

Integer unit (1U)

Instruction storage interrupt (1SI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation

Translation

Storage (locations)

Memory
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Table ii. Terminology Conventions (Continued)

The Architecture Specification This Manual
Storage (the act of) Access
Store in Write back
Store through Write through

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
SI SIMM

U IMM

ul UIMM

1,00 10 0...0 (shaded)

About This Book
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Chapter 1
Overview

This chapter provides an overview of the PowerPC 604e™ microprocessor. It includes the
following:
e A summary of 604e features

» Details about the 604e as an implementation of the PowerPC™ architecure. This
includes descriptions of the 604€’s execution model (that is, the programming
model).

» A description of the 604e execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

1.1 Overview

The 604eis an implementation of the PowerPC family of reduced instruction set computer
(RISC) microprocessors. The 604e implements the PowerPC architecture asiit is specified
for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer datatypes
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single- and
double-precision, respectively). For 64-bit PowerPC implementations, the PowerPC
architecture provides additional 64-bit integer data types, 64-bit addressing, and related
features.

The 604eisasuperscalar processor capable of issuing four instructions simultaneously. As
many as seven instructions can finish execution in parallel. The 604e has seven execution
units that can operate in parallel:

* Foating-point unit (FPU)

» Branch processing unit (BPU)

e Condition register unit (CRU)

e Load/store unit (LSU)

* Threeinteger units (1Us):
— Two single-cycle integer units (SCIUS)
— One multiple-cycle integer unit (MCIU)

This parallel design, combined with the PowerPC architecture's specification of uniform
instructions that allows for rapid execution times, yields high efficiency and throughput.
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The 604€'s rename buffers, reservation stations, dynamic branch prediction, and
completion unit increase instruction throughput, guarantee in-order completion, and ensure
a precise exception model. (Note that the PowerPC architecture specification refers to al
exceptions as interrupts.)

The 604e has separate memory management units (MM USs) and separate 32-Kbyte on-chip
caches for instructions and data. The 604e implements two 128-entry, two-way set
associative trandation lookaside buffers (TLBS), one for instructions and one for data, and
provides support for demand-paged virtual memory address translation and variable-sized
block trandation. The TLBs and the cache use least-recently used (LRU) replacement
agorithms.

The 604e has a 64-bit external data bus and a 32-bit address bus. The 604e interface
protocol allows multiple mastersto compete for system resources through acentral external
arbiter. Additionally, on-chip snooping logic maintains data cache coherency for
multiprocessor applications. The 604e supports single-beat and burst data transfers for
memory accesses and memory-mapped /O accesses.

The 604e uses an advanced, 2.5V CMOS pracess technology and is fully compatible with
TTL devices.

1.2 PowerPC 604e Microprocessor Features

This section describes features of the 604e, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

Figure 1-1 provides a block diagram showing features of the 604e. Note that this is a
conceptua diagram that shows basic features and does not attempt to show how these
features are physically implemented on the chip.
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Figure 1-1. Block Diagram
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Major features of the 604e are as follows:

High-performance, superscalar microprocessor
— Asmany as four instructions can be issued per clock
— Asmany as seveninstructions can be executing per clock (including threeinteger

instructions)

— Single-clock-cycle execution for most instructions
Seven independent execution units and two register files
— BPU featuring dynamic branch prediction

— Two-entry reservation station
Out-of-order execution through two branches
Shares dispatch bus with CRU

64-entry fully-associative branch target address cache (BTAC). In the 604e,
the BTAC can be disabled and invalidated.

512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

Condition register unit (CRU)

— Two-entry reservation station

— Shares dispatch bus with BPU

Two single-cycle |Us (SCIUs) and one multiple-cycle IU (MCIU)

— Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

— Each SCIU has atwo-entry reservation station to minimize stalls

— TheMCIU hasasingle-entry reservation station and provides early exit (three
cycles) for 16- x 32-bit and overflow operations.

— Thirty-two GPRsfor integer operands

Three-stage floating-point unit (FPU)

— Fully IEEE 754-1985-compliant FPU for both single- and double-precision

operations

Supports non-1EEE mode for time-critical operations

Fully pipelined, single-pass double-precision design

Hardware support for denormalized numbers

Two-entry reservation station to minimize stalls

Thirty-two 64-bit FPRs for single- or double-precision operands

— Load/store unit (L SU)

— Two-entry reservation station to minimize stalls
— Single-cycle, pipelined cache access
— Dedicated adder performs EA calculations

1-4
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Performs alignment and precision conversion for floating-point data
Performs alignment and sign extension for integer data

Four-entry finish load queue (FLQ) provides load miss buffering
Six-entry store queue

Supports both big- and little-endian modes

* Rename buffers

— Twelve GPR rename buffers
— Eight FPR rename buffers
— Eight condition register (CR) rename buffers
e Completion unit
— Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution.
— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes executed, dispatched, and fetched
instructions if branch is mispredicted

— Retires as many as four instructions per clock

» Separate on-chip instruction and data caches (Harvard architecture)
— 32-Kbyte, four-way set-associative instruction and data caches
— LRU replacement algorithm
— 32-byte (eight-word) cache block size

— Physically indexed/physical tags. (Note that the PowerPC architecture refersto
physical address space as real address space.)

— Cachewrite-back or write-through operation programmabl e on a per page or per
block basis

— Instruction cache can provide four instructions per clock; datacache can provide
two words per clock.

— Caches can be disabled in software.

— Caches can be locked.

— Parity checking performed on both caches

— Data cache coherency (MESI) maintained in hardware

— Secondary data cache support provided

— Instruction cache coherency optionally maintained in hardware

— Data cache linefill buffer forwarding. In the 604, only the critical double word
of the cache block was made available to the requesting unit at the time it was
burst into the line-fill buffer; subsequent data was unavailable until the cache
block wasfilled. In the 604e, subsequent datais also made available asit arrives
in the line-fill buffer.
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Separate memory management units (MMUS) for instructions and data

— Address trandlation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Both TLBs are 128-entry and two-way set associative

— The page table search is performed in hardware

— Separate IBATs and DBATS (four each) also defined as SPRs

— Separate instruction and data trandlation lookaside buffers (TLBS)

— LRU replacement algorithm

— 52-hit virtual address; 32-bit physical address

Bus interface features include the following:

— Selectable processor-to-bus clock frequency ratios (1:1, 3:2, 2:1, 5:2, 3:1, 7:2,
and 4:1)

— A 64-bit split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions

— Four burst write queues—three for cache copy-back operations and one for
snoop push operations

— Two single-beat write queues
— Additional signals and signal redefinition for direct-store operations

— Provides adata streaming mode that all ows consecutive burst read datatransfers
to occur without intervening dead cycles. This mode a so disables data retry
operations.

— No-DRTRY mode eliminates the DRTRY signa from the qualified data bus
grant condition. Thisimproves performance on read operations for systems that
do not usethe DRTRY signal. No-DRTRY mode makes read data available to
the processor one bus clock cycle sooner than if normal mode is used.

Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MESI) for datacache.
Bitsare provided in the instruction cache to indicate only whether a cache block
isvalid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

Power management

— Nap mode supports full shut down and snooping

— Operating voltage of 2.5+ 0.2V for processor core, 3.3V for externa signals
Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

In-system testability and debugging features through JTAG boundary-scan
capability
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Features of the 604e that are not implemented in the 604 are as follows:
» Additional specia-purpose registers

— Hardware implementati on-dependent register 1 (HID1) provides four read-only
PLL_CFG hitsfor indicating the processor/bus clock ratio.

— Three additional registersto support the performance monito—MMCRL1 isa
second control register that includes bits to support the use of two additional
counter registers, PMC3 and PMC4.

* |nstruction execution

— Separate execution unitsfor branch and condition register (CR) instructions. The
604e implementsacondition register unit (CRU) that executes condition register
logical instructions that were executed in the 604's BPU. The CRU makesiit
possible for branch instructions to execute and resolve before preceding CR
logical instructions. The 604e can dispatch one CR logical or branch instruction
per cycle, but it can execute both branch and CR logical instructions at the same
time.

— Branch correction in decode stage. Branch correction in the decode stage can
now predict branches whose target is taken from the count or link registersif no
updates of the count and link register are pending. This saves at |east one cycle
on branch correction when the Move to Special-Purpose Register (mtspr)
instruction can be sufficiently separated from the branch that usesthe SPR as a
target address.

— Ability to disable the branch target address cache (BTAC)—HIDO[30] has been
defined to allow the BTAC to be disabled. When HIDO[30] is set, the BTAC
contents are invalidated and the BTAC behaves asiif it were empty. New entries
cannot be added until the BTAC is enabled.

< Enhancements to cache implementation

— 32-Kbyte, physically addressed, split data and instruction caches. Like the 604,
both caches are four-way set associative; however, each cache hastwice as many
sets, logically separated into 128 sets of odd lines and 128 sets of even lines.

— Data cache line-fill buffer forwarding. In the 604, only the critical double word
of aburst operation was made available to the requesting unit at the time it was
burst into the line-fill buffer. Subsequent data was unavailable until the cache
block wasfilled. In the 604e, subsequent datais also made available asit arrives
in the line-fill buffer.

— Additional cache copy-back buffers. The 604eimplementsthree copy-back write
buffers (increased from one in the 604). Having multiple copy-back buffers
provides the ability for certain instructions to take fuller advantage of the
pipelined system bus to provide more efficient handling of cache copy-back,
block invalidate operations caused by the Data Cache Block Flush (dcbf)
instruction, and cache block clean operations resulting from the Data Cache
Block Store (dcbst) instruction.
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— Coherency support for instruction fetching. Instruction fetching coherency is
controlled by HIDO[23]. In the default mode, HIDO[23] is0, GBL isnot asserted
for instruction accesses, asis the case with the 604. If the bit is set, and
instruction tranglation is enabled (MSR[IR] = 1), the GBL signal is set to reflect
the M bit for this page or block. If instruction translation is disabled
(MSR[IR] = 0), the GBL signal is asserted for instruction fetches.

» System interface operation

— The604e hasthe samesignal configuration asthe 604; however, on the 604eVdd
and AV dd must be connected to 2.5 Vdc and OVdd must be connected to
3.3Vdc. The 604e uses split voltage planes, and for replacement compatibility,
604/604e designs should provide both 2.5-V and 3.3-V planes and the ability to
connect those two planes together and disable the 2.5-V plane for operation with
a604.

— Support for additional processor/bus clock ratios (7:2, 5:2, and 4:1).
Configuration of the processor/bus clock ratios is displayed through a new
604e-specific register, HID1. Notethat although thisregister isnot defined by the
PowerPC architecture, it is consistent with implementation-specific registers
implemented on some other processors.

— To support the changesin the clocking configuration, different precharge timings
for theABB, DBB, ARTRY, and SHD signals areimplemented internally by the
processor. Selectable prechargetimingsfor ARTRY and SHD can be disabled by
setting HIDO[7]. Precharge timings are provided in the 604e hardware
specifications.

— No-DRTRY maode. In addition to the normal and data streaming modes
implemented on the 604, a no-DRTRY mode isimplemented on the 604e that
improves performance on read operations for systems that do not use the
DRTRY signa. No-DRTRY mode makes read data available to the processor
one bus clock cycle sooner than in normal mode. In no-DRTRY mode, the
DRTRY signa is no longer sampled as part of aqualified bus grant.

— TheVOLTDETGND output signal isimplemented only on BGA packagesasan
indicator of the core voltage.

« Full hardware support for little-endian accesses. Little-endian accesses take
alignment exceptions for only the same set of causes as big-endian accesses.
Accessesthat cross aword boundary require two accesses with the lower-addressed
word accessed first.

« Additional eventsthat can be tracked by the performance monitor.

1.3 PowerPC Architecture Implementation

The PowerPC architecture shares the benefits of the POWER architecture optimized for
single-chip implementations. The PowerPC architecture design facilitates parallel
instruction execution and is scalable to take advantage of future technological gains.
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This section describes the PowerPC architecture in general, and specific details about the
implementation of the 604e as a low-power, 32-bit member of the PowerPC processor
family. Note that the individual section headings indicate the chaptersin the user’s manual
to which they correspond.

e Section 1.3.1, “Features,” describes general features of the 604e with respect to the
PowerPC architecture.

e Section 1.3.2, “PowerPC 604e Processor Programming Model,” describes the
aspects of the register and instruction implementation that are specific to the 604e.

» Section 1.3.3, “Cache and Bus Interface Unit Operation,” describes the
604e-specific cache features.

» Section 1.3.4, “Exceptions,” indicates that the 604e exception model isidentical to
that of the 604.

e Section 1.3.5, “Memory Management,” indicates that the 604e MMU
implementation isidentical to that of the 604.

e Section 1.3.6, “Instruction Timing,” describes specific characteristics of the 604e
instruction timing model.

e Section 1.3.7, “ Signal Descriptions,” describes differences in the operation of the
signals implemented on the 604e.

e Section 1.3.8, “ System Interface Operation,” describes differences in the 604e bus
protocol.

e Section 1.3.9, “Performance Monitor,” defines additional features and changesin
the 604e implementation of the performance monitor.

1.3.1 Features

The 604eis a high-performance, superscalar implementation of the PowerPC architecture.
Like other PowerPC processors, it adheres to the PowerPC architecture specifications but
also has additional features not defined by the architecture. These features do not affect
software compatibility. The PowerPC architecture allows optimizing compilersto schedule
instructions to maximize performance through efficient use of the PowerPC instruction set
and register model. The multiple, independent execution unitsin the 604e allow compilers
to maximize parallelism and instruction throughput. Compilers that take advantage of the
flexibility of the PowerPC architecture can additionally optimize instruction processing of
the PowerPC processors.

The following sections summarize the features of the 604e, including both those that are
defined by the architecture and those that are unique to the 604e implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
isimplemented:
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» PowerPC user instruction set architecture (Ul SA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

» PowerPC virtual environment architecture (VEA)—Describes the memory model
for amultiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. |mplementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and

the exception model. Implementations that conform to the OEA aso adhere to the
UISA and the VEA.

For more information, refer to The Programming Environments Manual .

The 604e complies to all three levels of the PowerPC architecture. Note that the PowerPC
architecture defines additional instructions for 64-bit data types. These instructions cause
an illega instruction exception on the 604e. PowerPC processors are allowed to have
implementation-specific features that fall outside, but do not conflict with, the PowerPC
architecture specification. Examples of features that are specific to the 604e include the
performance monitor and nap mode.

1.3.2 PowerPC 604e Processor Programming Model

This section provides a brief overview of the PowerPC programming model with respect to
the 604e. It describes the following:

* Implementation-specific registers
» 604e support of misaligned little-endian accesses
e The604einstruction set

1.3.2.1 Implementation-Specific Registers

The 604e and 604 implement the register set required by the 32-bit portion of the PowerPC
architecture. In addition, the 604e supports all 604-specific registers as well as severa
604e-specific registers, as described in this section.

Figure 1-2 shows the registers implemented in the 604e, indicating those that are defined
by the PowerPC architecture and those that are 604e-specific. All registers except the FPRs
are 32 bitswide.
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The 604eincludes the following registers not defined by the PowerPC architecture that are
either not provided in the 604 or incorporate changes from the 604 implementation:

» Hardware implementation-dependent register 1 (HID1)—Thisregister, which isnot
implemented in the 604, is used to display the PLL configuration. Thisregister is
described in Section 2.1.2.4, “Hardware |mplementation-Dependent Register 1
(HIDY)”

» Performance monitor counter registers (PMC3—-PMC4). The counters are used to
record the number of times a certain event has occurred. PMC3 and PMC4 are not
implemented in the 604. PMC1 and PMC2 are implemented in the 604 and are
described in the user’'s manual. See Section 2.1.2.5.3, “ Performance Monitor
Counter Registers (PMC1-PMC4),” for more information.

e Performance monitor mode control register 0 (MM CRO)—MM CRO has additional
bits not described in the user’s manual. The additional bits are described in Section
2.1.2.5.1, “Monitor Mode Control Register 0 (MMCRO).”

» Performance monitor mode control register 1 (MM CR1)—The performance
monitor control registers are used for enabling various performance monitoring
interrupt conditions and establishes the function of the counters. MMCRL1 is not
implemented in the 604. See Section 2.1.2.5.2, “Monitor Mode Control Register
1—MMCRL1," for more information.

« Hardware implementation-dependent register 0 (HIDO)—This register is used to
control various functions within the 604 and 604e, such as enabling checkstop
conditions, and locking, enabling, and invalidating the instruction and data caches.
Additional bits defined in the HIDO register disable the BTAC, control whether
coherency is maintained for instruction fetches, and disable the default precharge
values for the shared (SHD) and address retry (ARTRY) signals. The 604e defines
additional bits not included in the 604 implementations of the HIDO register. These
bits are described in Section 2.1.2.3, “Hardware | mplementati on-Dependent
Register 0

Refer to Chapter 2, “Programming Model,” for more information.

1.3.2.2 Support for Misaligned Little-Endian Accesses

The 604e provides hardware support for misaligned little-endian accesses. Little-endian
accesses in the 604e take an alignment exception for the same cases that big-endian
accesses take alignment exceptions. Any data access that crosses aword boundary requires
two accesses regardless of whether the data is in big- or little-endian format. When two
accesses are required, the lower addressed word (in the current addressing mode) is
accessed first. Consider the memory mapping in Figure 1-3.
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Big-Endian Mode

Contents’ A \ B \ c \ D \ E \ F \ G \ H ‘
Address 00 01 02 03 04 05 06 07
Contents’ | \ J \ K \ L \ M \ N \ o \ P ‘
Address 08 09 0A 0B oc oD OE oF

Little-Endian Mode

Contents’ A \ B \ c \ D \ E \ F \ G \ H ‘
Address 07 06 05 04 03 02 01 00
Contents’ | \ J \ K \ L \ M \ N \ o \ P ‘
Address OF OE oD oc 0B 0A 09 08

Figure 1-3. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-endian
address 0x4 containing data E is accessed first followed by one byte at big-endian address
0x3 containing data D. For a load halfword, the data written back to the GPR would be
D, E. If four bytes are requested starting at little-endian address 0x6, two bytes at
big-endian address 0x0 containing data A, B are accessed first followed by two bytes at
big-endian address OXE containing data O, P. For aload word, the data written back to the
GPRwould be O, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefined.

1.3.2.3 Instruction Set

The 604e implements the same set of instructions that are implemented in the 604; that is,
the entire PowerPC instruction set (for 32-bit implementations) and most optional
PowerPC instructions. For information, see Section 2.3.3, “Instruction Set Overview,” in
the user’smanual. The following changes affect information provided in the user’'s manual.

* Theundefined result of an integer divide overflow differs from that of the 604.

« Changesto the behavior of the dcbst and dcbtst instructions are described in
Table 2-43.
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1.3.3 Cache and Bus Interface Unit Operation

The 604e has separate 32-K byte data and instruction caches. Thisis double the size of the
604 caches. The 604e caches are logicaly organized as a four-way set with 256 sets
compared to the 604's 128 sets. The physical address bits that determine the set are 19
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the block of
data is an even 4-Kbyte page that resides in sets 0-127; otherwise, bit 19 is one and the
block of datais an odd 4-Kbyte page that resides in sets 128-255. Because the caches are
four-way set-associative, the cache set element (CSEO—CSEL) signals remain unchanged
from the 604. Figure 1-4 shows the organization of the caches.

Sets128-255
(odd pages) e® | | «*
: [ [ : I
Sets 0-127 - I -
(even pages) .’ u | | . -
rAa |
I I T T T T T T T |
Block 0| Address Tag 0 || State| Words 0-7 L
t t t t t t t u
Block 1| Address Tag 1 | | State Words 0-7 || -
} } } } } } } B
Block 2| Address Tag 2 || State| Words 0-7 |
t t t t t t t
Block 3| Address Tag3 [ [~ [State Words 0-7 I

|«——— 8 Words/Block ———— |

Figure 1-4. Cache Unit Organization

1.3.3.1 Instruction Cache
The 604€'s 32-Khyte, four-way set-associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions.

The 604e provides coherency checking for instruction fetches. Instruction fetching
coherency is controlled by HIDO[23]. In the default mode, HIDO[23] is 0 and the GBL
signal is not asserted for instruction accesses on the bus, as is the case with the 604. If the
bit is set and instruction trandation is enabled (MSR[IR] = 1), the GBL signal is set to
reflect the M bit for this page or block. If HIDO[23] is set and instruction translation is
disabled (MSR[IR] = 0), the GBL signal is asserted and coherency is maintained in the
instruction cache.

The PowerPC architecture defines a specia set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. In
addition, the instruction cache can be disabled and invalidated by setting the HIDO[16] and
HIDO[20] hits, respectively. The instruction cache can be locked by setting HIDO[18].
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1.3.3.2 Data Cache

The 604€’'s data cache is a 32-Kbyte, four-way set-associative cache. It is a
physically-indexed, nonblocking, write-back cache with hardware support for reloading on
cache misses. Within one cycle, the data cache provides double-word access to the L SU.

The 604e provides additional support for data cache line-fill buffer forwarding. In the 604,
only the critical double word of aburst operation was made available to the requesting unit
at the time it was burst into the line-fill buffer. Subsequent data was unavailable until the
cache block was filled. On the 604e, subsequent datais also made available asit arrivesin
the line-fill buffer.

The 604e implements three copy-back write buffers (the 604 has one). The additional
copy-back buffers allow certain instructions to take further advantage of the pipelined
system bus to provide highly efficient handling of cache copy-back operations, block
invalidate operations caused by the Data Cache Block Flush (dcbf) instruction, and cache
block clean operations resulting from the Data Cache Block Store (dcbst) instruction.

Like the 604, the data cache tags are dual-ported, so snooping does not affect the internal
operation of other transactions on the system interface. If a snoop hit occurs in a modified
block, the LSU is blocked internally for one cycleto allow the eight-word block of datato
be copied to the write-back buffer, if necessary.

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled and invalidated by setting the HIDO[17] and
HIDO[21] bits, respectively. The data cache can be locked by setting HIDO[19].

The 604e introduces some changes to dcbt/dcbtst instruction behavior. Both the 604 and
the 604e treat the dcbt and dcbtst instructions as no-opsif any of the following conditions
ismet:

» The address missesin the TLB and in the BAT.

e Theaddressisdirected to adirect-store segment.

» Theaddressisdirected to a cache-inhibited page.

» The604easo treatstheinstructions as no-opsif the data cache lock bit HIDO[19] is
set.

1.3.3.3 Additional Changes to the Cache
Note that the 604e makes the following additional changes to the cache:

» Snooping protocol change for Read-with-Intent-to-Modify bus operations—It is
now illegal for any snooping device to generate a SHD snoop response without an
ARTRY responseto a RWITM address tenure. This change is required for the 604
and 604e. This change is also effective for |ater revisions of the 604.
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» Two additional cache copy-back write buffers—The 604e businterface unit has six
write buffers, four for burst write operations and two for single-beat operations.

— Thefour burst write buffers can hold afull 32-byte cache block of datafor burst
write data bustenures. Of the four burst write buffers, one is asnoop push buffer
and the other three are cache copy-back buffers.

— The snoop push buffer is dedicated for snoop push write operations.

— Thethree copy-back buffers are used for cache copy-back operations, block
invalidates due to the Data Cache Block Flush (dcbf) instruction or block
cleans due to the Data Cache Block Store (dcbst) instruction.

— Each of the two single-beat write buffers can hold up to 8 bytes of data.

The 604 implements only one copy-back buffer, but is otherwise the same as the 604e
implementation. Refer to Chapter 3, “ Cache and Bus Interface Unit Operation,” for more
information.

1.3.4 Exceptions

The following subsections describe the PowerPC exception model and the 604e
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state asa
result of externa signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
athough aparticular PowerPC processor may recognize exception conditions out of order,
exceptions are handled dtrictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of next instruction
to be executed is saved in SRRO so execution can resume at the proper place when the
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
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condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.

The PowerPC architecture supports the following types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisaly; that is, the machine state at the time the exception
occursis known and can be completely restored.

» Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604e
implements only the imprecise nonrecoverable mode. The imprecise, recoverable
mode is treated as the precise mode in the 604e.

¢ Asynchronous—The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the external
interrupt and decrementer interrupt, which are maskable and asynchronous
exceptions. In the 604e, and in many PowerPC processors, the hardware
interrupt is generated by the assertion of the Interrupt (INT) signal, which is not
defined by the architecture. In addition, the 604e implements the system
management interrupt, which performs similarly to the external interrupt, and is
generated by the assertion of the System Management Interrupt (SMI) signal,
and the performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructions,
and any exceptions associated with those instructions, complete execution.
These exceptions are maskable by setting MSR[EE].

— Asynchronous, nonmaskable—There are two nonmaskabl e asynchronous
exceptionsthat are imprecise: system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signal's used to cause these
exceptions. These exceptions may not be recoverable, or may provide alimited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (MSR)—FEO and
FE1—that determine how floating-point exceptions are handled. There are four
combinations of hit settings, of which the 604e implements three. These are as follows:

» Ignore exceptionsmode (FEO = FE1 = 0). Inthismode, theinstruction dispatch logic
feeds the FPU as fast as possible and the FPU uses an internal pipeline to allow
overlapped execution of instructions. In this mode, floating-point exception
conditions return a predefined value instead of causing an exception.
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» Preciseinterrupt mode (FEO = 1; FE1 = x). This mode includes both the precise
mode and impreci se recoverable mode defined in the PowerPC architecture. In this
mode, afloating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 604e takes fl oating-point exceptions as
defined by the PowerPC architecture.

* Imprecise nonrecoverable mode (FEO = 0; FE1 = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRRO) may point to an instruction following the instruction that caused

the exception.

The 604e exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type

Exception

Asynchronous/nonmaskable

Machine check
System reset

Asynchronous/maskable

External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise

Instruction-caused exceptions

Synchronous/imprecise

Floating-point exceptions (imprecise nonrecoverable mode)

The 604€’s exceptions, and a general description of conditions that cause them, are listed

in Table 1-2.
Table 1-2. Overview of Exceptions and Conditions
Exception Vector Offset Causing Conditions
Type (hex)
Reserved 00000 —

System reset 00100

A system reset is caused by the assertion of either the soft reset or hard reset
signal.

Machine check | 00200

A machine check exception is signaled by the assertion of a qualified TEA
indication on the 604e bus, or the machine check interrupt (MCP) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

DSI

00300

The cause of a DSI exception can be determined by the bit settings in the

DSISR, listed as follows:

0 Setif aload or store instruction results in a direct-store program exception;
otherwise cleared.

1 Set if the translation of an attempted access is not found in the primary table
entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] = 1, set by an eciwx, ecowx, lwarx, or stwcx. instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.

9 Set if an EA matches the address in the DABR while in one of the three
compare modes.

10Set if the segment table search fails to find a translation for the effective
address; otherwise cleared.

11Set if eciwx or ecowx is used and EAR[E] is cleared.

ISI

00400

An ISI exception is caused when an instruction fetch cannot be performed for

any of the following reasons:

* The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an ISI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

« The fetch access is to a direct-store segment.

« The fetch access violates memory protection. If the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment

00600

An alignment exception is caused when the processor cannot perform a

memory access for the following reasons:

A floating-point load, store, Imw, stmw, lwarx, stwcx., eciwx, or ecowx

instruction is not word-aligned.

A dcbz instruction refers to a page that is marked either cache-inhibited or

write-through.

A dcbz instruction has executed when the 604e data cache is locked or
disabled.

An access is not naturally aligned in little-endian mode.

An Imw, stmw, Iswi, Iswx, stswi, or stswx instruction is issued in little-endian

mode.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

« Floating-point exceptions—A floating-point enabled exception condition
causes an exception when FPSCR[FEX] is set and depends on the values in
MSRI[FEO] and MSR[FE1].

FPSCRI[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

» lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PRY], is set. This exception is also generated
for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1.

» Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved

00AO00-00BFF

System call

00C00

A system call exception occurs when a System Call (sc) instruction is executed.

Trace

00D00

Either MSR[SE] = 1 and any instruction (except rfi) successfully completed or
MSRI[BE] = 1 and a branch instruction is completed.

Floating-point
assist

00E00

Defined by the PowerPC architecture, but not required in the 604e.

Reserved 00E10-00EFF | —
Performance 00F00 The performance monitoring interrupt is a 604e-specific exception and is used
monitoring with the 604e performance monitor, described in Chapter 9, “Performance
interrupt Monitor.”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.
Reserved 01000-012FF —
Instruction 01300 An instruction address breakpoint exception occurs when the address (bits O to
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit IABR[30] is set.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
management input signal is asserted. This exception is provided for use with the nap mode,
interrupt which is described in Section 7.2.13, “Power Management.”
Reserved 01500-02FFF Reserved, implementation-specific exceptions. These are not implemented in
the 604e.

1.3.5 Memory Management
The 604e MMU implementation is the same asis used in the 604.

1.3.6 Instruction Timing

As shown in Figure 1-5, the common pipeline of the 604e has six stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline
consists of three stages through which al floating-point instructions must pass.

Fetch (IF)

Y

Y
Decode (ID)

Y

(Four-instruction dispatch per clock
cycle in any combination)

Execute Stage

Complete (C)

Write-Back (W)

Figure 1-5. Pipeline Diagram
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The common pipeline stages are as follows:

Instruction fetch (IF)—During the | F stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

Instruction decode (ID)—During the ID stage, al time-critical decoding is
performed on instructions in the dispatch queue (D1SQ). The remaining decode
operations are performed during the instruction dispatch stage.

Instruction dispatch (DS)—During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous ID stage.
Logic associated with this stage determines when an instruction can be dispatched
to the appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit’s reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

Execute (E)—While the execution stage is viewed as a common stage in the 604e
instruction pipeline, theinstruction flow is split among the six execution units, some
of which consist of multiple pipelines. Aninstruction may enter the execute stage
from either the dispatch stage or the execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifiesthe completion stage that theinstruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

Complete (C)—The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early asthe
complete stage. If the completion logic detects an instruction containing exception
statusor if abranch hasbeen mispredicted, all subsequent instructionsare cancelled,
any results in rename buffers are discarded, and instructions are fetched from the
correct instruction stream.

The CR, CTR, and LR are also updated during the compl ete stage.

Writeback (W)—Thewriteback stageisused to write back any information from the
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. Integer divide instructions
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in paralel
with multiply and divide operations.
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The floating-point pipeline has three stages. Floating-point divide operations iterate in the
first stage.

The 604einstruction timing model has afew changes from the 604, although it is basically
the same design. A conceptual model of the 604e hardware design showing the
relationships between the various units that affect the instruction timing is shown in
Figure 1-6.

branch ) -
correction ) Dispatch Unit
» FetchUnit | «—»| (Four-instruction
dispatch)
instruction dispatch buses ¢
GPR (;perand bdses
| |
GPR result buses A A
FPR db
A “ “ A : operTn uses
CR result bus FPR result A
it el
YL Yy wyYY | yYY | yYY |yVYY vIiY vl vy y Y
[Rs(2)]|[Rs()|[Rs(2)| [ [Rs@)| | [RS)] | [RS(2)] " RS(2)
0] [0} 9}
R R EE R 25| | €
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Omg o LLCch (V]
CRU |4 BPU| [sciu| ] |sciu| | IMCIU LSU o ™ | | FPU o ™

 / l  /  / A | result status buses Y

' ,,

Completion 32-Kbyte data cache
Unit 4-way, 8 words/block

- Result buses
—— Operand buses

Figure 1-6. Block Diagram—Internal Data Paths
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Theinstruction timing in the 604e incorporates the following changes:

Addition of acondition register unit (CRU)—The CRU executes all condition
register logical and flow control instructions. Because the CRU shares the dispatch
buswith the BPU, only one condition register or branch instruction can beissued per
clock cycle. In the 604, the CR logical unit operations are handled by the BPU. The
addition of the CRU allows branch instructionsto potentially execute/resolve before
apreceding CR logical instruction. Although one CR logical or branch instruction
can be dispatched per clock cycle, both branch and CR logical instructions can
execute simultaneously. Branches are still executed in order with respect to other
branch instructions. If either the CR logical reservation station or the branch
reservation station is full then no instructions can be dispatched to either unit.

Branch correction in decode stage—Branch correction in the decode stage has been
modified to predict branches whose target is taken from the CTR or LR. This
correction occursif no CTR or LR updates are pending. Thiscorrection likeall other
decode stage corrections is done only on the first two instructions of the decode
stage. This correction saves at |east one cycle on branch correction when the mtspr
instruction can be separated from the branch that uses the SPR as a target address.

Instruction fetch when trandlation is disabled—If trandation is disabled

(MSR[IR] = 0), the 604e fetches instructions when they hit in the cache or if the
previous completed instruction fetch was to the same page as this instruction fetch.
Where an instruction access hits in the cache, the 604e continues to fetch any
consecutive accesses to that same page.

1.3.7 Signal Descriptions

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signalsto
allow for avariety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The 604e system interface is shown in Figure 1-7.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
are not active-low, such asAP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.
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DATA
ARBITRATION

DATA
TRANSFER

DATA
TERMINATION

INTERRUPT
SIGNALS

PROCESSOR
STATE

CLOCK

JTAG / COP

MISC

The 604e system interface differs from that of the 604 in the following respects:

« The 604e has the same signal configuration as the 604; however, on the 604e Vdd
and AV dd must be connected to 2.5 Vdc and OVdd must be connected to 3.3V dc.
The 604e uses split voltage planes, and for replacement compatibility, 604/604e
designs should provide both 2.5-V and 3.3-V planes and the ability to connect those
two planes together and disable the 2.5-V plane for operation with a 604.

» Addition of no-DRTRY mode. In addition to the normal and data-streaming modes
implemented on the 604, a no-DRTRY maode isimplemented on the 604e that
improves performance on read operations for systems that do not use the DRTRY
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signal. No-DRTRY mode makes read data availabl e to the processor one bus clock
cycle sooner than in normal mode. In no-DRTRY mode, the DRTRY signal isno
longer sampled as part of aqualified bus grant.

This functionality is described more fully in Chapter 8, “ System Interface
Operation.”

»  Power management signals—The 604e implements signalsthat allow the processor
to operate in three different modes—normal, nap, and doze.

— HALTED signa—The HALTED signal is asserted when the processor is halted
internally and no snoop copy-back operations are in progress.

— In nap mode, the HALTED signal is aways asserted.

— In doze mode, the HALTED signal is asserted unless a snoop-triggered
copy-back is pending.

— Innorma mode, the HALTED signal is not asserted.

— RUN signal—The 604e supports nap mode with aRUN signal similar to the 604.
Asserting the RUN signal is equivalent to the doze mode in the 603.

The operation of power management on the 604e is described in Section 7.2.13,
“Power Management.”

» Internal clocking changes—The 604e internal clocking schemeis more similar to
the 603e than to the 604. The 604e requires asingle system clock (SY SCLK) input
that sets the frequency of operation for the businterface. Internaly, the 604e uses a
phase-locked loop (PLL) circuit to generate a master clock for all of the CPU
circuitry (including the bus interface circuitry) which is phase-locked to the
SYSCLK input.

« Busclock ratios—The 604e supports processor-to-bus frequency ratios of 1:1, 3:2,
2:1,5:2,3:1,4:1, and 7:2. Eachratio is limited to the frequency ranges specified in
the PLL_CFG encodings shown in Table 7-6. Support for processor/bus clock ratios
5:2, 7:2, and 4:1 is not supported in the 604.

« To support the changesin the clocking configuration, different precharge timings
for the ABB, DBB, ARTRY, and SHD signals are implemented internally by the
processor. Selectable precharge timings for ARTRY and SHD can be disabled by
setting HIDO[7]. Precharge timings are provided in the 604e hardware
specifications.

» The604€'s PLL_CFG settings are compatible with the 603e and the 604, although
the supported frequency ranges may differ. Changing the PLL_CFG setting during
nap modeis not permitted. For specific information, see the hardware specifications.

e The addition of the VOLTDETGND output signal (BGA package only). The

VOLTDETGND signal is an indicator of the core voltage for use with power
supplies capable of providing 2.5-V and 3.3-V outputs.

Refer to Chapter 7, “ Signal Descriptions,” for further information.
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1.3.8 System Interface Operation

The system interface is specific for each PowerPC processor implementation. However, the
604e system interface differs only slightly from the 604. Some of the differences include
wider data and address buses, support for additional processor-to-bus freguencies, and
support for the optional no-DRTRY bus mode. For further information, refer to Chapter 8,
“System Interface Operation.”

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signalsto
alow for avariety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The interface is synchronous—all 604e inputs are
sampled at and al outputs are driven from the rising edge of the bus clock. The 604e
supports processor-to-bus frequency ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Support
for processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.

The 604e system interface is shown in Figure 1-8.

Address Bus <——»| <«———> Data Bus
Address Arbitration <«—— ~<«——— Data Arbitration
Address Transfer Start <—— |<«———> Data Transfer
Address Transfer <«——» PowerPC <«——> Data Transfer Termination
Transfer Attribute <—— Pr(?cossesor <«——> Processor State
Address Transfer Termination <—— [<«————> System Status
Clocks <«——> |<«——> Test/Control/Miscellaneous
T =
+3.3V ~

Figure 1-8. System Interface

Four-beat burst-read memory operationsthat load an eight-word cache block into one of the
on-chip caches are the most common bus transactions in typical systems, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the data cache).

The BIU implementsthe critical double-word first access where the double-word requested
by the fetcher or the load/store unit is fetched first and the remaining wordsin the line are
fetched later. The critical double-word as well as other words in the cache block are
forwarded to the fetcher or to the LSU before they are written to the cache.
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Memory accesses can occur in single-beat or four-beat burst datatransfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions. The 604e supports bus pipelining and out-of-order split-bus transactions. In
genera, the bus-pipelining mechanism allows as many as three address tenures to be
outstanding before a data tenure is initiated. Address tenures for address-only transactions
can exceed thislimit.

Typically, memory accesses are weakly-ordered. Sequences of operations, including
load/store string/multiple instructions, do not necessarily complete in the same order in
which they began—maximizing the efficiency of the bus without sacrificing coherency of
the data. The 604e allows load operations to precede store operations (except when a
dependency exists, of course). In addition, the 604e provides a separate queue for snoop
push operations so these operations can access the bus ahead of previously queued
operations. The 604e dynamically optimizes run-time ordering of load/store traffic to
improve overall performance.

The 604e implements a data bus write only signal (DBWO) that can be used for reordering
write operations. Asserting DBWO causes the first write operation to occur before any read
operations on a given processor. Although this may be used with any write operations, it
can also be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604e to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction pair (lwarx/stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations. Refer to
Chapter 8, “ System Interface Operation,” for more information.

1.3.9 Performance Monitor

The 604e incorporates a performance monitor facility that system designers can useto help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

A performance monitor control register (MMCRO or MMCR1) can be used to specify the
conditions for which a performance monitoring interrupt is taken. For example, one such
condition is associated with one of the counter registers (PM C1-PM C4) incrementing until
the most-significant bit indicates a negative value. Additionally, the sampled instruction
address and sampled data address registers (SIA and SDA) are used to hold addresses for
instruction and data related to the performance monitoring interrupt.

In addition to the performance monitor registers implemented on the 604, the 604e has two
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additional counter registers and one additional control register. The control register is
MMCR1 (SPR 956). The counters, PMC3 and PMC4, are SPR 957 and SPR 958,
respectively. MMCRO has aso been changed slightly from the original 604 definition.
These registers are described in Section 2.1.2.5, “ Performance Monitor Registers.”

When the 604e vectors to the performance monitor interrupt exception handler, it
automatically clears any pending performance monitor interrupts. Note that unlike the 604,
the 604e does not require MMCRO[ENINT] to be cleared (and possibly reset) before
external interrupts can be re-enabled.
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Chapter 2
Programming Model

This chapter describes the PowerPC programming model with respect to the PowerPC
604e. It consists of three major sections, which describe the following:

» Registersimplemented in the 604e
e Operand conventions
e The604einstruction set

2.1 Register Set

This section describes the registers in the 604e and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 604e-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 604e. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

Note that registers are defined at al three levels of the PowerPC architecture—user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
istransferred between memory and registers with explicit load and store instructions only.
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2.1.1 Register Set

The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Accessto registers can be explicit (that is, through the use of specificinstructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to accessthe XER is SPR 1). These registers can be accessed using the mtspr
and mfspr instructions.

I mplementation Note—The 604e fully decodesthe SPR field of theinstruction. If the SPR
specified is undefined, theillegal instruction program exception occurs.
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The PowerPC's user-level registers are described as follows:

User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The PowerPC general -purpose register file

consists of thirty-two GPRs designated as GPRO-GPR31. The GPRs serve as
data source or destination registers for al integer instructions and provide data
for generating addresses. See*“ Genera Purpose Registers (GPRS),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

Floating-point registers (FPRS). The floating-point register file consists of
thirty-two FPRs designated as FPRO—FPR31, which serves as the data source or
destination for al floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “ PowerPC
Register Set,” of The Programming Environments Manual.

Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO—CRY, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
“Condition Register (CR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

Implementation Note—The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrf) instruction may
perform more slowly when only aportion of the fields are updated as opposed to
al of thefields. The condition register access latency for the 604eisthe samein
both cases. Inthe 604e, an mtcr f instruction that setsonly asinglefield performs
significantly faster than one that sets either no fields or multiplefields. For more
information regarding the most efficient use of the mtcrf instruction, see
Section 6.6, “Instruction Scheduling Guidelines.”

Floating-point status and control register (FPSCR). The FPSCR contains al
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see“ Floating-Point Status and Control Register
(FPSCR),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

Implementation Note—The PowerPC architecture states that in some
implementations, the Move to FPSCR Fields (mtfsf) instruction may perform
more slowly when only aportion of thefields are updated as opposed to al of the
fields. In the 604e implementation, there is no degradation of performance.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
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registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— XER register. The XER indicates overflow and carries for integer operations. It
isset implicitly by many instructions. See “ XER Register (XER),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
“Link Register (LR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

— Count register (CTR). The CTR holds aloop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bectrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

e User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB), a 64-hit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level accessto the TB for
writing values to the TB. For more information, see “ PowerPC VEA Register
Set—Time Base,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

e Supervisor-level registers (OEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are described as follows:

— Configuration registers

— Machine state register (MSR). The M SR defines the state of the processor.
The M SR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. See“Machine
State Register (MSR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

Implementation Note—Note that the 604e defines MSR[29] as the performance monitor
marked mode bit (PM). This additional bit is described in Table 2-1.
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Table 2-1. MSR[PM] Bit

Bit

Name

Description

29

PM

Performance monitor marked mode

0  Process is not a marked process.

1  Process is a marked process.

This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, “Performance Monitor.”

— Processor version register (PVR). Thisregister is aread-only register that

identifies the version (model) and revision level of the PowerPC processor.
For more information, see “ Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

I mplementation Note—The processor version number is 9 for the 604e. The
processor revision level starts at 0x0100 and changes for each chip revision.
Therevision level isupdated on al silicon revisions.

— Memory management registers
— Block-addresstranslation (BAT) registers. The PowerPC OEA includes eight

block-address tranglation registers (BATS), consisting of four pairs of
instruction BATs (IBATOU—- BAT3U and IBATOL— BAT3L) and four pairs of
dataBATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for
alist of the SPR numbers for the BAT registers. For more information, see
“BAT Registers,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual. Because BAT upper and lower words are |oaded
separately, software must ensure that BAT translations are correct during the
time that both BAT entries are being |oaded.

The 604e implements the G bit in the IBAT registers; however, attempting to
execute code from an IBAT areawith G = 1 causes an ISl exception. This
complies with the revision of the architecture described in PowerPC
Microprocessor Family: The Programming Environments.

SDR1. The SDR1 register specifies the page table base address used in
virtual-to-physical address translation. For more information, see“SDR1,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.”

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SR0O-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “ Segment Registers,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.
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— Exception handling registers
— Dataaddressregister (DAR). After aDSl or an alignment exception, DAR is
set to the effective address generated by the faulting instruction. See “ Data
Address Register (DAR),” in Chapter 2, “ PowerPC Register Set,” of The
Programming Environments Manual for more information.

— SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. See“ SPRGO-SPRG3,” in Chapter 2, “ PowerPC Register Set,” of
The Programming Environments Manual for more information.

— DSISR. The DSISR register defines the cause of DS and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

— Machine status save/restore register 0 (SRR0). The SRRO register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See “Machine Status Save/Restore Register 0
(SRRO0),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Machine status save/restore register 1 (SRR1). The SRR1 register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See“Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Miscellaneous registers

— Time Base (TB). The TB is a 64-hit structure that maintains the time of day
and operates interval timers. The TB consists of two 32-bit registers—time
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions. See
“Time Base Facility (TB)—OEA,” in Chapter 2, “ PowerPC Register Set,” of
The Programming Environments Manual for more information.

— Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See“Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

I mplementation Note—In the 604e, the decrementer register is decremented
at a speed that is one-fourth the speed of the bus clock.

— Dataaddress breakpoint register (DABR)—This optional register can be used
to cause a breakpoint exception to occur if a specified data addressis
encountered. See“ DataAddress Breakpoint Register (DABR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for
more information.
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— External accessregister (EAR). This optional register is used in conjunction
with the eciwx and ecowx instructions. Note that the EAR register and the
eciwx and ecowx instructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processorsthat implement the OEA. See
“External Access Register (EAR),” in Chapter 2, “ PowerPC Register Set,” of
The Programming Environments Manual for more information.

¢ Hardwareimplementation register s—The PowerPC architecture allows
implementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 604e are described as follows. Note that in the 604e, these
registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception to occur if a specified instruction addressis
encountered.

— Hardware implementation-dependent registers (HIDO and HID1)—These
registers are used to control various functions within the 604e, such as enabling
checkstop conditions, and locking, enabling, and invalidating theinstruction and
data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level register
that has aright-justified, four-bit field that holds a processor identification tag
used to identify a particular 604e. Thistag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition isimplementation-specific.

— Performance monitor counter registers (PM C1-PM C4). The countersare used to
record the number of times a certain event has occurred.

— Monitor mode control registers (MMCRO and MMCR1)—Thisis used for
enabling various performance monitoring interrupt conditions and establishes
the function of the counters.

— Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registersis consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 PowerPC 604e-Specific Registers

This section describes registers that are defined for the 604e but are not included in the
PowerPC architecture. This section also includes adescription of the PIR, which isassigned
an SPR number by the architecture but is not defined by it. Note that these are al
supervisor-level registers.
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2.1.2.1 Instruction Address Breakpoint Register (IABR)

The 604e aso implements an Instruction Address Breakpoint Register (IABR). When
enabled, instruction fetch addresses will be compared with an effective address that is
stored in the IABR. The granularity of these compares will be aword. If the word specified
by the IABR isfetched, the instruction breakpoint handler will be invoked. Theinstruction
which triggers the breakpoint will not be executed before the handler is invoked.

ThelABR is shown in Figure 2-2.

ADDRESS |BE|TE|

0 29 30 31

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bitsin the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-29 Word address to be compared
30 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.
31 Translation enabled. This bit is compared with the MSRJ[IR] bit. An IABR match is
signaled only if these bits also match.

The instruction that triggers the instruction address breakpoint exception is not executed
before the exception handler is invoked. For more information about the IABR exception,
see Section 4.5.14, “ Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with the mtspr and mfspr instructions using the SPR number,
1010.

2.1.2.2 Processor Identification Register (PIR)

The processor identification register (PIR) is a 32-bit register that holds a processor
identification tag in the four least significant bits (PIR[28-31]). This tag is useful for
processor differentiation in multiprocessor system designs. In addition, thistag is used for
several direct-store bus operationsin the form of a*bus transaction from” tag.

PIR [] Reserved

0000000000OOCOOO0O0OOOCOOOOOOOOO | PID |
0 27 28 31

Figure 2-3. Processor Identification Register
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The PIR can be accessed with the mtspr and mfspr instructions using the SPR number,
1023. Notethat although this number isdefined by the OEA, theregister structureis defined
by each implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register 0

The hardware implementation dependent register 0 (HIDO) isan SPR that controlsthe state
of several functions within the 604e.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings

Bit Description
0 Enable machine check input pin
0  The assertion of the MCP does not cause a machine check exception.
1  Enables the entry into a machine check exception based on assertion of the MCP input, detection of a
Cache Parity Error, detection of an address parity error, or detection of a data parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.
1 Enable cache parity checking
0  The detection of a cache parity error does not cause a machine check exception.
1  Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.
2 Enable machine check on address bus parity error
0  The detection of a address bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.
3 Enable machine check on data bus parity error
0  The detection of a data bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.
7 Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.
12 Reserved. This bit should always be set to zero.
15 | Not hard reset
0 A hard reset occurred if software had previously set this bit
1  Ahard reset has not occurred.
16 | Instruction cache enable
0  The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1  Theinstruction cache is enabled
17 | Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The data cache is enabled.
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Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit

Description

18

Instruction cache lock

0  Normal operation

1  Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry.

19

Data cache lock

0  Normal operation

1  Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry. The dcbz instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20

Instruction cache invalidate all

0  The instruction cache is not invalidated.

1 When set, an invalidate operation is issued that marks the state of each block in the instruction cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21

Data cache invalidate all

0  The data cache is not invalidated.

1  When set, an invalidate operation is issued that marks the state of each clock in the data cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the data cache must be enabled for the invalidation to occur.

23

Coherent instruction fetch enable—controls whether instruction fetch bus operations are snooped.

0 In this default state, all instruction fetch address tenures are nonglobal, regardless of the state of the
MSRJIR] or the WIMG bits. Therefore, coherency checking on instruction fetches is disabled, as it is on
the 604.

1  The 604e presents a value on the GBL signal for instruction fetch address tenures that reflects the state
of the M bit if MSR[IR] = 1. If IR = 0 and HIDO[23] is set, the GBL signal is asserted for all instruction
fetch address tenures.

When modifying the instruction cache enable or instruction cache lock bits, software should place anisync

instruction after the mtspr[HIDO] instruction to ensure that the subsequent instructions are fetched with the

proper cache mode.

Note that, like the 604, the 604e never snoops its data cache during its own instruction fetch address tenure,

regardless of the state of GBL. Therefore, assertion of the GBL signal does not guarantee coherency

between the 604e’s own instruction cache and data cache. As in the 604, coherency between the instruction
and data caches must be maintained by software.

Additional information is provided in Section 3.2, “Instruction Cache Organization.”

24

Serial instruction execution disable

0  The 604e executes one instruction at a time. The 604e does not post a trace exception after each
instruction completes, as it would if MSR[SE] or MSR[BE] were set.

1 Instruction execution is not serialized.
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Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

29 | Branch history table enable

0  The 604e uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch
instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1  Allows the use of the 512-entry branch history table (BHT).

The BHT is disabled at power-on reset. The BHT is updated while it is disabled, so it can be initialized before

it is enabled.

30 BTAC disable—used to disable use of the 64-entry branch target address cache.

0 The BTAC is enabled and new entries can be added.

1 The BTAC contents are invalidated and the BTAC behaves as if it were empty. New entries cannot be
added until the BTAC is enabled.

Note that the BTAC can be flushed by disabling and re-enabling the BTAC using two successive mtspr

instructions.

When modifying the data cache enabl e or data cache lock bits, software should place async
instruction both before and after the move to the HIDO register to ensure that the data cache
is properly updated by instructions both before and after the move to HIDO instruction.

2.1.2.4 Hardware Implementation-Dependent Register 1 (HID1)

HID1 (SPR 1009), shown in Figure 2-4, is a supervisor-level register that allows software
to read the current PLL_CFG value. The PLL_CFG signal values are read from bits
HID1[0-3]. The remaining bits are reserved and are read as zeros. HID1 is a read-only
register.

|:| Reserved

| | 0000 0000 0000 0000 0000 0000 0000 |
0 34 31

Figure 2-4. HID1 Clock Configuration Register
The bit settingsin HID1 are described in Table 2-4.
Table 2-4. HID1 Bit Settings

Bits Description
0-3 PLL configuration bits (0-3)
4-31 Reserved (Read as zero)

2.1.2.5 Performance Monitor Registers

The remaining eight registers defined for use with the 604e are used by the performance
monitor. For more information about the performance monitor, see Chapter 9,
“Performance Monitor.”

2-12 PowerPC 604e RISC Microprocessor User's Manual



2.1.2.5.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRO can be written to or read only in supervisor mode. The MMCRO includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-5.

Table 2-5. MMCRO Bit Settings

Bit

Name

Description

DIS

Disable counting unconditionally
0  The values of the PMCn counters can be changed by hardware.
1  The values of the PMCn counters cannot be changed by hardware.

DP

Disable counting while in supervisor mode

0  The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters
are not changed by hardware.

DU

Disable counting while in user mode

0  The PMCn counters can be changed by hardware.

1  If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

DMS

Disable counting while MSR[PM] is set
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

DMR

Disable counting while MSR(PM) is zero.
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

ENINT

Enable performance monitoring interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

DISCOUNT

Disable counting of PMC1-PMC4 when a performance monitor interrupt is
signalled or the occurrence of an enabled time base transition with
((INTONBITTRANS =1) & (ENINT = 1)).

0 Signalling a performance monitoring interrupt does not affect the counting
status of PMC1-PMC4.

1  The signalling of a performance monitoring interrupt prevents the changing
of the PMC1 counter. The PMC2-PMC4 counters does not change if
PMCTRIGGER = 0.

Because, a time base signal could have occurred along with an enabled counter

negative condition, software should always reset INTONBITTRANS to zero, if the

value in INTONBITTRANS was a one.
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Table 2-5. MMCRO Bit Settings (Continued)

Bit

Name

Description

7-8

RTCSELECT

64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11  Pick bit 47 to count

INTONBITTRANS

Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on

0 Do not allow interrupt signal if chosen bit transitions.

1  Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

10-15

THRESHOLD

Threshold value. All 6 bits are supported by the 604e. The threshold value is
multiplied by 4, allowing threshold values from 0 to 252 in increments of 4. The
intent of the THRESHOLD support is to be able to characterize L1 data cache
misses.

16

PMC1INTCONTROL

Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative
1  Enable PMC1 Interrupt signaling due to PMC1 counter negative

17

PMCINTCONTROL

Enable interrupt signalling due to any PMCn (n>1) counter negative.

0  Disable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter
negative.

1  Enable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter negative.

18

PMCTRIGGER

PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative or after a performance monitoring interrupt is signalled.

0  Enable PMCn (n>1) counting

1 Disable PMCn (n>1) counting until PMC1 bit 0 is “on” or until a performance
monitor interrupt is signalled.

PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative. This provides a triggering mechanism to allow counting after a

certain condition occurs or after enough time has occurred. It can be used to

support getting the count associated with a specific event.

19-25

PMC1SELECT

PMC1 input selector, 128 events selectable; 25 defined. See Table 2-7.

26-31

PMC2SELECT

PMC2 input selector, 64 events selectable; 21 defined. See Table 2-8.

2.1.2.5.2 Monitor Mode Control Register 1—MMCR1

The 604e defines an additional monitor mode control register (MMCR1), which functions
as an event selector for the two 604e-specific performance monitor counter registers
(PMC3 and PMC4). MMCRL1 is SPR 956. The MMCRL register is shown in Figure 2-5.

|:| Reserved
|PmcaseLECT|PMCasELECT | 0000000000000000000000000000 |
0 45 910 31
Figure 2-5. Monitor Mode Control Register 1 (MMCR1)
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Bit settings for MMCRL are shown in Table 2-6. The corresponding events are described
in the Section 2.1.2.5.3, “Performance Monitor Counter Registers (PMC1-PMC4).”

Table 2-6. MMCRL1 Bit Settings

Bits Name Description
0-4 PMC3SELECT PMC3 event selector
5-9 PMC4SELECT PMC4 event selector
10-31 — Reserved

2.1.2.5.3 Performance Monitor Counter Registers (PMC1-PMC4)
PMC1-PMC4 are 32-hit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). However,
an interrupt is not signaled unless both MMCRO[PMCINTCONTROL] and
MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing M SR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MM CRO[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMC1 (SPR 953), PMC2 (SPR 954), PMC3 (SPR 957), and PMC4 (SPR 958) can be read
and written to by using the mfspr and mtspr instructions. Software is expected to use the
mtspr instruction to explicitly set the PMC register to non-negative values. If software sets
a negative value, an erroneous interrupt may occur. For example, if both
MMCRO[PMCINTCONTROL] and MMCRO[ENINT] are set and the mtspr instructionis
used to set a negative value, an interrupt signal condition may be generated prior to the
completion of the mtspr and the values of the SIA and SDA may not have any relationship
to the type of instruction being counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO[19-31]. The number of occurrences of these selected events is counted from the
time the MM CRO was set either until a new value is introduced into the MM CRO register
or until a performance monitor interrupt is generated. Table 2-7 lists the selectable events
with their appropriate MM CRO encodings.

Table 2-7. Selectable Events—PMC1

MMCRO0[0-4] Description

000 0000 Nothing. Register counter holds current value.

000 0001 Processor cycles 0bl1. Count every cycle.

000 0010 Number of instructions completed every cycle

000 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).
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Table 2-7. Selectable Events—PMC1 (Continued)

MMCRO0[0-4] Description

000 0100 Number of instructions dispatched

000 0101 Instruction cache misses

000 0110 Data TLB misses (in order)

000 0111 Branch misprediction correction from execute stage

000 1000 Number of reservations requested. The Iwarx instruction is ready for execution in the LSU.

000 1001 Number of data cache load misses exceeding the threshold value with lateral L2 cache intervention

000 1010 Number of data cache store misses exceeding the threshold value with lateral L2 cache
intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions completed

000 1101 Number of eieio instructions completed

000 1110 Number of integer instructions completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions completed every cycle (no loads or stores)

001 0000 LSU produced result.

001 0001 SCIU1 produced result for an add, subtract, compare, rotate, shift, or logical instruction.

001 0010 FPU produced result.

001 0011 Number of instructions dispatched to the LSU

001 0100 Number of instructions dispatched to the SCIU1

001 0101 Number of instructions dispatched to the FPU

001 0110 Valid snoop requests received from outside the 604e. Does not distinguish hits or misses.

001 0111 Number of data cache load misses exceeding the threshold value without lateral L2 intervention

001 1000 Number of data cache store misses exceeding the threshold value without lateral L2 intervention

001 1001 Number of cycles the branch unit is idle

001 1010 Number of cycles MCIUO is idle

001 1011 Number of cycles the LSU is idle. No new instructions are executing; however, active loads or
stores may be in the queues.

001 1100 Number of times the L2_INT is asserted (regardless of TA state)

001 1101 Number of unaligned loads

001 1110 Number of entries in the load queue each cycle (maximum of five). Although the load queue has
four entries, a load miss latch may hold a load waiting for data from memory.

001 1111 Number of instruction breakpoint hits
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Bits MMCRO0[26-31] are used for selecting events associated with PMC2. These settings
are shown in Table 2-8.

Table 2-8. Selectable Events—PMC2

MMCRO0[26-31] Description

00 0000 Register counter holds current value.

00 0001 Processor cycles 0bl. Count every cycle.

00 0010 Number of instructions completed. Legal values are 000, 001, 010, 011, 100.

00 0011 RTCSELECT bit transition. 0 =47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00 0100 Number of instructions dispatched (0 to 4 instructions per cycle)

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses (in order)

000111 Number of instruction TLB misses

00 1000 Number of branches completed. Indicates the number of branch instructions being completed
every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).

00 1001 Number of reservations successfully obtained (stwcx. operation completed successfully)

00 1010 Number of mfspr instructions dispatched (in order)

00 1011 Number of icbi instructions. It may not hit in the cache.

00 1100 Number of pipeline “flushing” instructions (sc, isync, mtspr (XER), mcrxr, floating-point operation

with divide by 0 or invalid operand and MSR[FEO, FE1] = 00, branch with MSR[BE] = 1, load
string indexed with XER = 0, and SO bit getting set)

00 1101 BPU produced result.

00 1110 SCIUO produced result (of an add, subtract, compare, rotate, shift, or logical instruction).

001111 MCIU produced result (of a multiply/divide or SPR instruction).

01 0000 Number of instructions dispatched to the branch unit.

01 0001 Number of instructions dispatched to the SCIUO.

01 0010 Number of loads completed. These include all cache operations and tlbie, tlbsync, sync, eieio,
and icbi instructions.

010011 Number of instructions dispatched to the MCIU

01 0100 Number of snoop hits occurred

010101 Number of cycles during which the MSR[EE] bit is cleared

010110 Number of cycles the MCIU is idle

010111 Number of cycles SCIU1 is idle

01 1000 Number of cycles the FPU is idle

01 1001 Number of cycles the L2_INT signal is active (regardless of TA state)

01 1010 Number of times four instructions were dispatched

01 1011 Number of times three instructions were dispatched
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Table 2-8. Selectable Events—PMC2 (Continued)

MMCRO[26-31]

Description

011100 Number of times two instructions were dispatched

011101 Number of times one instruction was dispatched

011110 Number of unaligned stores

011111 Number of entries in the store queue each cycle (maximum of six)

Bits MMCR1[0-4] are used for selecting events associated with PMC3. These settings are
shown in Table 2-9.

Table 2-9. Selectable Events—PMC3

MMCR1[0-4] Comments

0 0000 Register counter holds current value.

0 0001 Count every cycle.

00010 Indicates the number of instructions being completed every cycle

00011 RTCSELECT bit transition. 0 =47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00100 Number of instructions dispatched

00101 Number of cycles the LSU stalls due to BIU or cache busy. Counts cycles between when a load or
store request is made and a response was expected. For example, when a store is retried, there
are four cycles before the same instruction is presented to the cache again. Cycles in between are
not counted.

00110 Number of cycles the LSU stalls due to a full store queue

00111 Number of cycles the LSU stalls due to operands not available in the reservation station

0 1000 Number of instructions written into the load queue. Misaligned loads are split into two transactions
with the first part always written into the load queue. If both parts are cache hits, data is returned to
the rename registers and the first part is flushed from the load queue. To count the instructions that
enter the load queue to stay, the misaligned load hits must be subtracted. See event 8 in
Table 2-10.

01001 Number of cycles that completion stalls for a store instruction

01010 Number of cycles that completion stalls for an unfinished instruction. This event is a superset of
PMC3 event 9 and PMC4 event 10.

01011 Number of system calls

0 1100 Number of cycles the BPU stalled as branch waits for its operand

01101 Number of fetch corrections made at the dispatch stage. Prioritized behind the execute stage.

01110 Number of cycles the dispatch stalls waiting for instructions

01111 Number of cycles the dispatch stalls due to unavailability of reorder buffer (ROB) entry. No ROB
entry was available for the first nondispatched instruction.

1 0000 Number of cycles the dispatch unit stalls due to no FPR rename buffer available. First
nondispatched instruction required a floating-point reorder buffer and none was available.

10001 Number of instruction table search operations
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Table 2-9. Selectable Events—PMC3 (Continued)

MMCR1[0-4] Comments

10010 Number of data table search operations. Completion could result from a page fault or a PTE match.

10011 Number of cycles the FPU stalled

10100 Number of cycles the SCIU1 stalled

10101 Number of times the BIU forwards noncritical data from the line-fill buffer

10110 Number of data bus transactions completed with pipelining one deep with no additional bus
transactions queued behind it

10111 Number of data bus transactions completed with two data bus transactions queued behind

11000 Counts pairs of back-to-back burst reads streamed without a dead cycle between them in data
streaming mode

11001 Counts non-ARTRYd processor kill transactions caused by a write-hit-on-shared condition

11010 This event counts non-ARTRYd write-with-kill address operations that originate from the three
castout buffers. These include high-priority write-with-kill transactions caused by a snoop hit on
modified data in one of the BIU’s three copy-back buffers. When the cache block on a data cache
miss is modified, it is queued in one of three copy-back buffers. The miss is serviced before the
copy-back buffer is written back to memory as a write-with-kill transaction.

11011 Number of cycles when exactly two castout buffers are occupied

11100 Number of data cache accesses retried due to occupied castout buffers

11101 Number of read transactions from load misses brought into the cache in a shared state

11110 CRU Indicates that a CR logical instruction is being finished.

Bits MMCR1[5-9] are used for selecting events associated with PMC4. These settings are
shown in Table 2-9.

Table 2-10. Selectable Events—PMC4

MMCR1[5-9] Description

00000 Register counter holds current value

00001 Count every cycle

00010 Number of instructions being completed

00011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00100 Number of instructions dispatched

00101 Number of cycles the LSU stalls due to busy MMU

00110 Number of cycles the LSU stalls due to the load queue full

00111 Number of cycles the LSU stalls due to address collision

0 1000 Number of misaligned loads that are cache hits for both the first and second accesses. Related to
event 8 in PMC3.

0 1001 Number of instructions written into the store queue
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Table 2-10. Selectable Events—PMC4 (Continued)

MMCR1[5-9] Description
01010 Number of cycles that completion stalls for a load instruction
01011 Number of hits in the BTAC. Warning—if decode buffers cannot accept new instructions, the

processor refetches the same address multiple times.

01100 Number of times the four basic blocks in the completion buffer from which instructions can be
retired were used

01101 Number of fetch corrections made at decode stage

01110 Number of cycles the dispatch unit stalls due to no unit available. First nondispatched instruction
requires an execution unit that is either full or a previous instruction is being dispatched to that unit.

01111 Number of cycles the dispatch unit stalls due to unavailability of GPR rename buffer. First
nondispatched instruction requires a GPR reorder buffer and none are available.

1 0000 Number of cycles the dispatch unit stalls due to no CR rename buffer available. First
nondispatched instruction requires a CR rename buffer and none is available.

10001 Number of cycles the dispatch unit stalls due to CTR/LR interlock. First nondispatched instruction
could not dispatch due to CTR/LR/mtcrf interlock.

10010 Number of cycles spent doing instruction table search operations

10011 Number of cycles spent doing data table search operations

10100 Number of cycles SCIUO was stalled

10101 Number of cycles MCIU was stalled

10110 Number of bus cycles after an internal bus request without a qualified bus grant

10111 Number of data bus transactions completed with one data bus transaction queued behind

11000 Number of write data transactions that have been reordered before a previous read data
transaction using the DBWO feature

11001 Number of ARTRYd processor address bus transactions

11010 Number of high-priority snoop pushes. Snoop transactions, except for write-with-kill, that hit

modified data in the data cache cause a high-priority write (snoop push) of that modified cache
block to memory.This operation has a transaction type of write-with-kill. This event counts the
number of non-ARTRYd processor write-with-kill transactions that were caused by a snoop hit on
modified data in the data cache. It does not count high-priority write-with-kill transactions caused
by snoop hits on modified data in one of the BIU’s three copy-back buffers.

11011 Number of cycles for which exactly one castout buffer is occupied

11100 Number of cycles for which exactly three castout buffers are occupied

11101 Number of read transactions from load misses brought into the cache in an exclusive (E) state
11110 Number of undispatched instructions beyond branch

2.1.2.5.4 Sampled Instruction Address Register (SIA)
The two address registers contain the addresses of the data or the instruction that caused a

threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, “ Threshold Events.”
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The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by athreshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sasmpled instruction.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction inthe SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 955).

2.1.2.5.5 Sampled Data Address Register (SDA)

The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than athreshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 959).

2.1.3 Reset Settings

Table 2-11 shows the state of the registers after a hard reset and before the first instruction
is fetched from address OxFFFO_0100 (the system reset exception vector).

Table 2-11. Settings after Hard Reset (Used at Power-On)

Register Setting Register Setting
BATs Undefined LR Undefined
Caches* Undefined and disabled MSR 0x00000040 (only IP set)
CR Undefined PIR Undefined
CTR Undefined PVR ROM value
DABR Breakpoint is disabled. Reservation Undefined

Address is undefined. address

DAR Undefined Reservation flag | Cleared
DEC Undefined SDR1 Undefined
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Table 2-11. Settings after Hard Reset (Used at Power-On) (Continued)

Register Setting Register Setting
DSISR Undefined SPRGO-SPGR3 | Undefined
EAR E is cleared; SR Undefined
RID is undefined.
FPR Undefined SRRO Undefined
FPSCR Setto 0 SRR1 Undefined
GPR Undefined Time base Undefined
HIDO 0x00000000 TLB Undefined
IABR Breakpoint is disabled. XER Undefined

Address is undefined.

* The processor automatically begins operations by issuing an instruction fetch. Because caching is
inhibited at start-up, this generates a single-beat load operation on the bus.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VVEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of datain these registers.

2.2.1 Floating-Point Execution Models—UISA

The |IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

« Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision isdoneimplicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution modelsto
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.
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Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

» Underflow during multiplication using a denormalized operand
e Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length isimplicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
isan integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-12. (Although not permitted as memory operands, quad words are shown because
guad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to datain memory. For example,
a 12-byte dataitem is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory accessinstructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aigned.

2.2.4 Support for Misaligned Little-Endian Accesses

The 604e provides hardware support for misaligned little-endian accesses. Little-endian
accesses in the 604e take an aignment exception for the same cases that big-endian
accesses take alignment exceptions. Any data access that crosses aword boundary requires
two accesses regardless of whether the data is in big- or little-endian format. When two
accesses are required, the lower addressed word (in the current addressing mode) is
accessed first. Consider the memory mapping in Figure 2-6.
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Big-Endian Mode

Contents ’ A \ B \ c \ D \ E \ F \ G \ H ‘
Address 00 o1 02 03 04 05 06 07
Contents ’ | \ J \ K \ L \ M \ N \ o \ P ‘
Address 08 09 0A 0B oc oD 0E OF
Little-Endian Mode

Contents ’ A \ B \ c \ D \ E \ F \ G \ H ‘
Address 07 06 05 04 03 02 o1 00
Contents ’ | \ J \ K \ L \ M \ N \ o \ P ‘
Address OF 0E oD oc 0B 0A 09 08

Figure 2-6. Big-Endian and Little-Endian Memory Mapping

If two bytes are requested starting at little-endian address 0x3, one byte at big-endian
address 0x4 containing data E is accessed first followed by one byte at big-endian address
0x3 containing data D. For a load halfword, the data written back to the GPR would be
D, E. If four bytes are requested starting at little-endian address 0x6, two bytes at
big-endian address 0x0 containing data A, B are accessed first followed by two bytes at
big-endian address OXE containing data O, P. For aload word, the data written back to the
GPRwould be O, P, A, B.

Misaligned little-endian accesses to direct-storage segments are boundedly-undefined.

2.2.5 Floating-Point Operand

The 604e provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
standard 754-1985, |IEEE Sandard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “ Operand
Conventions,” in The Programming Environments Manual.

The 604e supports non-lEEE mode whenever FPSCR[29] is set. In this mode,
denormalized numbers, NaNs, and some | EEE invalid operations are treated in anon-1EEE
conforming manner. Thisis accomplished by delivering results that approximate the values
required by the |IEEE standard. Table 2-12 summarizes the conditions and mode behavior
for operands.
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Table 2-12. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI'=0)

Non-IEEE Mode
(NI=1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three

Zero all three

Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero Aand B
Double denormalized | Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize Band C | ZeroB and C
Double denormalized | Double denormalized
Single denormalized Normalized or zero Single denormalized Normalize Aand C | ZeroAand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNaN! QNaN!
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaN! QNaN!
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNanlt QNanl
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.
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Table 2-13 summarizes the mode behavior for results.

Table 2-13. Floating-Point Result Data Type Behavior

Precision DataType IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)

Single Denormalized Return single-precision Return zero.
denormalized number with trailing
zeros.

Single Normalized Return the result. Return the result.
Infinity
Zero
Single QNaN Return QNaN. Return QNaN.
SNaN
Single INT Place integer into low word of FPR. | If (Invalid Operation)
then
Place (0x8000) into FPR[32-63]
else

Place integer into FPR[32-63].

Double Denormalized Return double precision Return zero.
denormalized number.

Double Normalized Return the result. Return the result.
Infinity
Zero

Double QNaN Return QNaN. Return QNaN.
SNaN

Double INT Not supported by 604e Not supported by 604e

2.2.6 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses. The best performanceis
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

2.3 Instruction Set Summary

This section describes instructions and addressing modes defined for the 604e. These
instructions are divided into the following functional categories:

 Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

* Foating-point instructions—Theseincludefl oating-point arithmetic instructions, as
well asinstructionsthat affect thefloating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”
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» Loadand storeinstructions—Theseincludeinteger and floating-point |oad and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

» Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

» Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “Processor Control Instructions—UISA,”
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA."

» Memory synchronization instructions—T hese instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

* Memory control instructions—These instructions provide control of caches, TLBS,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

» External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “ Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes aparticular instruction or group of instructions. Thisinformation, which isuseful
in taking full advantage of the 604€'s superscalar parallel instruction execution, is provided
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
usesinstructions that are four byteslong and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It aso provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into aregister, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and aformatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
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mnemonics. Note that the architecture specification refers to smplified mnemonics as
extended mnemonics. Programs written to be portabl e across the various assemblersfor the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 604e instructions belong to one of the following three classes:

e Defined
e lllega
¢ Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-hit
implementations such as the 604e.

The classis determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of areserved instruction, the instruction isillegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor stateis not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in al PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 604e provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 604e provides hardware support for al instructions defined for 32-bit implementations.
The 604e does not support the optional fsgrt, fsgrts, and tibia instructions.
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A defined instruction can have invalid forms. The 604e provides limited support for
instructions that are represented in an invalid form. Appendix B, “Invalid Instruction
Forms,” lists al invalid instruction forms and specifies the operation of the 604e upon
detecting each.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

 Instructions not defined in the PowerPC architecture. The following primary
opcodes are defined asillegal but may be used in future extensions to the
architecture:

1,4,5,6,9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructionsto
perform new functions.

 Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the 604e.

Thefollowing primary opcodes are defined for 64-bit implementations only and are
illegal on the 604e:

2, 30, 58, 62

» All unused extended opcodes areillegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 areillegal for al 32-hit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

* Aninstruction consisting of only zerosisguaranteed to beanillegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokesthe system illegal instruction error handler (aprogram exception). Note that
if only the primary opcode consists of all zeros. Theinstruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction Class.”

The 604e invokes the system illegal instruction error handler (a program exception) when
it detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “ Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. With the exception of the instruction consisting entirely
of binary zeros, the illegal instructions are available for further additions to the PowerPC
architecture.
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2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:
e Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,” in
The Programming Environments Manual.

* Implementation-specific instructions required to conform to the PowerPC
architecture

« Architecturally-allowed extended opcodes
» Implementation-specific instructions

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-hit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” of The Programming
Environments Manual for more information about big- and little-endian byte ordering.
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The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwiseit ismisaligned. For adetailed discussion about
memory operands, see Chapter 3, “Operand Conventions” of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored.

Load and store operations have three categories of effective address generation:

* Register indirect with immediate index mode
» Register indirect with index mode
* Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

e Immediate
e Link register indirect
« Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Cal (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
achange in context. Execution of one of these instructions ensures the following:

* No higher priority exception exists (sc).

« All previousinstructions have completed to a point where they can no longer cause
an exception. If aprior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before thisinstruction is
executed.
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» Previousinstructions complete execution in the context (privilege, protection, and
address tranglation) under which they were issued.

* Theinstructionsfollowing the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if al previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that al preceding instructions have
completed execution and will not cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the M SR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 604e—those caused directly by the execution of
an instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

< An attempt to execute an illegal instruction causes theillegal instruction (program
exception) handler to beinvoked. An attempt by auser-level program to execute the
supervisor-level instructionslisted bel ow causesthe privileged instruction (program
exception) handler to be invoked. The 604e provides the following supervisor-level
instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tlbie, and tibsync. Note that the privilege level of the mfspr and mtspr instructions
depends on the SPR encoding.

« An attempt to access memory that is not available (page fault) causesthe IS
exception handler to be invoked.

* Anattempt to access memory with an effective address alignment that isinvalid for
the instruction causes the alignment exception handler to be invoked.

» The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

e The execution of atrap instruction invokes the program exception trap handler.

» The execution of afloating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

» Theexecution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”
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2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
604e and highlights any specia information with respect to how the 604e implements a
particular instruction. Note that the categories used in this section correspond to those used
in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

e CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
e Overflow option—The o suffix indicates that the overflow bit inthe XER isenabled.

Notethat on the 604e, the undefined result of an integer divide overflow differsfrom
that of the 604.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding afew user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

 Integer arithmetic instructions

* Integer compare instructions

* Integer logical instructions
 Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER register, and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-14 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-14. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax
Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
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Table 2-14. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low mullw  (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw  (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu  (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation iscomplete. The
604e arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the XER are set to reflect an overflow condition of a 32-bit result. This
may only occur when the overflow enable bit is set (OE = 1).
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2.3.4.1.2 Integer Compare Instructions

Theinteger compareinstructions algebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-15
summarizes the integer compare instructions.

Table 2-15. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table2-16 perform bit-parallel operations on the
specified operands. Logical instructionswith the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-16. Integer Logical Instructions

Name Mnemonic Ospyenrgr:(d

AND Immediate andi. rA,rS,UIMM
AND Immediate Shifted andis. rA,rS,UIMM
OR Immediate ori rA,rS,UuiMMm
OR Immediate Shifted oris rA,rS,UIMM
XOR Immediate xori rA,rS,UIMM
XOR Immediate Shifted Xoris rA,rS,uiMm
AND and (and.) rA,rS,rB

OR or (or.) rArS,rB
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Table 2-16. Integer Logical Instructions (Continued)

Name Mnemonic Operand
Syntax
XOR xor (xor.) rA,rS,rB
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rArS,rB
Equivalent eqv (eqv.) rA,rS,rB
AND with Complement andc (andc.) rA,rS,rB
OR with Complement orc (orc.) rA,rS,rB
Extend Sign Byte extsb (extsb.) rArS
Extend Sign Half Word extsh (extsh.) rA,rS
Count Leading Zeros Word cntlzw (cntlzw.) | rArS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
alows ssimpler coding of often-used functions such as clearing the leftmost or rightmost
bits of aregister, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of aregister. The result of the rotation iseither
inserted into the target register under control of amask (if amask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-17.

Table 2-17. Integer Rotate Instructions

Name Mnemonic Operand Syntax
Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME
Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert riwimi (rlwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.
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Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-18.

Table 2-18. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word slw  (slw.) rA,rS,rB
Shift Right Word Srw - (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions

Floating-point multiply-add instructions

Floating-point rounding and conversion instructions
Floating-point compare instructions
Floating-point status and control register instructions

Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the |EEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-19.

Table 2-19. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul  (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Divide (Double-Precision) fdiv  (fdiv.) frD,frA,frB
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Table 2-19. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB
Floating Square Root Single fsqrts (fsqrts.) frD,frB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsgrte (frsqrte.) frD,frB
Floating Select fsel frD,frAfrC,frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-20.

Table 2-20. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frAfrC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Foating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.
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Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

Table 2-21. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fetiw  (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare

instructions are summarized in Table 2-22.

Table 2-22. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fcmpu crfD,frAfrB
Floating Compare Ordered fcmpo crfD,frAfrB

Within the PowerPC architecture, an fcmpu or fcmpo instruction with the Rc bit set can
cause anillegal instruction program exception or produce a boundedly undefined result. In
the 604e, crfD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by agiven processor. Executing an FPSCR instruction ensuresthat all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-23.

Table 2-23. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Field Immediate mtfsfi  (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM.frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) | crbD
Move to FPSCR Bit 1 mtfsbl (mtfsbl.) | crbD
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2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-24 summarizes the floating-point
move instructions.

Table 2-24. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Move Register fmr  (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

Integer load instructions

Integer storeinstructions

Integer load and store with byte reverse instructions
Integer load and store multiple instructions
Floating-point load instructions

Floating-point store instructions

Memory synchronization instructions

Implementation Notes—The following describes how the 604e handles misalignment:

If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, aprotection
violation occurs on the new page). In these cases, the 604e triggersa DS| exception
and the instruction may have partially completed.

Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the sametype. Memory accessesthat crossaword boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.
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» Any operation that crosses aword boundary (doubleword for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accessesistrandated. If either trand ation resultsin a data memory violation, aDSI
exception issignaled. If two trandations crossfrom T = 1 into T = 0 space (a
programming error), the 604e completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and he 604e requires a direct-store protocol “Reply” from the
device. If two trangations crossfrom T = 0into T = 1 space, aDSl exception is
signaled.

* Inthe PowerPC architecture, the Rc bit must be zero for aimost all load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the
integer load indexed instructions (Ibzx, Ibzux, Ihzx, Ihzux, Ihax, lhaux, lwzx,
Iwzux), the integer store indexed instructions (stbx, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructions (Ihbrx, lwbrx, sthbrx,
stwbrx), the string instructions (Iswi, [swx, stswi, stswx), and the synchronization
instructions (sync, Iwar x). In the 604e, executing one of these invalid instruction
forms causes CRO to be set to an undefined value. The floating-point load and store
indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux, stfdx, stfdux) are also
invalid when the Rc bit isone. In the 604e, executing one of theseinvalid instruction
forms causes CRO to be set to an undefined value.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory

sync |wait for update

ichi [remove (invalidate) copy in instruction cache
sync |wait for ichi to be globally performed

isync [remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to itemsin the data cache may not be
reflected in memory until the fetch operations complete.

Specia care must be taken to avoid coherency paradoxesin systemsthat implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “ Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the 604e
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
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aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA#0andrA #rD (otherwiseinvalid), the EA isplaced into r A and the memory element
(byte, half word, word, or double word) addressed by the EA isloaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD asinvalid forms.

Implementation Notes—T he following notes describe the 604e implementation of integer
load instructions:

* Inthe PowerPC architecture, the Rc bit must be zero for ailmost all load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the
integer load indexed instructions (Ibzx, Ibzux, Ihzx, Ihzux, Ihax, Ihaux, Iwzx, and
Iwzux). In the 604e, executing one of theseinvalid instruction forms causes CRO to
be set to an undefined value.

» For load with update instructions (Ibzu, Ibzux, Ihzu, Ihzux, Ihau, Ihaux, lwzu,
Iwzux, Ifsu, Ifsux, Ifdu, Ifdux), whenrA =0or rA =rD theinstruction formis
consideredinvalid. If r A =0, the 604e sets GPRO to an undefined value. If rA =rD,
the 604e setsrD to an undefined value.

» The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebraic (Iha, Ihax) instructions with
greater latency than other types of load instructions. Thisis not the casefor the 604e.

Table 2-25 summarizes the integer load instructions.

Table 2-25. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed lbzx rD,rA,rB
Load Byte and Zero with Update lbzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB

2-42 PowerPC 604e RISC Microprocessor User's Manual



Table 2-25. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed | Ihaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed Iwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents of r S are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which r A is updated with the EA. For these forms, the following
rules apply:

e If rA £0, the effective addressis placed into r A.

e |IfrS=rA, the contentsof register r S are copied to the target memory element, then
the generated EA isplaced intorA (rS).

The PowerPC architecture defines store with update instructions withrA =0 asan invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-26
summarizes the integer store instructions.

Table 2-26. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rArB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB
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I mplementation Notes—The following notes describe the 604e implementation of integer
store instructions:

« |Inthe PowerPC architecture, the Rc bit must be zero for ailmost all load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the
integer store indexed instructions (stbx, stbux, sthx, sthux, stwx, stwux). In the
604e, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

« For the store with update instructions (stbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), when rA =0, the instruction form is considered invalid. In
this case, the 604e sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions

Table 2-27 describes integer 1oad and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing datain big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, “Byte Ordering,” in The Programming
Environments Manual.

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reversal instructions (Ihbrx, lwbrx, sthbrx, stwbrx).
In the 604e, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

Table 2-27. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic Operand Syntax
Load Half Word Byte-Reverse Indexed Thbrx rD,rA,rB
Load Word Byte-Reverse Indexed lwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

2.3.4.3.6 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of datato and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address trand ation of the second page.

2-44 PowerPC 604e RISC Microprocessor User's Manual



Implementation Notes—The following describes the 604e implementation of the
load/store multiple instruction:

» The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructions (Imw and stmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 604e
provides hardware support for Imw, stmw, Iswi, Iswx, stswi, and stswx instructions
to cross a page boundary. However, aDSI exception may occur when the boundary
is crossed (for example, if aprotection violation occurs on the new page).

» Executing an Imw instruction in which r A isin the range of registersto be loaded
orinwhich RA = RT = 0isinvalid in the architecture. In the 604e, all registers
loaded are set to undefined values. Any exceptions resulting from a memory access
causethe system error handler normally associated with the exception to beinvoked.

» The 604€'s implementation of the Imw instruction allows one word of datato be
transferred to the GPRs per internal clock cycle (that is, one register isfilled per
clock) whenever the datais found in the cache. For the stmw instruction, datais
transferred from the GPRs to the cache at arate of one word (GPR) per clock cycle.

e WhenanImw or stmw accessisto noncacheable memory, dataistransferred on the
external bus at arate of oneword per external bus tenure. Bus tenures are pipelined,
allowing a maximum tenure rate of one address tenure every three bus-clock cycles.

» Theload multiple and load string instructions can be interrupted after theinstruction
has partially completed. If r A has been modified and the instruction isrestarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

The PowerPC architecture defines the load multiple word (Imw) instruction with rA in the
range of registersto be loaded as an invalid form.

Table 2-28. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word | stmw rS,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registersor from registersto memory without concern for alignment. Theseinstructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-29
summarizes the integer load and store string instructions.
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In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, “Byte Ordering,” in The Programming Environments Manual for more
information.

Table 2-29. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate | Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rArB
Store String Word Immediate | stswi rS,rA,NB
Store String Word Indexed Stswx rS,rArB

L oad string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the sametype.
A non—word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non—word-aligned string operation that crosses a double-word boundary is also slower
than aword-aligned string operation.

Implementation Note—The following describes the 604e implementation of the
load/store string instruction:

e The 604e provides hardware support for Imw, stmw, Iswi, Iswx, stswi, and stswx
instructions to cross a page boundary. However, a DSI exception may occur when
the boundary is crossed (for example, if a protection violation occurs on the new
page).

« Anlswi or Iswx instructioninwhichrA or r B isin the range of registers potentially
to beloaded or inwhichrA =rD = 0isaninvalid instruction form. In the 604e, al
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

« Theload multiple and load string instructions can beinterrupted after theinstruction
has partially completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

* The 604e executes load string operations to cacheable memory at two cycles per
word if they are word-aligned. Two additional cycles per instruction are required if
they are not word-aligned. Cache-inhibited load string instructions require one bus
tenure per word if they are aligned. An additional tenure per instruction is required
if acache-inhibited load string operation is not word aligned.
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» The604eexecutes store string operationsto cacheable memory at arate of onecycle
per word if they are word-aligned. Cacheable store string operations that are not
word-aligned require five cycles per word. Cache-inhibited store string instructions
require one bus tenure per word if they are word-aligned. Two bus tenures per word
arerequired if a store string operation is not word aligned.

« Theload multiple and load string instructions can beinterrupted after theinstruction
has partially completed. If r A has been modified and the instruction isrestarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

2.3.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access resultsin an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operandsinto the target
FPR.

I mplementation Notes—The following notes characterize how the 604e treats exceptions:

*  Onthe604e, if afloating-point number is not aligned on aword boundary, an
alignment exception occurs.

» Thefloating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, [fdux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 604e, executing one
of theseinvalid instruction forms causes CRO to be set to an undefined value.

Note that the PowerPC architecture defines |oad with update instructionswithrA =0 asan
invalid form.

Table 2-30. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB
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2.3.4.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the

operands. Table 2-31 summarizes the floating-point store instructions.

Some floating-point store instructions require conversions in the LSU. Table 2-32 shows
the conversions made by the LSU when performing a Store Floating-Point Single

Table 2-31. Floating-Point Store Instructions

Name Mnemonic Operand Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,r B
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,r B
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,r B
Store Floating-Point as Integer Word Indexed stfiwx frS,rB

instruction.
Table 2-32. Store Floating-Point Single Behavior
FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized If(exp < 896)
then Denormalize and Store
else
Store
Double Denormalized Store Zero
Double Zero Store
Infinity
QNaN
Double SNaN Store
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Table 2-33 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is smply stored.
Only in afew cases are any other actions taken.

Table 2-33. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero Store
Infinity
QNaN
Double SNaN Store

Architecturaly, al floating-point numbers are represented in double-precision format
within the 604e. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The 604e supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cyclesare required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the 604e, there is also a case
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles areincurred during the store.
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2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of hitsin the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two |ow-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

» Branch relative

» Branch conditiona to relative address
» Branch to absolute address

» Branch conditional to absolute address
» Branch conditiona to link register

» Branch conditional to count register

Note that in the 604e, al branch instructions (b, ba, bl, bla, bc, bea, bel, bela, belr, belrl,
bectr, bectrl) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bitsin the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 604e flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions

Table 2-34 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbolsis provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics” in The
Programming Environments Manual for alist of simplified mnemonic examples.
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Table 2-34. Branch Instructions

Name

Mnemonic

Operand Syntax

Branch

b (ba bl bla)

target_addr

Branch Conditional

bc (bca bcl bcla)

BO,Bl,target_addr

Branch Conditional to Link Register

belr  (bclrl)

BO,BI

Branch Conditional to Count Register

beetr (bectrl)

BO,BI

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-35, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Table 2-35. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions asinvalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-36 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-36. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
acomplete set of simplified mnemonics.
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2.3.4.5 System Linkage Instruction—UISA

This section describes the System Call (sc) instruction that permits aprogram to call onthe
system to peform a servicee See adso Section2.3.6.1, “System Linkage
Instructions—OEA,” for additional information.

Table 2-37. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax

System Call sc _

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and specia-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions—VEA,” for the mftb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-38 summarizestheinstructionsfor reading from or writing to the condition register.

Table 2-38. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER mcrxr crfD
Move from Condition Register mfcr rD

Note that the performance of the mtcrf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

» Those mtcrf instructions that update only one field are executed in either of the
SClUs and the CR field is renamed as with any other SCIU instruction.

» Thosemtcrf instructionsthat update either multiplefields or nofieldsare dispatched
to the MCIU and a count/link scoreboard hit is set. When that bit is set, no more
mtcr f instructions of the sametype, mtspr instructionsthat update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared when the mtctr,
mtcrf, or mtlr instruction that the bit is executed.
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Because mtcrf instructions that update a single field do not require such synchronization
that other mtcr f instructions do, and because two such single-field instructions can execute
in paralel, it istypically more efficient to use multiple mtcrf instructions that update only
one field apiece than to use one mtcerf instruction that updates multiple fields. A rule of
thumb follows:
« Itisalways more efficient to use two mtcrf instructions that update only one field
apiece than to use one mtcrf instruction that updates two fields.

— Itisalmost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcr f instruction that updates three
fields.

— Itisoften more efficient to use morethan four mtcr f instructionsthat update only
one field than to use one mtcrf instruction that updates four fields.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-39 lists the mtspr and mfspr instructions.

Table 2-39. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr rD,SPR

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and

about related aspects of memory synchronization.
Table 2-40. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax
Load Word and Reserve Indexed lwarx rD,rA,rB
Store Word Conditional Indexed stwcex. rS,rA,rB

Synchronize

sync

Note: An attempt to perform an atomic memory access (Iwarx or stwcx.) to a location in
write-through-required mode causes a DSI exception and DSISR[5] is set.
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The proper paired use of thelwar x with stwex. instructions allows programmersto emul ate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” The Iwarx instruction must be paired with an stwcx.
instruction with the same effective address used for both instructions of the pair. Note that
the reservation granularity is implementation-dependent. See 2.3.5.2, “Memory
Synchronization Instructions—VEA,” for details about additional memory synchronization
(eleio and isync) instructions.

Implementation Notes—The following notes describe the 604e implementation of
memory synchronization instructions:

« The PowerPC architecture requires that memory operands for Load and Reserve
(Iwarx) and Store Conditional (stwcx.) instructions must be word-aligned. If the
operands to these instructions are not word-aligned on the 604e, an alignment
exception occurs.

« ThePowerPC architecture indicates that the granularity with which reservations for
Iwar x and stwcx. instructions are managed is implementation-dependent. In the
604e reservations, this granularity is a 32-byte cache block.

» The sync instruction causes the 604e to serialize. The sync instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched until the sync instruction completes.
Instructions already in the instruction buffer, due to prefetching, are not refetched
after the sync completes. If reflecting is required, isync should be executed to flush
the instruction buffer after the sync. The sync is dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for amost al load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the sync and
Iwarx instructions. In the 604e, executing one of these invalid instruction forms causes
CRO to be set to an undefined value. The stwcx. instruction isthe only load/store instruction
that hasavalid form if Rcis set. If the Rc bit is zero, the result of executing thisinstruction
in the 604e causes CRO to be set to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.
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2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA
definesthe mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 3, “ Cache and Bus Interface Unit Operation,” for more information.
Table 3-34 shows the mftb instruction.

Table 2-41. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simplified form.

Implementation Notes—The following information is useful with respect to using the
time base implementation in the 604e:

» The 604e allows user-mode read access to the time base counter through the use of
the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 32-bit PowerPC implementation, the 604e supports separate
access to the TBU and TBL, whereas 64-bit implementations can access the entire
TB register at once.

» Thetime base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the timebase enable (TBE) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additiona information about these instructions and
about related aspects of memory synchronization.
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Table 2-42 describes the memory synchronization instruction s defined by the VEA.

Table 2-42. Memory Synchronization Instructions—VEA

Name

Mnemonic

Operand
Syntax

Implementation Notes

Enforce In-Order
Execution of I/O

eieio

The eieio instruction is dispatched by the 604e to the LSU.
The eieio instruction executes after all preceding
cache-inhibited or write-through memory instructions execute;
all following cache-inhibited or write-through instructions
execute after the eieio instruction executes. When the eieio
instruction executes, an EIEIO address-only operation is
broadcast on the external bus to allow ordering to be enforced
in the external memory system.

Instruction
Synchronize

isync

The isync instruction causes the 604e to purge its instruction
buffers and fetch the double word containing the next
sequential instruction.

System designs that use a second-level

cache should take specia care to recognize the

hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internaly to the second-level
cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of 1/0O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As aresult, frequent use of this
instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard al prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

» Cache management instructions (user-level and supervisor-level)
*  Segment register manipulation instructions
» Trandation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See 2.3.6.3, “Memory Control Instructions—OEA,” for information about supervisor-level
cache, segment register manipulation, and trandation lookaside buffer management

instructions.
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2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, “Cache and Bus Interface
Unit Operation,” for more information about cache topics.

The user-level cache instructions provide software away to help manage processor caches.
The following sections describe how these operations are treated with respect to the 604e’'s
cache.

Aswith other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to al other processors and system
mechanisms, async instruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not allowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-43 summarizes
the cache instructions defined by the VEA. Note that these instructions are accessible to
user-level programs.

Table 2-43. User-Level Cache Instructions

Operand

Name Mnemonic
Syntax

Implementation Notes

Data Cache | dcbt rArB The VEA defines this instruction to allow for potential system
Block Touch performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action based
off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache.
The 604e treats the dcbt instruction as a no-op if any of the following
conditions is met:

« The address misses in the TLB and in the BAT.

« The address is directed to a direct-store segment.

« The address is directed to a cache-inhibited page.

« The data cache lock bit HIDO[19] is set.
The data brought into the cache as a result of this instruction is validated
in the same way a load instruction would be (that is, if no other bus
participant has a copy, it is marked as Exclusive, otherwise it is marked
as Shared). The memory reference of a dcbt causes the reference bit to
be set.
A successful dcbt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data Cache | dcbtst rA,rB This instructions behaves like the dcbt instruction.
Block Touch
for Store
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Table 2-43. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Implementation Notes

Data Cache
Block Set to
Zero

dcbhz

rArB

The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it presents an operation onto the 604e bus interface
that instructs all other processors to invalidate copies of the block that
may reside in their cache (this is the kill operation on the bus). After it has
exclusive access, the 604e writes all zeros into the cache block. If the
604e already has exclusive access, it immediately writes all zeros into
the cache block. If the addressed block is within a noncacheable or a
write-through page, or if the cache is locked or disabled, the an alignment
exception occurs.

If the operation is successful, the cache block is marked modified.

Data Cache
Block Store

dcbst

rArB

The effective address is computed, translated, and checked for protection
violations as defined in the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the clean operation, described in Table 3-4). If the 604e
has modified data associated with the block, the processor pushes the
modified data out of the cache and into the memory queue for future
arbitration onto the 604e bus. In this situation, the cache block is marked
exclusive. Otherwise this instruction is treated as a no-op.

A dcbst instruction followed by a store operation may appear out of order
on the bus so that systems that have L2 caches that check for cache
paradox conditions may detect a cache paradox.

When a 604e executes a dcbst instruction to a cache block in shared
state followed by a store instruction to the same cache block, the dcbst
instruction causes a clean transaction on the bus if the 604e’s L1 cache
block is not in modified data state. The store operation should cause a kill
operation on the bus because it should hit on shared data in the L1
cache. However, the 604e may send out the kill operation before the
clean operation. An L2 controller that performs paradox checking could
be confused by this kill/clean sequence to the same cache block. The kill
operation (with TCO-TC2 = 000) implies that the 604e is obtaining
exclusive rights and will modify the line. The following clean operation
implies that the 604e does not have the block modified. This may confuse
the L2 controller.

To avoid this, put a sync instruction after the dcbst instruction or don’t
check for this paradox.

Data Cache
Block Flush

dcbf

rA,rB

The effective address is computed, translated, and checked for protection
violations as defined by the VEA. If the 604e does not have exclusive
access to the block, it broadcasts the essence of the instruction onto the
604e bus (using the flush operation described in Table 3-4). In addition, if
the addressed block is present in the cache, the 604e marks this data as
invalid. On the other hand, if the 604e has modified data associated with
the block, the processor pushes the modified data out of the cache and
into the memory queue for future arbitration onto the 604e bus. In this
situation, the cache block is marked invalid.

Instruction
Cache
Block
Invalidate

icbi

rA,rB

The effective address is computed, translated, and checked for protection
violations as defined in the PowerPC architecture. If the addressed block
is in the instruction cache, the 604e marks it invalid. This instruction
changes neither the content nor status of the data cache. In addition, the
ICBI operation is broadcast on the 604e bus unconditionally to support
this function throughout multilayer memory hierarchy.
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2.3.5.4 Optional External Control Instructions

The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-44.

Table 2-44. External Control Instructions

Name Mnemonic Operand Syntax
External Control In Word Indexed eciwx rD,rA,rB
External Control Out Word Indexed ecowx rS,rA,rB

The eciwx and ecowx instructions cause an alignment exception if they are not
word-aligned.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA aso adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-45). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The rfi instruction is a
supervisor-level instruction that is useful for returning from an exception handler.

Table 2-45. System Linkage Instructions—OEA

Name Mnemonic Operand Syntax
System Call sc —
Return from Interrupt rfi —

2.3.6.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.

Table 2-46 summarizes the instructions used for reading from and writing to the MSR.

Table 2-46. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax
Move to Machine State Register mtmsr rs
Move from Machine State Register mfmsr rD
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The OEA defines encodings of the mtspr and mfspr instructions to provide access to
supervisor-level registers. The instructions are listed in Table 2-47.

Table 2-47. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr rD,SPR

Encodings for the 604e-specific SPRs are listed in Table 2-48.
Table 2-48 SPR Encodings for PowerPC 604e-Defined Registers (mfspr)

SPR:L
Register Name
Decimal spr[5-9] spr[0-4]

952 11101 11000 MMCRO
956 11101 11100 MMCR1
953 11101 11001 PMC1
954 11101 11010 PMC2
957 11101 11101 PMC3
958 11101 11110 PMC4
955 11101 11011 SIA
959 11101 11111 SDA
1010 11111 10010 IABR
1023 11111 11111 PIR

INote that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in

the instruction, with the high-order 5 bits appearing in bits 16—-20 of the instruction and the low-order 5 bits in
bits 11-15.

Simplified mnemonics are provided for the mtspr and mfspr instructions in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual. For a discussion of
context synchronization requirements when altering certain SPRs, refer to Appendix E,
“Synchronization Programming Examples,” in The Programming Environments Manual.

For information on SPR encodings (both user- and supervisor-level) see Chapter 8,
“Instruction Set,” in The Programming Environments Manual. Note that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user’s manual for that particular processor.
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2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

» Cache management instructions (supervisor-level and user-level)
*  Segment register manipulation instructions
» Trandation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-49 lists the only supervisor-level cache management instruction.

Table 2-49. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes
Data dcbi rArB The EA is computed, translated, and checked for protection
Cache violations as defined in the OEA.
Block The 604e broadcasts the essence of the instruction onto the
Invalidate 604e bus (using the kill operation). In addition, if the addressed

block is present in the cache, the 604e marks this data as
invalid regardless of whether the data is clean or modified. Note
that this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

See Section 2.7.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references adirect-store segment, the instruction istreated as ano-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) istreated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-50 provide access to the segment registers for 32-bit
implementations. Theseinstructions operate completely independently of the M SR[IR] and
MSR[DR] bit settings. Refer to “ Synchronization Requirements for Special Registers and
for Lookaside Buffers” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-50. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin rS,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin rD,rB
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2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTES reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, “Memory Management,” of The Programming Environments Manual
for more information about TLB operation. Table 2-51 summarizes the operation of the
TLB instructions in the 604e.

Table 2-51. Translation Lookaside Buffer Management Instruction

Operand

Name Mnemonic
Syntax

Implementation Notes

TLB tibie B Execution of this instruction causes all entries in the congruence class
Invalidate corresponding to the specified EA to be invalidated in the processor
Entry executing the instruction and in the other processors attached to the
same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, “Address Transfer Attribute Signals.”

The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlbie across all processors of a system.
The 604e implements the tibsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions. Multiple tibie
instructions can be executed correctly with only one tibsync
instruction, following the last tlbie, to guarantee all previous tlbie
instructions have been performed globally.

Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlbie have been completed prior
to executing the tlbie instruction.

When a snooping 604e detects a TLB invalidate entry operation on
the bus, it accepts the operation only if no TLB invalidate entry
operation is being executed by this processor and all processors on
the bus accept the operation (ARTRY is not asserted). Once
accepted, the TLB invalidation is performed unless the processor is
executing a multiple/string instruction, in which case the TLB
invalidation is delayed until it has completed.

Other than the possible TLB miss on the next instruction prefetch, the
tibie does not affect the instruction fetch operation—that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB tibsync — The TLBSYNC operation appears on the bus as a distinct operation,
Synchronize different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions.

See the tlbie description above for information regrading using the
tlbsync instruction with the tlbie instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Section 3.9.6, “Cache
Reaction to Specific Bus Operations.”

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. As described above, the tlbie
instruction can be used to invalidate a particular index of the TLB based on EA[14-19].
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With that concept in mind, a sequence of 64 tlbie instructions followed by asingletlbsync
instruction would cause al the 604e TLB structuresto be invalidated (for EA[14-19] = 0,
1, 2,..., 63). Therefore the tibia instruction is not implemented on the 604e. Execution of a
tlbia instruction causes an illegal instruction program exception.

Because the presence and exact semantics of the TLB management instructions is
implementation-dependent, system software should incorporate uses of these instructions
into subroutines to minimize compatibility problems.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of aternative mnemonicsis provided for some
frequently used operations (such as no-op, load immediate, |oad address, move register, and
complement register). Programs written to be portabl e across the various assembl ersfor the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For acomplete list of simplified mnemonics, see Appendix F, “ Simplified Mnemonics,” in
The Programming Environments Manual.
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Chapter 3
Cache and Bus Interface Unit Operation

This chapter describes the organization of the PowerPC 604€’s on-chip cache system, the
MESI cache coherency protocol, special concerns for cache coherency in single- and
multiple-processor systems, cache control instructions, various cache operations, and the
interaction between the cache and the memory unit.

The 604e has separate 32-K byte data and instruction caches. Thisis double the size of the
604 caches. The 604e caches are logically organized as a four-way set with 256 sets
compared to the 604's 128 sets. The physical address bits that determine the set are 19
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the block of
datais an even 4-Kbyte page that resides in sets 0-127; otherwise, bit 19 is one and the
block of datais an odd 4-Kbyte page that resides in sets 128-255. Because the caches are
four-way set-associative, the cache set element (CSE[0-1]) signalsremain unchanged from
the 604. Figure 3-1 shows the organization of the caches. The cache is designed to adhere
toawrite-back policy, but the 604e allows control of cacheability, write policy, and memory
coherency at the page and block level, as defined by the PowerPC architecture. The caches
use aleast recently used (LRU) replacement policy.

The 604e cache implementation has the following characteristics:

» The 604e has separate 32-K byte data and instruction caches. Thisis doublethe size
of the 604 caches.

« Instruction and data caches are four-way set associative. The 604e has 256 sets,
twice as much asthe 604's 128 sets.

e Cachesimplement an LRU replacement algorithm within each set.

e The cache directories are physically addressed. The physical (real) addresstag is
stored in the cache directory.

» Boththeinstruction and data caches have 32-byte cache blocks. A cache block isthe
block of memory that a coherency state describes, aso referred to as a cache line.
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» Thecoherency state bitsfor each block of the data cache allow encoding for al four
possible MESI states:

— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Shared (9)

— Invalid (1)

» The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

— Invalid (INV)
— valid (VAL)

e Each cache can beinvalidated or locked by setting the appropriate bitsin the
hardware implementation dependent register 0 (HIDO), a special-purpose register
(SPR) specific to the 604e.

The 604e uses eight-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 604e presents a double-word—-aligned address. Memory
controllers are expected to transfer this double word of datafirst, followed by double words
from increasing addresses, wrapping back to the beginning of the eight-word block as
required.

Burst misses can be buffered into two 8-word line-fill buffers before being loaded into the
cache. Writes of cache blocks by the 604e (for a copy-back operation) always present the
first address of the block, and transfer data beginning at the start of the block. However, this
does not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

The organization of the 604e instruction and data cachesis shown in Figure 3-1.
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Figure 3-1. Cache Unit Organization

As shown in Figure 3-2, the instruction cache is connected to the bus interface unit (BIU)
with a 64-bit bus; likewise, the data cache is connected both to the BIU and the load/store
unit (LSU) with a 64-bit bus. The 64-bit bus allows two instructions to be loaded into the
instruction cache or adoubleword (for example, adouble-precision floating-point operand)
to be loaded into the data cache in asingle clock. The instruction cache provides a 128-bit
interface to the instruction fetcher, so four instructions can be made available to the
instruction unit in asingle clock cycle.
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Figure 3-2. Cache Integration

3.1 Data Cache Organization

As shown in Figure 3-2, the physically-addressed data cache lies between the load/store
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The L SU supports the address generation and all the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

The 604€'s data cache is a 32-Kbyte, four-way set-associative cache. It is a physically-
indexed, nonblocking, write-back cache with hardware support for reloading on cache
misses. The set associativity of the data cache is shown in Figure 3-1.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27-A31 of the EA are zero); as aresult, cache blocks
are aligned with page boundaries. Within a single cycle, the data cache provides a double-
word accessto the LSU.
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The 604e implements three copy-back write buffers (the 604 has one). The additional copy-
back buffersallow certain instructionsto take further advantage of the pipelined system bus
to provide highly efficient handling of cache copy-back operations, block invalidate
operations caused by the Data Cache Block Flush (dcbf) instruction, and cache block clean
operations resulting from the Data Cache Block Store (dcbst) instruction.

The data cache supports a coherent memory system using the four-state MESI coherency
(modified/exclusive/shared/invalid) protocol. Like the 604, the data cache tags are dual-
ported, so snooping does not affect the internal operation of other transactions on the
system interface. If a snoop hit occurs in a modified block, the LSU is blocked internally
for one cycle to allow the eight-word block of datato be copied to the write-back buffer, if
necessary. The data cache can be invalidated on a block or invalidate-all granularity. The
data cache can be invalidated all at once or on a per cache block basis. The data cache can
be disabled and invalidated by setting the HIDO[17] and HIDO[21] bits, respectively. It can
be locked by setting HIDO[19].

The 604e provides additional support for data cache line-fill buffer forwarding. In the 604,
only the critical double word of a burst operation was made available to the requesting unit
at the time it was burst into the line-fill buffer. Subsequent data was unavailable until the
cache block was filled. On the 604e, subsequent data is also made available asit arrivesin
the line-fill buffer.

3.2 Instruction Cache Organization

The 604¢€'s 32-K byte, four-way set-associative instruction cacheis physically indexed. The
organization of the instruction cache, shown in Figure 3-1, is identical to that of the data
cache. Each cache block contains eight contiguous words from memory that are loaded
from an eight-word boundary (that is, bits A27-A31 of the effective addresses are zero); as
aresult, cache blocks are aligned with page boundaries.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The 604e provides coherency checking for instruction fetches.
Instruction fetching coherency is controlled by HIDQ[23]. In the default mode, HIDO[23]
is 0 and the GBL signal is not asserted for instruction accesses on the bus, as is the case
with the 604. If the bit is set and instruction translation is enabled (MSR[IR] = 1), the GBL
signal is set to reflect the M bit for this page or block. If HIDO[23] is set and instruction
trandation is disabled (MSR[IR] = 0), the GBL signal is asserted and coherency is
maintained in the instruction cache.

The PowerPC architecture defines a specia set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. In
addition, theinstruction cache can be disabled and invalidated by setting the HIDO[ 16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].

Theinstruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be
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contained in theinstruction cache, software must ensure that memory updates arevisibleto
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to items in the data cache may
not be reflected in memory until after afetch operation completes.

3.3 MMUs/Bus Interface Unit

The bus interface unit (BIU) is compatible with those of the PowerPC 601™ and
PowerPC 603™ microprocessors. It implements both tenured and split-transaction modes
and can handle as many as three outstanding transactions in pipelined mode. If permitted,
the BIU can complete one or more write transactions between the address and data tenures
of aread transaction. The BIU has 32-bit address and 64-bit data buses protected by byte

parity.

The BIU implementsthe critical-double-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical double word as well as other words in the cache block are forwarded to
the fetcher or to the LSU before they are written to the cache.

The bus can berun at 1x, 2/3x, 1/2x or 1/3x the speed of the processor. The programmable
on-chip phase-locked loop (PLL) generates the necessary processor clocks from the bus
clock.

When amemory access failsto hit in the cache, the 604e accesses system memory through
the bus interface unit. These operations must arbitrate for bus access.

The memory management units (MMUSs) provide address trandation as specified by the
PowerPC OEA, including block address trandation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-3.

The 604e implements separate MMUSs, one for instruction accesses and one for data
accesses. Virtual address tranglation uses two 128-entry, two-way set-associative (64 x 2)
tranglation lookaside buffers (TLBs), onefor instruction accesses and onefor data accesses.
The 604e provides hardware that performsthe TLB reload (al so known as page table walk)
when a trandation is not in a TLB. Memory management is described in Chapter 5,
“Memory Management.”
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The BIU handles block fill and write-back requests from either cache, as well as all
noncacheabl e reads and writes.

Instruction Unit Load/Store Unit

° Instruction MMU Data MMU
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Bus Interface Unit
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Figure 3-3. Bus Interface Unit and MMU

As shown in Figure 3-4, the 604e implements four types of memory gqueues to support the
four types of operations—Iline-fill, write, copy-back, and invalidation operations. For aline-
fill operation, the line-fill address from either the instruction or data cache is kept in the
memory address queue until the address can be sent out in an address tenure. After the
address tenure, the address is transferred to the line-fill address queue, which releases the
address bus for other transactions in split-transaction mode. As each double word for the
line-fill operation isreturned, it istransferred to the line-fill buffer, whereit isforwarded to
the LSU.

If a subseguent in-order load to the same cache block hits on valid datain the data line-fill
buffer, it is forwarded to the load/store unit from the line-fill buffer. In the 604e, a
subsequent in-order load to the same cache block isrequired to wait until the line-fill buffer
is completely written into the cache before data is accessed from the cache.
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Figure 3-4. Memory Queue Organization

For write operations, the address is kept in the memory address queue and the datais kept
in the write buffer until both can be sent out in awrite transaction. Similarly, for copy-back
operations the address is kept in the copy-back address queue and the data is kept in the
copy-back buffer until both can be sent out in a burst write transaction. For a cache control
instruction or astore to ashared cache block, the addressiskept in the cache control address
gueue until an address-only transaction is sent out to broadcast the cache control command.
Because all address queuesin the 604e are treated as part of the coherent memory system,
they are checked against the data cache and snoop addresses to ensure data consistency and
to maintain MESI coherency protocol.
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To support theincreased bandwidth of the nonblocking caches, the BIU can handle as many
as three pipelined transactions before data has to be provided by the memory system. The
three outstanding transactions can be any combination of the foll owing—two noncacheable
or write-through write operations, two data cache rel oads, one instruction cache reload, and
three cache block copybacks. In addition, address-only transactions are not counted in the
three outstanding transactions.

Typically, the three copy-back buffers are written to memory in the same order in which
they arefilled, having the lowest priority access among al the bus interface unit’'s memory
gueues. Write operations from the copy-back buffers can occur out-of-order under the two
following conditions:

< A snoop hit on one or more copy-back buffers causes the copy-back buffersto have
the second highest priority among the BIU’s memory queues, after only the snoop-
push buffer. In this case, the next write from these three copy-back buffers will be
from the buffer that contains the newest data corresponding to the snoop hit. If the
snoop address hit on multiple copy-back buffers (possibly due to the dcbst
instruction), the accesses for all matching buffers except the one with the newest
data are cancelled.

< Similarly, if execution of the dcbst instruction causes multiple copy-back buffersto
contain the same address, each buffer that contains this addressis cancelled unless
it contains the newest data or unless the buffer is the next address transaction to go
to the bus.

Notethat the three copy-back buffersin the 604eimprove the performance of multiple dcbf
and dcbst instructions because the address and data tenures of burst writes can be pipelined.

For details concerning the signals, see Chapter 7, “Signal Descriptions,” and for
information regarding bus protocol, see Chapter 8, “ System Interface Operation.”

3.4 Memory Coherency Actions

The following sections describe memory coherency actions in response to various
operations and instructions.

3.4.1 PowerPC 604e-Initiated Load and Store Operations

The following tables provide an overview of the behavior of the 604e with respect to load
and store operations. Table 3-1 does not include noncacheable cases. The first three cases
(load when the cache block is marked |) also involve selecting a replacement class and
copying back any modified data that may have resided in that replacement class.
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Table 3-1. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action

| Read —-ARTRY Load data and mark E
—-SHD

| Read —ARTRY Load data and mark S
SHD

| Read ARTRY Retry read operation

S None Don't care Read from cache

E None Don't care Read from cache

M None Don't care Read from cache

Table 3-2 does not address the noncacheable or write-through cases and does not
completely describe the exact mechanismsfor the operations described. Thefirst two cases
aso involve selecting a replacement class and copying back any modified data that may
have resided in that replacement class. The state of the SHD signal is unimportant in this
table.

Table 3-2. Memory Coherency Actions on Store Operations

Cache State Bus Operation Snoop Response Action
| RWITM —ARTRY Load data, modify it, mark M
I RWITM ARTRY Retry the RWITM
S Kill -ARTRY Modify cache, mark M*
S Kill ARTRY Retry the Kill
E None Don't care Modify cache, mark M
M None Don'’t care Modify cache

*When the 604e issues a kill operation (that does not receive an ARTRY snoop response)
the associated 604e’s cache block state changes from shared to modified. But if an lwarx
instruction is followed by an stwcx. instruction to a different address, the 604e may
broadcast a kill operation without marking the cache block in the on-chip cache modified.

In designing an L2 cache controller for the 604e, it should not be assumed that a kill
operation issued by the 604e results in the 604e gaining modified ownership.

The 604e does not broadcast the kill operation without marking the cache block as
modified.

3.4.2 General Comments on Snooping

When a 604e is not the bus master, it monitors all bus traffic and performs cache and
memory queue snooping as appropriate. The snooping is triggered by the receipt of a
qualified snoop request, asindicated by the simultaneous assertion of the transfer start (TS)
and the global (GBL) bus signals. The only exception to this qualified snoop request is for
four address-only transactions; the 604e also snoops its own TLB invalidate, TLBSYNC,
SYNC, and ICBI transactions regardless of the global (GBL) bit setting.
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The 604e drives two snoop status signals, ARTRY and SHD, in response to qualified snoop
requests. These signals provide information about the state of the addressed block with
respect to 604e for the current bus operation. These signals are described in more detail in
this document. The following additional comments apply:

« Any bustransaction that does not have the GBL signal asserted can be ignored by
all bus snoopers. All such transactions, except the self-snooping transactions, are
ignored by the 604e.

» Several bustransactions (write with flush, read, and read with intent to modify) are
defined twice, once with the TTO reset and once with it set (for atomic operations).
These operations behave in exactly the same manner with respect to bus snooping.

» Thereceiving processor may assert ARTRY in response to any bus transaction as a
result of internal conflicts that prevent the appropriate snooping.

» Thereceiving processor may clear its reservation due to snoop address hit with
several bus transactions (write-with-flush, read- with-intent-to-modify, write-with-
kill, and kill). The reservation is clear even if the 604e ARTRY s the particular bus
transaction.

3.5 Sequential Consistency

The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.5.1 Sequential Consistency Within a Single Processor

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order specified by the program with respect
to exceptions and data dependencies. Note that all potential precise exceptions are resolved
before memory accesses that miss in the cache are forwarded onto the memory queue for
arbitration onto the bus. In addition, although subsequent memory accesses can address the
cache, full coherency checking between the cache and the memory queue is provided to
avoid dependency conflicts.

3.5.2 Weak Consistency between Multiple Processors

The PowerPC architecture requires only weak consistency among processors—that is,
memory accesses between processors need not be sequentially consistent and memory
accesses among processors can occur in any order. The ability to order memory accesses
weakly provides opportunities for more efficient use of the system bus. Unless a
dependency exists, the 604e allows read operations to precede store operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the SY NC instruction.
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3.5.3 Sequential Consistency Within Multiprocessor Systems

The PowerPC architecture defines aload operation to have been performed with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be performed with respect to all other processors
(and mechanisms) when any load operation from the same |ocation returns the val ue stored
(or a subsequently stored value).

In the 604e, cacheable load operations and cacheable, non—write-through store operations
are performed with respect to all other processors (and mechanisms) when they have
arbitrated to address the cache. If acache miss occurs, these operations may drop amemory
request into the processor’s memory queue, which is considered an extension to the state of
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are performed with respect to other processors (and mechanisms) when they
have been successfully presented onto the 604e bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use of the lwar x/stwcx. instructions), the
results of these instructions are sensitive to the race conditions associated with the order in
which the processors are granted bus access.

If the 604e uses an L 2 cache, the system designer must ensure the memory system responds
to the SYNC and EIEIO bus operationsin such away that the required ordering of memory
operationsis preserved.

3.6 Memory and Cache Coherency

The 604e can support afully coherent 4-Gbyte (232) memory address space. Bus snooping
is used to drive afour-state (MESI) cache coherency protocol which ensures the coherency
of al processor and direct-memory access (DMA) transactions to and from global memory
with respect to each processor’s cache. It is important that all bus participants employ
similar snooping and coherency control mechanisms. The coherency of memory is
maintained at a granularity of 32-byte cache blocks (this size is aso called the coherency
or cache-block size).

All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

e Write-through (W attribute)

e Caching-inhibited (I attribute)

e Memory coherency (M attribute)

e Guarded (G attribute)
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These attributes are programmed by the operating system for each page and block. The W
and | attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory
location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.6.1 Data Cache Coherency Protocol

Each 32-byte cache block in the 604e data cache is in one of four states. Addresses
presented to the cache are indexed into the cache directory and are compared against the
cache directory tags. If no tags match, the result is a cache miss. If atag match occurs, a
cache hit has occurred and the directory indicates the state of the block through three state
bits kept with the tag.

Thefour possible statesfor ablock in the cache aretheinvalid state (1), the shared state (S),
the exclusive state (E), and the modified state (M). The four MESI states are defined in
Table 3-3 and illustrated in Figure 3-5.

Table 3-3. MESI State Definitions

MESI State Definition

Modified (M) | The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory—that is, the modified data in the block has not been written back to memory.

Exclusive (E) | The addressed block is in this cache only. The data in this block is consistent with system memory.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (1) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.

The primary objective of a coherent memory system is to provide the same image of
memory to al processors in the system. This is an important feature of multiprocessor
systems since it allows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed atask. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. Two processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
acacheblock not in the cache and externally broadcasting the intention to writeinto ablock
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)
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and aretry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the chip, or another processor had a queuing problem that
prevented appropriate snooping from occurring).

To maximize performance, the 604 provides a second path into the data cache directory for
snooping. This alows the mainstream instruction processing to operate concurrently with
the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain

memory coherency.

Modified in Cache A

Shared in Cache A

Cache A Cache B Cache A Cache B
- Data invalid\ - :
M — Valid Data not congruent S —{ Valid Data S —{ Valid Data
System Memory System Memory
Data invalid\ i
not congruent — Valid Data
Exclusive in Cache A Invalid in Cache A
Cache A Cache B Cache A Cache B
- Data invalid\ ; .
E — Valid Data —not congruent | —> Invalid Date X—{ Don't Care
System Memory System Memory
Valid Data — Don't Care

Figure 3-5. MESI States
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3.6.2 Coherency and Secondary Caches

The 604e supports the use of alarger secondary cache that can be implemented in different
configurations. The use of an L2 cache can serveto further improve performance by further
reducing the number of bus accesses. The L2 cache must operate with respect to the
memory system in a manner that is consistent with the intent of the PowerPC architecture.

L2 caches must forward all relevant system bus traffic onto the 604e so it can take the
appropriate actionsto maintain memory coherency as defined by the PowerPC architecture.

3.6.3 Page Table Control Bits

The PowerPC architecture allows certain memory characteristics to be set on apage and on
ablock basis. These characteristics include the following:

»  Write-back/write-through (using the W bit)
» Cacheable/noncacheable (using the | bit)
« Memory coherency enforced/not enforced (using the M hit)

An additional page control hit, G, handles guarded storage and is not considered here. This
ability alows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processorsin the system) or when the
address trandations of aliased real addresses specify different values for any of the WIM
bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides afew simple examplesto convey the
meaning of a paradox.

3.6.4 MESI State Diagram

The 604e provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The addressretry capability of the 604e enforcesthe MESI protocol, as shown
in Figure 3-6. Figure 3-6 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.
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Figure 3-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 3-6 gives a detailed list of MESI transitions for various operations and WIM bit
settings.

3.6.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

» Load or store operations to a page with WIM = 0b011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache-
inhibited page that hitsin the cache presents a paradox to the processor. The 604e
ignores the data in the cache and the state of the cache block is unchanged.

Store operation to a page with WIM = 0b10X and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store
operation to awrite-through page that hits a modified cache block in the cache
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presents a coherency paradox to the processor. The 604e writes the data both to the
cache and to main memory (note that only the data for this storeis written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.6.6 Coherency Paradoxes in Multiple-Processor Systems

It is possible to create acoherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of modified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors
accepting acache block into their caches and marking the dataas exclusive. Inturn, thiscan
lead to a state where the same cache block is modified in multiple processor caches.

Additional information on what bus operations are generated for the various instructions
and state conditions can be found in Chapter 8, “ System Interface Operation.”

3.7 Cache Configuration

There are several bitsin the HIDO register that can be used to configure the instruction and
data cache. These are described as follows:

* Bit 1—Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If thisbit is cleared, cache parity errors are
ignored. Note that the machine check exceptionisfurther affected by the MSR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing.

» Bit 7—Disable snoop response high state restore. If this bit is set, the processor
cannot drivethe SHD and ARTRY signalsto the high (negated) state, and the system
must restore the signals to the high state. See Chapter 7, “ Signal Descriptions,” for
more information.

» Bit 16—Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be accessed
asif they were marked cache-inhibited (WIM = X1X). All potential cache accesses
from the bus are ignored.

» Bit 17—Data cache enable. If thisbit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces all pages to be accessed asif they were
marked cache-inhibited (WIM = X1X). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

« Bit 18—Instruction cachelock. Setting thisbit locks the instruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and the icbi instruction continue to work as normal.
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» Bit 19—Data cache lock. Setting this bit locks the data cache, in which case all
cache misses are treated as cache-inhibited. Cache hits occur as normal, and cache
snoops and other operations continue to work as normal. Thisisthe only way to
deallocatean entry. If the datacacheislocked when the dcbzinstruction is executed,
it takes an alignment exception, provided the target address had been trandated
correctly.

» Bit 20—Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the
instruction cache asinvalid without copying back any datato memory. It isassumed
that no datain the instruction cache is modified. Accessto the cache is blocked
during thistime. Bit 20 is reset when the invalidation operation begins (usualy the
cycle immediately following the write to the register beginning an invalidate
operation).

e Bit 21—Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the data cache as
invalid without copying back any modified lines to memory. Accessto the cacheis
blocked during thistime. Bit 21 is reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accessesto
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation isin progress.

» Bit 30—BTAC disable. Used to disable use of the 64-entry branch target address
cache. When this bit is cleared, the BTAC is enabled and new entries can be added.
When this bit is set, the BTAC contents are invalidated and the BTAC behaves asif
it were empty. New entries cannot be added until the BTAC isenabled. The BTAC
can be flushed by disabling and re-enabling the BTAC using two successive mtspr
instructions.

The HIDO register can be accessed with the mtspr and mfspr instructions.

3.8 Cache Control Instructions

The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling cachesin both single- and multiprocessor systems. The exact behavior
of these instruction in the 604e is described in the following sections.

Several of these instructions are required to broadcast their essence (such asakill, clean, or
flush operation) onto the 604e bus interface so that all processors in a multiprocessor
system can take the appropriate actions. The 604e contains snooping logic to monitor the
bus for these commands and control logic to keep the cache and the memory queue
coherent. Additional details on the specific bus operations can be found in Chapter 7,
“Signa Descriptions.”

3.8.1 Instruction Cache Block Invalidate (icbi)
The effective address is computed, trandated, and checked for protection violations as
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defined in the PowerPC architecture. If the addressed block isin the instruction cache, the
604e marks this instruction cache block as invalid. This instruction changes neither the
content nor status of the data cache. The ICBI operation is broadcast on the 604e bus
unconditionally to support this function throughout a system’s memory hierarchy.

3.8.2 Instruction Synchronize (isync)

The isync instruction causes the 604e to purge its instruction buffers and fetch the next
sequential instruction.

3.8.3 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance enhancements through the use of
software-initiated prefetch hints. The 604e treats these instructions identicaly.
Implementations are not required to take any action based off the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
addressinto their cache.

The 604e treats these instructions as a no-opsif any of the following conditions is met:
» The address missesin the TLB and in the BAT.
e Theaddressis directed to a direct-store segment.
e Theaddressisdirected to a cache-inhibited page.
e Thedatacache lock bit HIDO[19] is set.

Regarding MESI cache coherency, the data brought into the cache as a result of this
instruction is validated in the same way aload instruction would be (that is, if no other bus
participant has a copy, it is marked as Exclusive, otherwise it is marked as Shared). The
memory reference of adcbt causes the reference bit to be set.

Note also that the successful dcbt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

3.8.4 Data Cache Block Set to Zero (dcbz)

As defined in the VEA, when the dcbz instruction is executed the effective address is
computed, transated, and checked for protection violations. If the 604e does not already
have exclusive access to this cache block, it presents akill operation onto the 604e bus—a
kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 604e writes all
zeros into the cache block. In the event that the 604e aready has exclusive access, it
immediately writes al zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.
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3.8.5 Data Cache Block Store (dcbst)

Asdefined inthe VEA, when a Data Cache Block Store (dcbst) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604e
does not have modified data in this block, the 604e broadcasts a clean operation onto the
bus. If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
604e bus. In this situation, the cache block is marked as exclusive. Otherwise this
instruction is treated as a no-op.

3.8.6 Data Cache Block Flush (dcbf)

Asdefined in the VEA, when a Data Cache Block Flush (dcbf) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604e
does not have modified data in this cache block, it broadcasts a flush operation onto the
604e bus. If the addressed cache block is in the cache, the 604e marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 604e bus and the cache block is marked as
invalid.

3.8.7 Data Cache Block Invalidate (dchbi)

Asdefined in the OEA, when a Data Cache Block Invalidate (dchi) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 604e broadcasts a kill operation onto the 604e bus. If the addressed cache block isin
the cache, the 604e marks this data as invalid regardless of whether the data is modified.
Because thisinstruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permissionisrequired for the DCBI (kill)
operation.

3.9 Basic Cache Operations

This section describes operations that can occur to the cache, and how these operations are
implemented in the 604e.

3.9.1 Cache Reloads

A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified dataisfirst written to external memory before the cache reload occurs.
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3.9.2 Cache Cast-Out Operation

The 604e uses an LRU replacement algorithm to determine which of the four possible
cache locations should be used for a cache update. Updating a cache block causes any
modified data associated with the least-recently used element to be written back, or cast out,
to system memory.

3.9.3 Cache Block Push Operation

When a cache block in the 604e is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 604e supports
two kinds of push operations—normal push operations and enveloped high-priority push
operations, which are described in Section 3.9.7, “Enveloped High-Priority Cache Block
Push Operation.”

3.9.4 Atomic Memory References

The Iwarx/stwex. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, “Programming Model.”

In a multiprocessor system, a processor can execute an Iwarx instruction and another
processor can broadcast aflush bus operation to the target address of the lwar x, invalidating
the cache block without canceling the reservation. Therefore, the first processor may
broadcast areservation set (TT = 0x01, address only) tenure without having avalid copy of
the reservation address in its data cache.

After a data cache hit for an lwarx instruction, the only condition that can cancel the
corresponding Iwarx reservation set transaction is another snoop, which clears the
reservation before the transaction wins arbitration to the address bus.

If the processor detects that a snoop flush operation to the reservation address has
invalidated the cache for the reservation address between the time at which the Iwarx hit
the cache and the time the Iwar x reservation set broadcast won arbitration to the address
bus, the processor always retries the lwarx at the cache even though it still performs the
reservation set address tenure. In this case, the retried lwar x instruction missesin the cache
and causes a read-atomic transaction on the bus. Externaly this would be seen as the
following:

snoop: flush (address A)
processor: lwar X reservation set operation (address A)

processor: read atomic (addressA)

To avoid this paradox, paradox checking mechanisms should allow an lwarx reservation
set operation to be broadcast when the processor can have avalid reservation but does not
have avalid copy of the lwarx target in its data cache.
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3.9.5 Snoop Response to Bus Operations

When the 604e is not the bus master, it monitors bus traffic and performs cache and
memory-queue snooping as appropriate. The snooping operation istriggered by the receipt
of a qualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of the TS and GBL bus signals.

Instruction processing is interrupted for one clock cycle only when a snoop hit occurs and
the snoop state machine determines a push-out operation is required.

The 604e maintains awrite queue of bus operations in progress and/or pending arbitration.
Thiswrite queue is also snooped in response to qualified snoop requests. Note that block-
length (four beat) write operations are aways snooped in the write queue; however, single-
beat writes are not snooped. Coherency for single-beat writes is maintained through the use
of cache operations that are broadcast with the write on the system interface or the
Iwar x/stwex. instructions.

The 604e drives two snoop status signals (ARTRY and SHD) in response to a qualified
snoop request that hits. These signals provide information about the state of the addressed
block for the current bus operation. For more information about these signals, see
Chapter 7, “Signal Descriptions.”

3.9.6 Cache Reaction to Specific Bus Operations

There are several bustransaction types defined for the 604e bus. The 604e must snoop these
transactions and perform the appropriate action to maintain memory coherency; see
Table 3-4. For example, because single-beat write operations are not snooped when they are
gueued in the memory unit, additional operations such as flush or kill operations, must be
broadcast when the write is passed to the system interface to ensure coherency.

A processor may assert ARTRY for any bustransaction dueto internal conflictsthat prevent
the appropriate snooping. In genera, if ARTRY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of the
processor.

The transactions in Table 3-4 correspond to the transfer type signals TTO-TT4, which are
described in Section 7.2.4.1, “Transfer Type (TT[0-4]).”

Table 3-4. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only blocks marked as modified (M). Assuming the
GBL signal is asserted, modified blocks are pushed out to memory, changing the state
to E.
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Table 3-4. Response to Bus Transactions (Continued)

Transaction

Response

Flush block

The flush operation is an address-only bus transaction initiated by executing a dcbf
instruction. Assuming the GBL signal is asserted, the flush block operation results in the
following:

« If the addressed block is in the S or E state, the state of the addressed block is
changed to I.

« If the addressed block is in the M state, the snooping device asserts ARTRY and SHD,
the modified block is pushed out of the cache, and its state is changed to I.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations are issued by a processor after
executing stores or stwcx., respectively to memory in a variety of different states,
particularly noncacheable and write-through. 60x processors do not use this transaction
code for burst transfers, but system use for bursts is not precluded. If they appear on the
bus and the GBL bit is asserted, the 60x processors have the same snoop response as
for flush block, except that a hit on the reservation address causes loss of the
reservation.

Kill block

Kill block is an address-only transaction issued by a processor after executing a dcbi
instruction, a dcbz instruction to a location marked | or S, or a write operation to a block
marked S. If a kill-block transaction appears on the bus, and the GBL bit is asserted, the
addressed block is forced to the | state if it is in the cache.

A kill block hit on a cache block marked modified causes a cache block push operation,
and then the block is invalidated.

Note that if a kill operation hits on a write queue entry, it does not cause that entry to be
purged. Instead the kill operation is ARTRYd and the entry is pushed to memory.

Write-with-Kkill

In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
block is forced to the | state, killing modified data that may have been in the block. In
addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.

A global write-with-kill operation on the bus can cause a loss of memory coherency and
make it appear that a program has not executed serially. Note that the 604e never
issues a global write-with-kill operation.

If data is stored at a memory location and a subsequent store to that address writes
different data into the L1 cache, it is possible for the 604e to ARTRY a snooped write-
with-kill operation to an address in the same cache block and simultaneously invalidate
the L1 cache line for address A. If the 604e attempts to load data from address A, it will
miss in the L1 cache and the 604e will arbitrate for the bus. If the 604e wins arbitration
over the ARTRYd write-with-kill operation, the load operation retrieves the original data
before the data for the write-with-kill is written to memory. Since the older data is
returned instead of the newer data, it appears that the program is not executed
sequentially.

A similar scenario occurs when data is in the 604e’s copy-back buffer, and other data is
in the L1 cache. In this scenario, the write-with-kill is ARTRYd, the data in the copy-back
buffer is pushed to memory and the data in the cache is killed. The subsequent load
retrieves from memory the data that had been in the copy-back buffer. The probability of
encountering either of these scenarios is increased by performing a dcbst to the
address before storing the newer data.

To avoid this scenario, do not write software that attempts to read from a location that
may still be in the L1 cache, and is the target address for a write-with-kill access (for
example a DMA operation). This may be done by flushing the block from the cache
before the DMA operation is initiated, or by using a software lock to indicate when the
DMA operation is complete and the location is safe for reading.

Alternatively, use write-with-flush instead of write-with-kill.
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Table 3-4. Response to Bus Transactions (Continued)

Transaction

Response

Read
Read-atomic

Read is used by most single-beat or burst reads on the bus. A read on the bus with the
GBL bit asserted causes the following snoop responses:

« If the addressed block is in the cache in the | state, the processor takes no action.

« If the addressed block is in the cache in the S state, the processor asserts the SHD
snoop status signal.

« If the addressed block is in the cache in the E state, the processor asserts the SHD
snoop status signal and changes the state of that cache block to S.

« If the addressed block is in the cache in the M state, the processor asserts both the
ARTRY and SHD snoop status signals and changes the state of that block in the

cache from M to S and pushes out the modified data.

Read-atomic operations appear on the bus in response to lwarx instruction and receive
the same snooping treatment as a read operation.

Read-with-intent-to-
modify (RWITM)
RWITM atomic

The RWITM transaction is issued to acquire exclusive use of a memory location for the
purpose of modifying it. One example is a processor that writes to a block that is not
currently in its cache. When GBL is asserted, RWITM transactions on the bus cause the
processors to take the following snoop actions:

« If the addressed block is not in the cache, it takes no action.

« If the addressed block is in the cache in the S or E state, the processor changes the
state of that block in the cache to I.

« If the addressed block is present in the cache in the M state, then the 60x asserts both
the ARTRY and the SHARED snoop status signals, pushes the dirty block out of the
cache and changes the state of that block in the cache from M to I.

RWITM atomic appears on the bus in response to the stwcx. instruction and receives
the same snooping treatment as RWITM.

It is now illegal for any snooping device to generate a SHD snoop response without an
ARTRY response to an RWITM address tenure.

If the processor sees this illegal snoop response to its RWITM address tenure, it will not
respond correctly to snoops to that address until that data is fully loaded into the data
cache from the line-fill buffer.

For a snoop-read/RWNITC to that address that hits on the line-fill buffer, the processor
asserts SHD instead of ARTRY. In this case, the processor updates the data cache to
be modified and the reading device has a copy marked S (shared). Store operations to
the cache block could be lost at this point.

For all invalidating snoop operations to that address, the processor asserts no response
instead of asserting ARTRY. In this case, the processor updates the data cache to be
modified while another device could also have a modified copy. The processor’s stores
to this cache block or another processor’s stores to this cache block could be lost.

TLBSYNC

This TLB synchronize operation is an address-only transaction placed onto the bus by a
604e when it executes a tlbsync instruction.

When the TLBSYNC bus operation is detected by a snooping 604e, the 604e asserts
the ARTRY snoop status if any operations based on an invalidated TLB are pending.

TLB invalidate

A TLB invalidate transaction is an address-only transaction issued by a processor when
it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12-19 of the EA in their correct respective bit positions.

In response to a TLB invalidate operation, snooping processors invalidate the entire
congruence class in any TLBs associated with the specified EA. In addition, a snooping
604e also asserts the ARTRY snoop status when it has a pending TLB invalidate
operation, and a second TLB invalidate operation is detected.

For more information on the tibie instruction, see Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).”
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Table 3-4. Response to Bus Transactions (Continued)

Transaction

Response

1/0 reply

The I/O reply operation is part of the direct-store operation. It serves as the final bus
operation in the series of bus operations that service a direct-store operation.

EIEIO

An EIEIO operation is put onto the bus as a result of executing an eieio instruction. The
eieio instruction enforces ordered execution of accesses to noncacheable memory. The
604s internally enforce ordering of such accesses with respect to the eieio instruction in
that noncacheable accesses due to instructions that occur before the eieio instruction in
the program order are placed on the bus before any noncacheable accesses that result
from instructions that occur after the eieio instruction with the EIEIO bus operation
separating the two sets of bus operations.

If the system implements a mechanism that allows reordering of noncacheable

requests, the appearance of an EIEIO operation should cause it to force ordering
between accesses that occurred before and those that occur after.

SYNC

The sync instruction generates an address-only transaction, which the 604e places
onto the bus.

When a 604e detects a SYNC operation on the bus, it asserts the ARTRY snoop status
if any other snooped cache operations are pending in the device.

Read-with-no-intent-to-
cache (RWNITC)

An RWNITC operation is issued by a bus-attached device as TTO-TT4 = 0b01011. The
604e snoops this operation and if it gets a cache hit on a block marked M, it writes the
block back to memory and marks it E.

This operation is useful for a graphics adapter that reads display data from memory. This
data may be in the processor’s cache and may be updated frequently. Because the
adapter does not cache the data, the processor need not leave the block in the S state,
requiring a bus operation to regain exclusive access.

XFERDATA

XFERDATA read and write operations are bus transactions that result from execution of
the eciwx or ecowx instructions, respectively. These instructions assist certain adapter
types (especially displays) to make high-speed data transfers. They do this by
calculating an effective address, translating it, and presenting the resulting physical
address to the adapter.

The XFERDATA read and write operations transfer a word of data to or from the
processor, respectively. They also present the 4-bit resource ID (RID) field, using the
concatenation of the bits TBST || TSIZ[0-2]. These transactions are unique in the sense
that the address that is transferred does not select the slave device; it is simply being
passed to the slave device for use in a subsequent transaction. Rather, the RID bits are
used to select among the slave devices.

Although the intent of these instructions is that the slave device that is selected by the
RID bits will use the address that is transferred in a subsequent data transfer, the exact
nature of this data transfer is not defined by 604e bus specifications. It is a private
transfer that can be defined by the system like any other direct memory access.

ICBI

An ICBI transaction is issued by a processor that executes an icbi instruction. All copies
of the addressed block in bus-attached instruction caches are invalidated. In this
transaction, a 604e could assert ARTRY in response to its own transaction.

3.9.7 Enveloped High-Priority Cache Block Push Operation

If the 604e has aread operation outstanding on the bus and another pipelined bus operation
hits against a modified block, the 604e provides a high-priority push operation. This
transaction can be envel oped within the address and data tenures of a read operation. This
feature prevents deadlocks in system organizations that support multiple memory-mapped
buses. More specifically, the 604e internally detects the scenario where one or more load
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requests are outstanding and the processor has pipelined a write operation on top of the
load. Normally, when the data bus is granted to the 604e, the resulting data bus tenure is
used for the load operation.

The enveloped high-priority cache block push feature defines a bus signa, the data bus
write only qualifier (DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the first store operation instead.
If no store operation is pending, the first read operation is performed. If no write operation
is pending, the 604e can perform a read operation. This signal is described in detail in
Section 8.11, “Using Data Bus Write Only.” Note that the envel oped copy-back operation
isan internally pipelined bus operation.

3.9.8 Bus Operations Caused by Cache Control Instructions

Table 3-5 provides an overview of the bus operationsinitiated by cache control instructions.
Note that Table 3-5 assumes that the WIM bits are set to 001; that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.

3.9.9 Cache Control Instructions

Table 3-5 lists bus operations performed by the 604e when they execute cache control
instructions.

Table 3-5. Bus Operations Initiated by Cache Control Instructions

Instruction Cache State Next Cache State Bus Operation Comment
sync Don't care No change SYNC First clears memory queue
eieio Don't care No change EIEIO No clear meaning
icbi Don't care | ICBI —
dcbi Don't care | Kill —
(invalidate)
dcbf E,S, I | Flush —
(flush) - __ -
M | Write-with-kill Marked as write-through
dcbst E, S| No change Clean —
(store) - —— -
M E Write-with-kill Marked as write-through
dchz | M Kill May also replace
(zero)
S M Kill —
M, E M None Write over modified data
dcbt, dcbtst | | E,S Read State change on reload
M, E, S No Change None —
tlbsync Don't care No change TLBSYNC —
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Table 3-5 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, “ Cache Actions”

Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instruction
Set,” in The Programming Environments Manual describe the cache control instructionsin
detail. Several of the cache control instructions broadcast onto the 604e interface so that al
processors in a multiprocessor system can take appropriate actions. The 604e contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 604e, see Chapter 8, “ System Interface Operation.”

3.10 Cache Actions

Table 3-6 lists the actions that occur for various operations depending on different WIM bit
settings. It also provides information about general cache conditions and does not take into
account all possible interactions and conditions. In particular, Table 3-6 does not address
many of the conditions that might be encountered in an in-line L2 cache implementation.

Table 3-6. Cache Actions

Cache | MESI Bus Bus Snoop

WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action

000 | Load Read 000 01010 | (n/a) (None) Load the block of data into
cache
forward data from load
mark cache block E

000 Load Read 000 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

000 | Load Read 000 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
000 ME Load (None) (nfa) | (n/a) (n/a) (n/a) Load from cache
S

001 | Load Read 001 01010 | (n/a) (None) Load the block of data into

cache

mark cache block E
load from cache

001 | Load Read 001 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S

001 | Load Read 001 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
001 ME Load (None) (nfa) | (n/a) (n/a) (n/a) Load from cache
S
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
011 ESI Load Single- 01M 01010 | (n/a) (None) or Load from main memory
010 beat read 11M SHD
110
111
011 ESI | Load Single- 01M 01010 | (n/a) ARTRY or Release the bus
010 beat read 11M ARTRY&SHD | retry the operation
110
111
011 M Load Single- 01iM 01010 | (n/a) (None) or Paradox—cache should be |
010 beat read 11M SHD load from main memory
110
111
011 M Load Single- 01M 01010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read 11M ARTRY&SHD | release the bus
110 retry the operation
111
100 Load Read 100 01010 | (n/a) (None) Load the block of data into
cache
load from cache
mark the cache block E
100 Load Read 100 01010 | (n/a) SHD Load the block of data into
cache
load from cache
mark cache block S
100 Load Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME Load (None) (nfa) | (n/a) (n/a) (n/a) Load from cache
S
101 | Load Read 101 01010 | (n/a) (None) Load the block of data into
cache

load from cache
mark cache E

101 | Load Read 101 01010 | (n/a) SHD Load the block of data into
cache

load from cache

mark cache block S

101 Load Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
000 | lwarx Read 000 11010 | Setby | (None) Load the block of data into
atomic this op cache

set reservation
load from cache
mark cache block E
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
000 | lwarx Read 000 11010 | Setby | SHD Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block S
000 lwarx Read 000 11010 | (n/a) ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
000 ME lwarx lwarx 000 00001 | Setby | (None) or Set reservation
S reservation thisop | SHD load from cache
set*
000 ME lwarx lwarx 000 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SHD | retry the operation
set*
001 lwarx Read 001 11010 | Setby | (None) Load the block of data into
atomic this op cache
mark cache block E
set reservation
load from cache
001 lwarx Read 001 11010 | Setby | SHD Load the block of data into
atomic this op cache
set reservation
load from cache
mark cache block S
001 lwarx Read 001 11010 | (n/a) ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
001 ME lwarx lwarx 001 00001 | Setby | (None) or Set reservation
S reservation thisop | SHD load from cache
set*
001 ME lwarx lwarx 001 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SHD | retry the operation
set*
011 | lwarx Single- 01iM 11010 | Setby | (None) or Set reservation
010 beat read thisop | SHD load from main memory
atomic
011 | lwarx Single- 01M 11010 | (n/a) ARTRY or Release the bus
010 beat read ARTRY&SHD | retry the operation
atomic
011 ES lwarx Single- 01M 11010 | Setby | (None) or Set the reservation
010 beat read thisop | SHD load from main memory
atomic
011 ES lwarx Single- 01iM 11010 | (n/a) ARTRY or Release the bus
010 beat read ARTRY&SHD | retry the operation
atomic
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
011 M lwarx Single- 01M 11010 | Setby | (None) or Paradox—cache should be |
010 beat read thisop | SHD set the reservation
atomic load from main memory
011 M lwarx Single- 01M 11010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read ARTRY&SHD | release the bus
atomic retry the operation
100 | lwarx (n/a) (nfa) | (n/a) (n/a) (n/a) A lwarx to a page marked
101 write-through causes a data
access exception; therefore
no bus transaction results.
101 (n/a) lwarx (n/a) (n/a) | (n/a) (n/a) (n/a) A lwarx to a page marked
write-through causes a data
access exception; therefore
no bus transaction results.
000 Store RWITM 000 01110 | (n/a) (None) or Load the block of data into
SHD cache
store to cache
mark cache M
000 Store RWITM 000 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S Store Kill 000 01100 | (n/a) (None) or Wait for the kill to be
SHD successfully presented

store to cache
mark cache block M

000 S Store Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 E Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
mark cache block M
000 M Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
001 | Store RWITM 001 01110 | (n/a) (None) or Load the block of data into
SHD cache

mark cache block E
store to cache
mark cache block M

001 Store RWITM 001 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S Store Kill 001 01100 | (n/a) (None) or Wait for kill to be
SHD successfully presented

mark cache block E
store to cache
mark cache block M

001 S Store Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
001 E Store (None) (nfa) | (n/a) (n/a) (n/a) Store to cache
mark cache block M
001 M Store (None) (nfa) | (n/a) (n/a) (n/a) Store to cache
011 | Store Write with 01M 00010 | (n/a) (None) or Store to main memory
010 flush 11M SHD
110
111
011 | Store Write with 01iMm 00010 | (n/a) ARTRY or Release the bus
010 flush 11M ARTRY&SHD | retry the operation
110
111
011 ES Store Write with 01M 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 ES Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
011 M Store Write with 01iM 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 M Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
100 Store Write with 100 00010 | (n/a) (None) or Store to main memory
flush SHD

100 ME Store Write with 100 00010 | (n/a) ARTRY or Release the bus

S flush ARTRY&SHD | retry the operation
100 ME Store Write with 100 00010 | (n/a) (None) or Store to cache

S flush SHD store to main memory
101 Store Write with 101 00010 | (n/a) (None) or Write to main memory

flush SHD (note: no reload on a store
miss)

101 ME Store Write with 101 00010 | (n/a) ARTRY or Release the bus

S| flush ARTRY&SHD | retry the operation
101 ME Store Write with 101 00010 | (n/a) (None) or Store to cache

S flush SHD store to main memory
000 S| stwcex. (None) (n/a) | (n/a) None (n/a) Update condition register
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
000 | stwcex. RWITM 000 11110 | Yes (None) or Load the block of data into
atomic (and SHD cache
reset) release the reservation
update the condition
register
store to cache
mark cache M
000 stwcex. RWITM 000 11110 | Yes ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
000 S stwcex. Kill 000 01100 | Yes (None) or Wait for the kill to be
(and SHD successfully presented
reset) release reservation
update condition register
store to cache
mark cache block M
000 S stwex. | Kill 000 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME stwcex. (None) (nfa) | (n/a) None (n/a) Update condition register
000 E stwcex. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache

mark cache block M

000 ME stwcex. (None) (n/a) | (n/a) Yes (n/a) (n/a)
(and
reset)

000 M stwcex. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache

001 S stwcx. (None) (nfa) | (n/a) None (n/a) Update condition register

001 | stwcex. RWITM 001 11110 | Yes (None) or Load the block of data into

atomic (and SHD cache
reset) release the reservation
update the condition
register

store to cache
mark cache M

001 stwex RWITM 001 11110 | Yes ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
001 S stwcex. Kill 001 01100 | Yes (None) or Release reservation
(and SHD update condition register
reset) mark cache block E

store to cache
mark cache block M

001 S stwcex. Kill 001 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
001 stwcex. (None) (nfa) | (n/a) None (n/a) Update condition register
001 ME stwcex. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
mark cache block M
001 ME stwcex. (None) (n/a) | (n/a) Yes (n/a) (n/a)
001 stwcx. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
011 stwcex. (None) (n/a) | (n/a) None (n/a) Update condition register
010
011 stwcex. Write with 01iM 10010 | Yes (None) or Release reservation
010 flush (and SHD update condition register
atomic reset) store to main memory
011 | stwcex. Write with 01M 10010 | Yes ARTRY or Release the bus
010 flush ARTRY&SHD | retry the operation
atomic
011 ME stwex. | (None) (n/a) | (n/a) None (n/a) Paradox—cache should be |
010 S update condition register
011 ME stwcex. Write with 01M 10010 | Yes (None) or Paradox—cache should be |
010 S flush (and SHD check/release reservation
atomic reset) update condition register
store to main memory
011 ME stwcex. Write with 01M 10010 | Yes ARTRY or Paradox—cache should be |
010 S flush ARTRY&SHD | release the bus
atomic retry the operation
011 M stwcex. (n/a) (nfa) | (n/a) None (n/a) (n/a)
010
100 (nfa) | stwex. (n/a) (nfa) | (n/a) (n/a) (n/a) A stwcx. to a page marked
101 write-though causes a data
11X access exception; therefore,
no bus transaction results.
100 (nfa) | stwex. (n/a) (n/a) | (n/a) Yes (n/a) An stwcx. to a page
101 marked write-though
11X causes a data access
exception; therefore, no bus
transaction results.
000 dcbt Read 000 01010 | (n/a) (None) Load the block of data into

cache
mark the cache E
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
000 | dcbt Read 000 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
000 dcbt Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME dcbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
001 | dcbt Read 001 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
001 dcbt Read 001 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
001 dcbt Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 ME dcbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
S
011 | dcbt (None) 01M (n/a) (n/a) (n/a) No-op
010 11M
110
111
011 ES dcbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
010
110
111
011 M dcbt (None) (n/a) | (n/a) None (n/a) No-op
010
110
111
011 M dcbt (n/a) (n/a) | (n/a) None (n/a) (n/a)
010
110
111
100 | dcbt Read 100 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
100 dcbt Read 100 01010 | (n/a) HD Load the block of data into
cache
mark the cache S
100 dcbt Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME dcbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
101 | dcbt Read 101 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
101 dcbt Read 101 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
101 dcbt Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 ME dcbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
S
000 | dcbtst Read 000 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
000 dcbtst Read 000 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
000 dcbtst Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
000 ME dcbtst (None) 000 (n/a) (n/a) (n/a) No-op
001 | dcbtst Read 001 01010 | (n/a) (None) Load the block of data into
cache
mark the cache E
001 dcbtst Read 001 01010 | (n/a) SHD Load the block of data into
cache
mark the cache S
001 dcbtst Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 ME dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
011 | dcbtst (None) 01M (n/a) (n/a) (n/a) No-op
010 11M
110
111
011 ES dcbtst (None) (nfa) | (n/a) (n/a) (n/a) No-op
010
110
111
011 M dcbtst (None) (nfa) | (n/a) None (n/a) No-op
010
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action

011 M dcbtst (n/a) (nfa) | (n/a) None (n/a) (n/a)

010

110

111

100 | dcbtst Read 100 01010 | (n/a) (None) Load the block of data into
cache
mark cache E

100 dcbtst Read 100 01010 | (n/a) SHD Load the block of data into
cache
mark cache as block S

100 dcbtst Read 100 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
100 ME dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
S

101 | dcbtst Read 101 01010 | (n/a) (None) Load the block of data into

cache

mark cache block E

101 dcbtst Read 101 01010 | (n/a) SH Load the block of data into
cache
mark cache block S

101 dcbtst Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 S dcbtst (None) (nfa) | (n/a) (n/a) (n/a) No-op
E
101 M dcbtst (None) (nfa) | (n/a) (n/a) (n/a) No-op
000 | dcbz Kill 000 01100 | (n/a) (None) or Establish the block in data
SHD cache without fetching the
block from main memory
clear all bytes
mark cache block M
000 S| dcbz Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S dcbz Kill 000 01100 | (n/a) (None) or Clear all bytes in the block
SHD mark cache block M
000 E dcbz (None) 000 (n/a) (n/a) (n/a) Clear all bytes in the block
mark cache block M
000 M dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block
001 dcbz Kill 001 01100 | (n/a) (None) or Establish the block in data

SHD cache without fetching the
block from main memory
clear all bytes

mark cache block M
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
001 | dcbz Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dchz Kill 001 01100 | (n/a) (None) or Mark cache block E
SHD set all bytes of the block to
zero
mark the cache block M
001 S dcbz Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
001 E dcbz (None) (nfa) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the Cache block
mark cache block M
001 M dcbz (None) (nfa) | (n/a) (n/a) (n/a) Write zeros to all bytes in
the cache block
010 ME dcbz (n/a) (nfa) | (n/a) (n/a) (n/a) A dcbz to a page marked
011 S cache inhibited or write-
110 through causes an
111 alignment exception;
100 therefore this transaction
101 does not occur on the bus
000 ES1 | dcbst Clean 000 00000 | (n/a) (None) or No-op
SHD
000 ES1 | dcbst Clean 000 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbst Write with 100 00110 | (n/a) (None) or Write the block to main
kill SHD memory
mark cache block E
000 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
001 ES1 | dcbst Clean 001 00000 | (n/a) (None) or No-op
SHD
001 ES1 | dcbst Clean 001 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
kill SHD block to main memory
mark cache block E
001 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
011 ES1 | dcbst Clean W1M | 00000 | (n/a) (None) or No-op
010 SHD
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
011 | dcbst Clean W1M | 00000 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
010 kill SHD block to main memory
110 Mark cache block E
111
011 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SHD | retry the operation
110
111
100 ES1 | dcbst Clean 100 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ES1 | dcbst Clean 100 00000 | (n/a) (None) or No-op
SHD
100 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory
mark cache block E
100 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 ES1 | dcbst Clean 101 00000 | (n/a) (None) or No-op
SHD
101 ES1 | dcbst Clean 101 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory
mark cache block E
101 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
000 dcbf Flush 000 00100 | (n/a) (None) or No-op
SHD
000 dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ES dcbf Flush 000 00100 | (n/a) (None) or Mark cache block |
SHD
000 ES dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbf Write with 100 00110 | (n/a) (None) or Write the block of data back
kill SHD to main memory
mark the cache block |
000 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
001 | dcbf Flush 001 00100 | (n/a) (None) or No-op
SHD
001 ES dcbf Flush 001 00100 | (n/a) (None) or Mark cache block |
SHD
001 ES1 | dcbf Flush 001 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbf Write with 100 00110 | (n/a) (None) or Write all bytes in the cache
kill SHD block to main memory
mark cache block |
001 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
011 | dcbf Flush W1M | 00100 | (n/a) (None) or No-op
010 SHD
110
111
011 | dcbf Flush W1M | 00100 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 ES dcbf Flush W1M | 00100 | (n/a) (None) or Mark cache block |
010 SHD
110
111
011 ES dcbf Flush W1M | 00100 | (n/a) ARTRY or Retry the operation
010 ARTRY&SHD
110
111
011 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
010 kill SHD mark cache block |
110
111
011 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SHD | retry the operation
110
111
100 dcbf Flush 100 00100 | (n/a) (None) or No-op
SHD
100 ES dcbf Flush 100 00100 | (n/a) (None) or Mark cache block |
SHD
100 ES1 | dcbf Flush 100 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 M dcbf Write with 100 00110 | (n/a) (None) or Write the block back to
kill SHD memory

mark cache block |
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
100 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 dcbf Flush 101 00100 | (n/a) (None) or No-op
SHD
101 ES dcbf Flush 101 00100 | (n/a) (None) or Mark cache block |
SHD
101 ES1 | dcbf Flush 101 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
kill SHD mark cache block |
101 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
000 dcbi Kill 000 01100 | (n/a) (None) or No-op
SHD
000 ME dcbi Kill 000 01100 | (n/a) (None) or Mark the cache block |
S SHD
000 ME dcbi Kill 000 01100 | (n/a) ARTRY or Release the bus
S| ARTRY&SHD | retry the operation
001 | dcbi Kill 001 01100 | (n/a) (None) or No-op
SHD
001 dcbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 S dcbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 EM dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 EM dcbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
011 | dcbi Kill W1M | 01100 | (n/a) (None) or No-op
010 SHD
110
111
011 ME dcbi Kill W1M | 01100 | (n/a) (None) or Mark cache block |
010 S SHD
110
111
011 ME dcbi Kill W1M | 01100 | (n/a) ARTRY or Release the bus
010 S| ARTRY&SHD | retry the operation
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
100 | dcbi Kill 100 01100 | (n/a) (None) or No-op
SHD
100 ME dcbi Kill 100 01100 | (n/a) ARTRY or Release the bus
S| ARTRY&SHD | retry the operation
100 ME dcbi Kill 100 01100 | (n/a) (None) or Mark cache block |
S SHD
101 | dcbi Kill 101 01100 | (n/a) (None) or No-op
SHD
101 ME dcbi Kill 101 01100 | (n/a) ARTRY or Release the bus
S| ARTR&SHD retry the operation
101 ME dcbi Kill 101 01100 | (n/a) (None) or Mark cache block |
S SHD
000 INV icbi ICBI 000 01101 | (n/a) (None) or No-op
SHD
000 INV icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 VAL icbi ICBI 000 01101 | (n/a) (None) or Mark icache block INV
SHD
000 VAL icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 INV icbi ICBI 001 01101 | (n/a) (None) or No-op
SHD
001 INV icbi ICBI 001 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
001 VAL icbi ICBI 001 01101 | (n/a) (None) or Mark icache block INV
SHD
011 INV icbi ICBI 01iM 01101 | (n/a) (None) or No-op
010 11M SHD
110
111
011 INV icbi ICBI 01M 01101 | (n/a) ARTRY or Release the bus
010 VAL 11M ARTRY&SHD | retry the operation
110
111
011 VAL icbi ICBI 01M 01101 | (n/a) (None) or Mark icache block INV
010 11M SHD
110
111
100 INV icbi ICBI 100 01101 | (n/a) (None) or No-op
SHD
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
100 INV icbi ICBI 100 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
100 VAL icbi ICBI 100 01101 | (n/a) (None) or Mark icache block INV
SHD
101 INV icbi ICBI 101 01101 | (n/a) (None) or No-op
SHD
101 INV icbi ICBI 101 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
101 VAL icbi ICBI 101 01101 | (n/a) (None) or Mark icache block INV
SHD
(n/a) (nfa) | sync SYNC xx1 01000 | (n/a) (None) or The sync instruction
SHD completed.
(Note: This table does not
give an accurate
representation of what the
sync instruction does.)
(n/a) (n/a) | sync SYNC xx1 01000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (n/a) eieio EIEIO xx1 10000 | (n/a) (None) or The eieio instruction has
SHD completed.
(Note: This table does not
give an accurate
representation of what the
eieio instruction does.)
(n/a) (n/a) eieio EIEIO xx1 10000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (n/a) | tlbie TLB xx1 11000 | (n/a) (None) or Hold off any new storage
invalidate SHD instructions.
Wait for the completion of
any outstanding storage
instructions
Invalidate the requested
TLB entry
(Note: This table does not
thoroughly characterize the
tibie instruction.)
(n/a) (n/a) | tlbie TLB xx1 11000 | (n/a) ARTRY or Release the bus.
invalidate ARTRY&SHD | Retry the operation
tlbsync | TLB sync xx1 01001 | (n/a) (None) or The TLB sync instruction
SHD has completed.
(Note: This table does not
thoroughly characterize the
tlbsync instruction.)
tlbsync | TLB sync xx1 01001 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
| Snoop-kill xx1 01100 | None (None) No-op
| Snoop-kill xx1 01100 | Yes (None) Release reservation.
(and
reset)
ME Snoop-kill xx1 01100 | None (None) Mark cache block I.
S
ME Snoop-kill xx1 01100 | Yes (None) Mark cache block I.
S (and Release reservation.
reset)
| Snoop- xx1 01010 | None (None) No-op
read
| Snoop- xx1 01010 | Yes SH No-op
read
S Snoop- xx1 01010 | (n/a) SHD No-op
read
E Snoop- xx1 01010 | (n/a) SHD Mark cache block S.
read
M Snoop- x01 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
if successful, mark cache
block S
M Snoop- x11 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
If successful, mark cache
block S
| Snoop- xx1 11010 | None (None) No-op
read
atomic
| Snoop- xx1 11010 | Yes SHD No-op
read
atomic
S Snoop- xx1 11010 | (n/a) SHD No-op
read
atomic
E Snoop- xx1 11010 | (n/a) SHD Mark cache block S
read
atomic
M Snoop- xx1 11010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory; if
atomic successful, mark cache
block S.
| Snoop- xx1 01110 | None (None) No-op
RWITM
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action

| Snoop- xx1 01110 | Yes (None) Release reservation.

RWITM (and
reset)

ES Snoop- xx1 01110 | None (None) Mark cache block I.
RWITM

ES Snoop- xx1 01110 | Yes (None) Mark cache block I.
RWITM (and Release reservation.

reset)

M Snoop- xx1 01110 | None ARTRY&SH Attempt to write cache block
RWITM back to main memory;

if successful, mark cache
block 1.
M Snoop- xx1 01110 | Yes ARTRY&SHD | Attempt to write cache block
RWITM (and back to main memory;
reset) if successful, mark cache
block I,
release reservation

| Snoop- xx1 11110 | None (None) No-op
RWITM
atomic

| Snoop- xx1 11110 | Yes (None) Release reservation.
RWITM (and
atomic reset)

S Snoop- xx1 11110 | None (None) Mark cache block I.

E RWITM
atomic

S Snoop- xx1 11110 | Yes (None) Mark cache block I.

E RWITM (and Release reservation.
atomic reset)

M Snoop- xx1 11110 | None ARTRY&SH Attempt to write cache block
RWITM back to main memory;
atomic if successful, mark cache

block 1.

M Snoop- xx1 11110 | Yes ARTRY&SHD | Attempt to write cache block
RWITM (and back to main memory;
atomic reset) if successful, mark cache

block I, release reservation.
| Snoop- xx1 00100 | None (None) No-op
flush

| Snoop- xx1 00100 | Yes (None) No-op
flush

SE Snoop- xx1 00100 | (n/a) (None) Mark cache block I.
flush
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
M Snoop- xx1 00100 | (n/a) ARTRY&SHD | Attempt to write cache block
flush back to main memory;
if successful:
mark cache block I.
ESI Snoop- xx1 00000 | (n/a) (None) No-op
clean
M Snoop- xx1 00000 | (n/a) ARTRY&SHD | Attempt to write cache block
clean back to main memory; if
successful, mark cache
block E.
| Snoop- xx1 00010 | None (None) No-op
write with
flush
| Snoop- xx1 00010 | Yes (None) Release reservation.
write with (and
flush reset)
S Snoop- xx1 00010 | None (None) Mark cache block I.
write with
flush
S Snoop- xx1 00010 | Yes (None) Mark cache block I.
write with (and Release reservation.
flush reset)
E Snoop- xx1 00010 | None (None) Paradox—no one else
write with should be writing if this
flush cache is E.
Mark cache block |
E Snoop- xx1 00010 | Yes (None) Paradox—no one else
write with (and should be writing if this
flush reset) cache is E.
Mark cache block I.
Release reservation.
M Snoop- xx1 00010 | None ARTRY&SH Paradox—no one else
write with should be writing if this
flush cache is M.
Attempt to write cache block
back to main memory;
if successful, mark cache
block |
M Snoop- xx1 00010 | Yes ARTRY&SHD | Paradox—no one else
write with (and should be writing if this
flush reset) cache is M.

Attempt to write cache block
back to main memory;

if successful, mark cache
block |, release reservation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
| Snoop- xx1 00110 | None (None) No-op
write with
kill
| Snoop- xx1 00110 | Yes (None) Release reservation.
write with (and
kill reset)
S Snoop- xx1 00110 | None (None) Mark cache block I.
write with
kill
S Snoop- xx1 00110 | Yes (None) Mark cache block I.
write with (and Release reservation.
kill reset)
E Snoop- xx1 00110 | None (None) Paradox—no one else
write with should be writing if this
kill cacheis E.
Mark cache block I.
E Snoop- xx1 00110 | Yes (None) Paradox—no one else
write with (and should be writing if this
kill reset) cache is E.
Mark cache block I.
Release reservation.
M Snoop- xx1 00110 | None (None) Paradox—no one else
write with should be writing if this
kill cache is M.
Mark cache block I.
M Snoop- xx1 00110 | Yes (None) Paradox—no one else
write with (and should be writing if this
kill reset) cache is M.
Mark cache block I.
Release reservation.
Snoop- xx1 10010 | None (None) No-op
write with
flush
atomic
Snoop- xx1 10010 | Yes (None) Release reservation.
write with (and
flush reset)
atomic
S Snoop- xx1 10010 | None (None) Mark cache block I.
write with
flush
atomic
S Snoop- xx1 10010 | Yes (None) Mark cache block I.
write with (and Release reservation.
flush reset)
atomic
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action

E Snoop- xx1 10010 | None (None) Paradox—no one else
write with should be writing if this
flush cache is E.
atomic Mark cache block I.

E Snoop- xx1 10010 | Yes (None) Paradox—no one else
write with (and should be writing if this
flush reset) cache is E.
atomic Mark cache block I,

release reservation.

M Snoop- xx1 10010 | None ARTRY&SH Paradox—no one else
write with should be writing if this
flush cache is M.
atomic Attempt to write block back

to main memory;
if successful, mark cache
block |

M Snoop- xx1 10010 | Yes ARTRY&SHD | Paradox—no one else
write with (and should be writing if this
flush reset) cache is M.
atomic Attempt to write block back

to main memory;
if successful: mark cache
block I, release reservation.

(n/a) Snoop- xx1 11000 | (n/a) (None) Respond with (none) when
TLB the TLB has been
invalidate invalidated.

(n/a) Snoop- xx1 11000 | (n/a) (None) but Do not perform the TLB
TLB ARTRY is invalidate—this is to prevent
invalidate activated on a deadlock condition from

the bus from occurring.
another
processor

(n/a) Snoop- xx1 11000 | (n/a) ARTRY Respond with retry until the
TLB TLB has been invalidated.
invalidate

(n/a) Snoop- xx1 01000 | (n/a) (None) If no TLB invalidates are
SYNC pending, no-op.

(n/a) Snoop- xx1 01000 | (n/a) ARTRY If a TLB invalidate is
SYNC pending, respond with retry.

(n/a) Snoop- xx1 01001 | (n/a) (None) If no TLB invalidates are
TLBSYNC pending, no-op.

(n/a) Snoop- xx1 01001 | (n/a) ARTRY If a TLB invalidate is
TLBSYNC pending, respond with retry.

(n/a) Snoop- xx1 10000 | (n/a) (None) No-op
EIEIO
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
(n/a) Snoop- xx1 10000 | (n/a) ARTRY No-op
EIEIO
| Snoop- xx1 01101 | (n/a) (None) No-op
ICBI
VAL Snoop- xx1 01101 | (n/a) (None) Invalidate entry in icache
ICBI
| Snoop- xx1 01011 | None (None) No-op
RWNITC
| Snoop- xx1 01011 | Yes SHD No-op
RWNITC
ES Snoop- xx1 01011 | (n/a) SHD No-op
RWNITC
M Snoop- xx1 01011 | (n/a) ARTRY&SHD | Attempt to write cache block
RWNITC back to main memory; if
successful, mark cache
block E.

Note: It is possible for a snoop invalidate operation that invalidates both the cache block and the reservation
to preempt the operation and cause the 604e to generate a “read atomic” operation instead. It is also
possible that between the time that the lwarx instruction hits in the cache and the lwarx reservation set is
broadcast that a flush snoop operation can remove the cache block from the cache without canceling the
reservation. In this case, the Iwarx broadcast still occurs even through the cache block is not in the data
cache.

3.11 Access to Direct-Store Segments

The 604e supports both memory-mapped and I/O-mapped access to 1/O devices. In
addition to the high-performance bus protocol for memory-mapped 1/0 accesses, the 604e
provides the ability to map memory areas to the direct-store interface (SR[T] = 1) with the
following two kinds of operations:

Direct-store operations. These operations are considered to address the noncoherent
and noncacheabl e direct-store; therefore, the 604e does not maintain coherency for
these operations, and the cache is bypassed completely.

Memory-forced direct-store operations. These operations are considered to address
memory space and are therefore subject to the same coherency control as memory
accesses. These operations are global memory references within the 604e and are
considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM hits.
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Chapter 4
Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to asinterruptsin the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions beginsin supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentialy.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
if itisdesired to allow control to ultimately return to the excepting program.
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In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. I nstruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR1 soon after the exception istaken to prevent thisinformation from
being lost due to another exception being taken.

In thischapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception isidentified by the processor.
Taken An exception is said to be taken when control of instruction

execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor-
level (referred to as privileged state in the architecture specification).

Notethat the PowerPC architecture documentation refersto exceptions asinterrupts. Inthis
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to |EEE-defined floating-point exceptions, conditions that may
cause aprogram exception to be taken (See Section 4.5.7, “ Program Exception (0x00700).)
The occurrence of these |EEE exceptions may in fact not cause an exception to be taken.
| EEE-defined exceptions are referred to as | EEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 604e Microprocessor Exceptions

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. A synchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt and performance monitoring exception are defined by the
PowerPC architecture.
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Table 4-1. Exception Classifications

Type

Exception

Asynchronous/nonmaskable

Machine Check
System Reset

Asynchronous/maskable

External interrupt

Decrementer interrupt

System management interrupt (604e-specific)
Performance monitoring exception (604e-
specific)

Synchronous/precise

Instruction-caused exceptions

Synchronous/imprecise

Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Exceptions implemented in the 604e, and conditions that cause them, are listed in

Table 4-2.
Table 4-2. Exceptions and Conditions—Overview
Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00000 —

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
604e a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check | 00200 On the 604e a machine check exception is signaled by the assertion of a

qualified TEA indication on the 604e bus, or the machine check input (MCP)
signal. If the MSR[ME] is cleared, the processor enters the checkstop state
when one of these signals is asserted. Note that MSR[ME] is cleared when an
exception is taken. The machine check exception is also caused by parity errors
on the address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by read, write, and instruction
fetch operations initiated by the processor; however, it is expected that the TEA
signal would be used by a memory controller to indicate that a memory parity
error or an uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state. (Note that, physical address is referred to as the real
address in the architecture specification.)

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.
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Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception Vector Offset

Type (hex) Causing Conditions

DSl 00300 A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.5.3, “DSI Exception (0x00300).” Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISI 00400 An ISI exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.5.4, “IS| Exception (0x00400).”

External 00500 An external interrupt occurs when the external exception signal, INT, is
interrupt asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604e stops dispatching
instructions and waits for all dispatched instructions to complete. Any exceptions
associated with dispatched instructions are taken before the interrupt is taken.

Alignment 00600 An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.5.6, “Alignment Exception
(0x00600).” Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 604e. In
these cases, the 604e provides logic to handle these conditions without
requiring the processor to invoke the alignment exception handler.

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

* Floating-point enabled exception—A floating-point enabled exception
condition is generated when either MSR[FEO] or MSR[FE1] and
FPSCRI[FEX] are set. The settings of FEO and FE1 are described in
Table 4-4.

FPSCRIFEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 3 of
The Programming Environments Manual.

« lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, “Instruction Set
Summary.”

¢ Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr[0]=1 and
MSR[PR] = 1.

« Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.5.7, “Program Exception (0x00700).”

Floating-point 00800 The floating-point unavailable exception is implemented as defined in the
unavailable PowerPC architecture.

Decrementer 00900 The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.
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Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00A00 Reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved 00B0O —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 The trace exception, which is implemented in the 604e, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either MSR[SE]
=1 and any instruction (except rfi) successfully completed or MSR[BE] = 1 and
a branch instruction is completed.

Performance 00FO00 The performance monitoring interrupt is a 604e-specific exception and is used

monitoring with the 604e performance monitor, described in Section 4.5.13, “Performance

interrupt Monitoring Interrupt (0OXO0F00).”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled by through bits in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF | Reserved for implementation-specific exceptions not implemented on the 604e.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0 to

address 29) in the IABR matches the next instruction to complete in the completion unit,

breakpoint and the IABR enable bit (bit 30) is set to 1.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI

management input signal is asserted. This exception is provided for use with the nap mode.

interrupt

Reserved 014FF-02FFF | Reserved for implementation-specific exceptions not implemented on the 604e.

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, asfollows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—

system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

Imprecise exceptions (impreci se mode fl oating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

M askabl e asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.
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Exception priorities are described in “Exception Priorities,” in Chapter 6, “ Exceptions,” in
The Programming Environments Manual.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception isbeing handled. As aresult, stateinformation for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 6, “ Exceptions,” in The Programming Environments Manual.

4.3 Exception Processing

When an exception istaken, the processor uses the save/restore registers, SRRO and SRR1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register 0
(SRRO) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
this may be the addressin SRRO or at the next address in the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (asin the case of asystem call or trap exception). The
SRRO register is shown in Figure 4-1.

SRRO (holds EA for instruction in interrupted program flow) |

Figure 4-1. Machine Status Save/Restore Register 0
SRRO is 32 bitswide in 32-bit implementations.

The savelrestore register 1(SRR1) is used to save machine status (selected bits from the
MSR and possibly other status bits as well) on exceptions and to restore those values when
rfi isexecuted. SRR1 is shown in Figure 4-2.

Exception-specific information and MSR bit values

Figure 4-2. Machine Status Save/Restore Register 1
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Typicaly, when an exception occurs, bits 24 and 10-12 of SRR1 are loaded with
exception-specific information and bits 5-9, and 16-31 of MSR are placed into the
corresponding bit positions of SRR1.

Note that in other implementations every instruction fetch that occurs when MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR1.

In the 604e and in other 32-bit PowerPC implementations, the MSR is 32 bits wide as
shown in Figure 4-3.

[] Reserved

0000000000000 |POW| 0 | |LE|EE|PR|FP|ME|FEO|SE|BE|FE1| 0 | |P||R|DR|O|PM|R||LE|
0 12 13 14 15 16 17 1819 20 2122 23 24 25262728293031

Figure 4-3. Machine State Register (MSR)

The M SR hits are defined in Table 4-3. Full function reserved bits are saved in SRR1 when
an exception occurs; partia function reserved bits are not saved.

Table 4-3. MSR Bit Settings

Bit(s) Name Description
0 — Reserved. Full Function.

1-4 — Reserved. Partial function.

5-9 — Reserved. Full function.

10-12 | — Reserved. Partial function.

13 POW Power management enable

0  Power management disabled (normal operation mode).
1  Power management enabled (reduced power mode).
Note that power management functions are implementation-dependent.

14 — Reserved—Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable

0  While the bit is cleared the processor delays recognition of external interrupts and
decrementer exception conditions.

1  The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1  The processor can only execute user-level instructions.
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Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description
18 FP Floating-point available

0  The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves.

1  The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19 ME Machine check enable

0  Machine check exceptions are disabled.

1  Machine check exceptions are enabled.

20 FEO IEEE floating-point exception mode 0 (See Table 4-4).
21 SE Single-step trace enable

0  The processor executes instructions normally.

1  The processor generates a single-step trace exception upon the successful execution of
the next instruction (unless that instruction is an rfi instruction). Successful execution
means that the instruction caused no other exception.

22 BE Branch trace enable

0  The processor executes branch instructions normally.

1  The processor generates a branch type trace exception upon the successful execution of
a branch instruction.

23 FE1 |IEEE floating-point exception mode 1 (See Table 4-4).

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 P Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception.

0  Exceptions are vectored to the physical address 0x000n_nnnn.

1  Exceptions are vectored to the physical address OxFFFn_nnnn.

26 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, “Memory Management.”

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, “Memory Management.”

28 — Reserved, full function.
29 PM Performance monitor marked mode

0  Process is not a marked process.

1  Process is a marked process.

This bit is specific to the 604e, and is defined as reserved by the PowerPC architecture. For

more information about the performance monitor, see Section 4.5.13, “Performance Monitoring

Interrupt (0XO0F00).”
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Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description

30 RI Indicates whether system reset or machine check exception is recoverable.

0  Exception is not recoverable.

1  Exception is recoverable.

The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0  The processor runs in big-endian mode.
1  The processor runs in little-endian mode.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. The possible settings and default conditions for the 604e are shown in Table 4-4. For
further details, see Chapter 6, “Exceptions,” of The Programming Environments Manual.

Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable. In the 604e, this bit setting causes the 604e to operate in
floating-point precise mode.
1 1 Floating-point precise mode

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

4.3.1 Enabling and Disabling Exceptions

When acondition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

« |EEE floating-point enabled exceptions (atype of program exception) are ignored
when both MSR[FEO] and MSR[FE1] are cleared. If either of these bits are set, all
| EEE enabled floating-point exceptions are taken and cause a program exception.

¢ Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the M SR[EE] bit. When M SR[EE] = 0, recognition
of these exception conditionsisdelayed. M SR[EE] iscleared automatically when an
exception istaken, to delay recognition of conditions causing those exceptions.
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A machine check exception can occur only if the machine check enable bit,
MSR[ME], isset. If MSR[ME] iscleared, the processor goesdirectly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bitsin the HIDO register, which is
described in Table 4-7.

System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1

The machine status save/restore register 0 (SRRO) isloaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

Bits 1-4 and 10-15 of SRR1 are loaded with information specific to the exception
type.

Bits 59 and 16-31 of SRR1 areloaded with a copy of the corresponding bits of the
MSR. Note that depending on the implementation, reserved bits may not be copied.

The M SR isset asdescribed in Table 4-3. The new val uestake effect beginning with
the fetching of thefirst instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address tranglation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new MSR value, at alocation
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSRJ[IP)]. If IPis cleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IPisset, exceptions
are vectored to the physical address OxFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See

Section 4.5.2, “Machine Check Exception (0x00200).”
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4.3.3 Setting MSR[RI]
The operating system should handle MSR[RI] as follows:

In the machine check and system reset exceptions—If SRR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

In each exception handler—Clear MSR[RI], set the SRRO and SRR registers
appropriately, and then execute rfi.

Not that the RI bit being set indicates that, with respect to the processor, enough
processor state datais valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by alowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

All previous instructions have completed to a point where they can no longer cause
an exception. If apreviousinstruction causes adirect-storeinterface error exception,
the results must be determined before thisinstruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address tranglation) under which they were issued.

The rfi instruction copies SRR1 bits back into the MSR.

Theinstructionsfollowing thisinstruction execute in the context established by this
instruction.

For a compl ete description of context synchronization, refer to Chapter 6, “ Exceptions,” of
The Programming Environments Manual.

4.4 Process Switching
The operating system should execute one of the following when processes are switched:

The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to beinitiated until the
sync instruction compl etes. For an example showing use of the sync instruction, see
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual .
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« Theisyncinstruction, which waitsfor all previousinstructionsto complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

» Thestwex. instruction, to clear any outstanding reservations, which ensures that an
Iwar x instruction in the old process is not paired with an stwcex. instruction in the
New process.

The operating system should set the MSR[RI] bit as described in Section 4.3.3, “ Setting
MSR[RI].”

4.5 Exception Definitions

Table 4-5 shows all the types of exceptions that can occur with the 604e and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-5. MSR Setting Due to Exception

Exception MSR Bit
Type

POW | LE | EE (PR | FP | ME | FEO | SE| BE| FE1 | IP | IR | DR | RI LE
System reset 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Machine check 0 — 0 0 0 0 0 0 0 0 — 10 0 0 | ILE
DSl 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
ISI 0 — 0 0 0 — 0 0 0 0 — 1|0 0 0 | ILE
External 0 — 0 0 0 — 0 0 0 0 — 1|0 0 0 | ILE
Alignment 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
Program 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Floating-point 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
unavailable
Decrementer 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
System call 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Trace exception 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
System 0 — 0 0 0 — 0 0 0 0 — 1|0 0 0 | ILE
management
Performance 0 — 0 0 0 — 0 0 0 0 — 1|0 0 0 | ILE
monitor

0 Bit is cleared.

ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.
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The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn
is the vector offset); if IP is set, exceptions are vectored to the physica address
OxFFFn_nnnn. Table 4-2 shows the exception vector offset of the first instruction of the
exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The 604e implements the system reset exception as defined in the PowerPC architecture
(OEA). The system reset exception is a nonmaskable, asynchronous exception signaled to
the processor through the assertion of system-defined signals. In the 604e, the exception is
signaled by the assertion of either the SRESET or HRESET inputs, described morefully in
Chapter 7, “Signal Descriptions.”.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1-4 Cleared
5-9 Loaded with equivalent bits from the MSR
10-15 Cleared
16-31 Loaded with equivalent bits of the MSR

Note that if the processor state is corrupted to the extent that execution cannot resume reliably, the
MSRI[RI] bit (SRR1[30]) is cleared.

MSR POW 0 BE 0
ILE - FE1 O
EE O P —
PR 0 IR 0
FP 0 DR O
ME - RI 0
FEO O LE  Setto value of ILE

SE O

The SRESET input provides a“warm” reset capability. Thisinput is used to avoid causing
the 604e to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset 0x00100 from the physical base address indicated by MSR[1P].

Asserting SRESET causes the 604e to perform a system reset exception. SRESET is an
edge-sensitive signal that may be asserted and deasserted asynchronously, provided the
minimum pulse width specified in the PowerPC 604e RISC Microprocessor Hardware
Specifications is met. This exception modifies the MSR, SRRO, and SRR1, as described in
The Programming Environments Manual. Unlike hard reset, soft reset does not directly
affect the states of output signals. Attemptsto use SRESET during a hard reset sequence or
while the JTAG logic is non-idle cause unpredictable results. Processing interrupted by a
SRESET can be restarted.
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A hard reset isinitiated by asserting HRESET. Hard reset is used primarily for power-on
reset (POR), but can also be used to restart arunning processor. The HRESET signal should
be asserted during power up and must remain asserted for a period that allows the PLL to
achievelock and the internal logic to bereset. This period is specified in the Power PC 604e
RISC Microprocessor Hardware Specifications. The 604e internal state after the hard reset
interval is defined in Table 2-11.

If HRESET is asserted for less than this amount of time, the results are not predictable. If
HRESET is asserted during normal operation, all operations cease and the machine stateis
lost.

4.5.2 Machine Check Exception (0x00200)

The 604e implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, after receiving a qualified transfer error
acknowledge (TEA) indication on the 604e bus, or after the machine check interrupt (MCP)
signal had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME]
is cleared.

Machine check conditions can be enabled and disabled using bitsin the HIDO described in
Table 4-7.

Table 4-7. Machine Check Enable Bits

HIDO Bit Description

0 Enable machine check input pin

1 Enable cache parity checking

2 Enable machine check on address bus parity error.
3 Enable machine check on data bus parity error.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, the TEA signal is expected to be used by a memory controller to
indicate that a memory parity error or an uncorrectable memory ECC error has occurred.
Note that the resulting machine check exception isimprecise and unordered with respect to
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HIDO are set, the exception is recognized
and handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] =1)." If MSR[ME] =0
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and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.5.2.2, “ Checkstop State (MSR[ME] = 0)."

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-8.

Table 4-8. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 0-9 Cleared

10 Set when an instruction cache parity error is detected, otherwise zero

11 Set when a data cache parity error is detected, otherwise zero

12 Set when Machine Check Pin (MCP) is asserted, otherwise zero

13 Set when TEA pin is asserted, otherwise zero

14 Set when a data bus parity error is detected, otherwise zero

15 Set when an address bus parity error is detected, otherwise zero

16—29 MSR(16-29)

30 Zero for APE, DPE, instruction or data cache parity error, or TEA.
For MCP or other conditions, SRR1[30] is set to value of MSR[30]. If MCP and TEA are
asserted simultaneously, SRR1[30] is zero and the exception is not recoverable.

31 MSR(31)
MSR POW 0 BE O
ILE  --- FE1 O
EE 0 1P —
PR 0 IR 0
FP 0 DR O
ME* 0 RI 0
FEO O LE  Setto value of ILE
SE O

* Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typicaly earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When amachine check exception istaken, instruction execution resumes at offset 0x00200
from the physical base address indicated by MSRJ[IF].
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4.5.2.2 Checkstop State (MSR[ME] = 0)

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of all latches are
frozen within two cycles upon entering checkstop state.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid translation. On such a system,
for example, execution of aData Cache Block Set to Zero (dcbz) instruction that introduces
a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

Notethat not all PowerPC processors provide the samelevel of error checking. The reasons
aprocessor can enter checkstop state are implementation-dependent.

4.5.3 DSI Exception (0x00300)

A DSl exception occurs when no higher priority exception exists and a datamemory access
cannot be performed. The DSl exception is implemented as it is defined in the PowerPC
architecture (OEA). Note that there are some conditions for which the PowerPC
architectures allow implementations to optionally take a DSI exception. Table 4-9 lists
conditions defined by the architecture that optionally may cause aDSI exception.

Table 4-9. Other MMU Exception Conditions

Condition Description DSISR
Iwarx or stwex. with W =1 Reservation instruction to write-through segment or block | DSISR[5] = 1
lwarx, stwcx., eciwx, or ecowx Reservation instruction or external control instruction DSISR[5] =1

instruction to direct-store segment when SR[T] =1 or STE[T] =1

Load or store that results in a direct- | Direct-store interface protocol signalled with an error DSISR[0] =1
store error condition
eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] = 0 DSISR[11] =1

external control facility disabled

4.5.4 1S| Exception (0x00400)

An ISl exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). In addition, an instruction fetch from a no-execute segment resultsin
an ISl exception.

When an ISl exception is taken, instruction execution resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). TheINT signal isexpected to remain asserted until the 604e takesthe external
interrupt exception. If the external interrupt signal is negated early, recognition of the
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interrupt request is not guaranteed. After the 604e begins execution of the external interrupt
handler, the system can safely negate the INT. When the signal is detected, the 604e stops
dispatching instructions and waits for all pending instructionsto complete. This allows any
instructions in progress that need to take an exception to do so before the external interrupt
istaken. After al instructions have cleared, the 604e takes the external interrupt exception
as defined in the PowerPC architecture (OEA).

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE] bit is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

4.5.6 Alignment Exception (0x00600)

The 604e implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception isinitiated when any of the following conditions are met:

» A floating-point load or store, Imw, stmw, Iwar x, or stwex. instruction is not word-
aligned.

« |If afloating-point number is not word-aligned. The 604e provides hardware support
for misaligned storage accesses for other memory access instructions. If a
misaligned memory access crosses a 4-K byte page boundary within a memory
segment, an exception may occur when the boundary is crossed (that is, thereisa
protection violation on an attempt to access the new page). In these cases, aDSl
exception occurs and the instruction may complete partialy.

e Some types of misaligned memory accesses are slower than aligned accesses.
Accesses that cross aword boundary (and double-precision values not aligned on a
double-word boundary) are broken into multiple accesses by the LSU. More
dramatically, any noncacheable memory access that crosses a double-word
boundary requires multiple external bus tenures.

» Operations that cross aword boundary (and operations involving double-precision
values not aligned on a double-word boundary) require two accesses, which are
trandated separately. If either tranglation creates a DSI exception condition, that
exception issignaled.

* If the T-hit settings are not the same for both portions of a misaligned memory
access, (which is considered to be a programming error), the 604e completes all of
the accesses for the operation, the segment information from the T = 1 spaceis
presented on the bus for every access of the operation, and the 604e requires adirect-
store access reply from the device. If two tranglations cross memory locations that
aeT=0intoT =1, aDSI exceptionis signaled.

» A dcbzinstruction references a page that is marked either cache-inhibited or write-
through or has executed when the 604e data cache is locked or disabled. Note that
this condition may not cause an alignment exception in other PowerPC processors.

Chapter 4. Exceptions 4-17



» Anaccessisnot naturally aligned in little-endian mode.
e Anecowx or eciwx is not word-aligned.
o Almw, stmw, Iswi, Iswx, stswi, or stswx instruction isissued in little-endian mode.

4.5.7 Program Exception (0x00700)

The 604e implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 604e invokes the system illegal instruction program exception when it detects any
instruction from theillegal instruction class.

The 604e fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines the mtspr and mfspr instructions with the record bit (Rc) set to cause a
program exception or provide a boundedly undefined result. In the 604e, the appropriate
CR should be treated as undefined. Likewise, the PowerPC architecture states that the
Floating Compared Unordered (fcmpu) or Floating Compared Ordered (fcmpo)
instruction with the record bit set can either cause a program exception or provide a
boundedly undefined result. In the 604e, CR field BF for these cases should be treated as
undefined.

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address indicated by MSR[1P].

Note that the 604e supports one of the two floating-point impreci se modes supported by the
PowerPC architecture. The three modes supported by the 604e are described as follows:

« Ignore exceptions mode (MSR[FEQ] = MSR[FE1] = 0)—In ignore exceptions
mode, the instruction dispatch logic feeds the FPU as fast as possible, and the FPU
uses an internal pipeline to allow overlapped execution of instructions. IEEE
floating-point exception conditions (as defined in the PowerPC architecture) do not
cause any exceptions.

» Precise exceptions mode (MSR[FEQ] = 1; MSR[FE1] = X)—Inthismode, afloating
point instruction that causes a floating-point exception brings the machine to a
precise state. In doing so, the 604e sequencer unit can detect fl oati ng-point exception
conditions and take floating-point exceptions as defined by the PowerPC
architecture. Note that the imprecise recoverable mode supported by the PowerPC
architecture (MSR[FEQ] = 1; MSR[FE1] = 0) isimplemented identically to precise
exceptions mode in the 604e.

e Imprecise nonrecoverable mode (M SR[FEQ] = 0; MSR[FE1] = 1)—In this mode,
floating-point exception conditions cause a floating-point exception to be taken,
SRRO may point to some instruction following the instruction that caused the
exception.
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Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset 0x00800 from the physical base address indicated by MSR[1P].

4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the 604e as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 604e, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address indicated by MSRJ[IF].

4.5.10 System Call Exception (0x00C00)

A system call exception occurswhen a System Call (sc) instruction isexecuted. Inthe 604e,
the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address indicated by MSR[IP].

4.5.11 Trace Exception (0x00DO00)

The trace exception is taken when the single step trace enable bit (MSR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When atrace
exception istaken, the values written to SRR1 are implementati on-specific; those valuesfor
the 604e are shown in Table 4-10.
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Table 4-10. Trace Exception—SRR1 Settings

Register Setting
SRR1 0-2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5-9 Cleared

10 Set for Iswx or stswx, otherwise cleared

11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATS, SRs
12 Set for taken branch, otherwise cleared

13-15 Cleared

16-31 MSR(16-31).

When atrace exception is taken, instruction execution resumes as offset 0x00D00 from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (OXxO0EOQO)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 604e.

4.5.13 Performance Monitoring Interrupt (OxO0FO00)

The PowerPC 604e performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especiadly in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop algorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.

The performance monitor uses the following SPRs:

« Performance monitor counters 1 and 2 (PMC1 and PM C2)—two 32-bit counters
used to store the number of times a certain event has occurred.

»  Themonitor mode control register 0 (MMCRO), which establishes the function of
the counters.

» Sampledinstruction address and sampled dataaddressregisters (SIA and SDA). The
two address registers contain the addresses of the data and of the instruction that
caused a threshold-related performance monitor interrupt.

The 604e supports a performance monitor interrupt that is caused by a counter negative
condition or by atime-base flipped bit counter defined in the MM CRO register.

As with other PowerPC interrupts, the performance monitoring interrupt follows the
normal PowerPC exception model with a defined exception vector offset (0xOOF00). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in
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Section 2.1.2.5, “Performance Monitor Registers.” The performance monitor is described
in Chapter 9, “Performance Monitor.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)

Theinstruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint isenabled (IABR[30] isset). Theinstruction that triggersthe instruction
address breakpoint exception is not executed before the exception handler is invoked. The
vector offset of the instruction address breakpoint exception is 0x01300.

4.5.15 System Management Interrupt (0x01400)

The 604e implements a system management interrupt exception, which is not defined by
the PowerPC architecture. The system management exception isvery similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different interrupt vector in the exception table (at
offset 0x01400).

Like the external interrupt, a system management interrupt is signaled to the 604e by the
assertion of an input signal. The system management interrupt signal (SM1) is expected to
remain asserted until the interrupt is taken. If the SMI signal is negated early, recognition
of the interrupt request is not guaranteed. After the 604e begins execution of the system
management interrupt handler, the system can safely negate the SM1 signal. After the SMI
signal is detected, the 604e stops dispatching instructions and waits for al pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When the exception istaken, 604e vectorsto the system management interrupt vector in the
interrupt table. The vector offset of the system management is 0x01400.

4.5.16 Power Management

Nap mode is a simple power-saving mode, in which al internal processing and bus
operation is suspended. Software initiates nap mode by setting M SR[POW]. After this bit
is set, the 604e suspends instruction dispatch and waits for all activity, including active and
pending bustransactions, to complete. It then shutsdown theinternal chip clocks and enters
nap mode state. The 604e indicates the internal idle state by asserting the HALTED output
regardless whether the clock is stopped.

Nap mode must be entered by using the following code sequence:

napl oop:

sync
mmsr <GPR> (nodify the PONbit only; at this point the EE bit should

have al ready been enabl ed by the software)

i sync

ba napl oop

Chapter 4. Exceptions 4-21



Since this code sequence creates an infinite loop, the programmer should ensure that the
exit routine (one of the exception handler routines listed below) properly updates SRRO to
return to a point outside of thisloop.

While the 604e isin nap mode, all internal activity except for decrementer, timebase, and
interrupt logic is stopped. During nap mode, the 604e does not snoop; if snooping is
required, the system may assert the RUN signal. The clocks run while the RUN signal is
asserted, but instruction execution does not resume. The HALTED output is deasserted to
indicate any bus activity, including a cache block pushout caused by a snoop request, and
is reasserted to indicate that the processor is idle and that the RUN signal can be safely
deasserted to stop the clocks. The maximum latency from the RUN signal assertion to the
starting of clock is three bus clock cycles.

To ensure proper handling of snoops in a multiprocessor system when a processor is the
first to enter nap mode, the system must assert the RUN signal no later than the assertion of
BG to another bus master. This constraint is necessary to ensure proper handling of snoops
when the first processor is entering nap mode.

Nap mode is exited (clocks resume and M SR[POW] cleared) when an external interrupt is
signaled by the assertion of INT, SRESET, MCP, or SMI, when a decrementer interrupt
occurs, or when a hard reset is sensed.

For moreinformation about the RUN and HALTED signals, refer to Section 7.2.10.5, “Run
(RUN)—Input,” and Section 7.2.10.3, “Reservation (RSRV)—Output.”
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Chapter 5
Memory Management

This chapter describes the PowerPC 604e microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the trandation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses, 1/0
accesses (most 1/0 accesses are assumed to be memory-mapped), and direct-storeinterface
accesses. In addition, the MMU provides access protection on a segment, block or page
basis. This chapter describes the specific hardware used to implement the MMU model of
the OEA in the 604e. Refer to Chapter 7, “Memory Management,” in The Programming
Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
tranglation—instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information trand ates the
effective addressto an interim virtual address, and the page table information trans ates the
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the 604€). In addition, two
trangd ation lookaside buffers (TLBs) are implemented on the 604e to keep recently-used
page address trandations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 604e hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be performed independently (and simultaneously).
Therefore, the 604e is described as having two MMUs, one for instruction accesses
(IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block addresstranslations on-chip. BAT array entriesareimplemented aspairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 604e, they reside in the
instruction and data MMUs respectively.
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The MMUSs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUSs.

5.1 MMU Overview

The 604e implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 hits)
and hashed page tablesin the generation of 32-bit physical addresses. PowerPC processors
aso have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 604e MMU implementation defined by the OEA are asfollows:

e Support for real addressing mode—L ogical-to-physical address tranglation can be
disabled separately for data and instruction accesses.

» Block address trand ation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytesfrom the 32-hit effective address space into the physical memory space.
This can be used for trand ating large address ranges whose mappings do not change
frequently.

 Direct-store segments—If the T bit in theindexed segment register is set for any load
or storerequest, thisrequest accesses adirect-store segment; bus activity isdifferent
and the memory space used has different characteristics with respect to how it can
be accessed. The address used on the bus consists of bits from the EA and the
segment register.

* Segmented address translation—The 32-hit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register. This 52-bit virtual address space is divided into 4-Kbyte pages, each of
which can be mapped to a physical page.

The 604e also provides the following features that are not required by the PowerPC
architecture:

* Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set
associative I TLBsand DTL Bskeep recently-used page addresstrandl ations on-chip.

« Table search operations performed in hardware—The 52-bit virtual addressis
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translationis not foundinaTLB
(that is, a TLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE.
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e TLB invaidation—The 604e implements the optional TLB Invalidate Entry (tlbie)
and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB
entries. For more information on the tibie and tibsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”

Table 5-1 summarizes the 604e MMU features, including those defined by the PowerPC
architecture (OEA) for 32-bit processors and those specific to the 604e.

Table 5-1. MMU Feature Summary

Feature Category

Architecturally Defined/
604e-Specific

Feature

Address ranges

Architecturally defined

232 pytes of effective address

252 pytes of virtual address
232 pytes of physical address
Page size Architecturally defined 4 Kbytes
Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined

Range of 128 Kbyte—256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection

Architecturally defined

Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history

Architecturally defined

Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined

Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs

Architecturally defined

Instructions for maintaining TLBs (tlbie and tlbsync
instructions in 604e)

604e-specific

128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors

Architecturally defined

Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

604e-specific

The 604e performs the table search operation in hardware.
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5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory subsystem
uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

Figure5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tables for PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

The 604e maintains two on-chip TLBs with the following characteristics:

« 128 entries, two-way set associative (64 x 2), LRU replacement

» DataTLB supportsthe DMMU; instruction TLB supports the IMMU

* Hardware TLB update

» Hardware update of memory access recording bitsin the trandation table

In the event of aTLB miss, the hardware attempts to load the TLB based on the results of
atrangdation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the 604e instruction and
data MMUSs, respectively. The instruction addresses shown in Figure 5-2 are generated by
the processor for sequential instruction fetches and addresses that correspond to a change
of program flow. Data addresses shown in Figure 5-3 are generated by load and store
instructions (both for the memory and the direct-storeinterfaces) and by cacheinstructions.

As shown in the figures, after an address is generated, the higher-order bits of the effective
address, EAO-EA19 (or asmaller set of address bits, EAO—EAN, in the cases of blocks), are
translated into physical address bits PAO-PA19. Thelower-order address bits, A20-A31 are
untranslated and therefore identical for both effective and physical addresses. After
tranglating the address, the MM Us pass the resulting 32-bit physical addressto the memory
subsystem.
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In addition to the higher-order address hits, the MM Us automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the accessisfor a
load or astore operation. Thisinformation isthen used by the MM Usto appropriately direct
the address trandation and to enforce the protection hierarchy programmed by the
operating system. Section 4.3, “ Exception Processing,” describesthe M SR, which controls
some of the critical functionality of the MMUSs.

The figures show the way in which the A20-A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits PAO—PA19) of the two selected cache
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instruction
or data access is then forwarded to the bus interface unit which then initiates an externa
memory access.

Chapter 5. Memory Management 5-5



Data Instruction

Accesses Accesses
9 2
-
5 i
o 2
= i A20-A31
MMU L
(32 Bit) ©
EA4-EA19 EA15-EA19
EAO-EA3
.......BATOU ]
\ EA0-EA14 IBATOL
0| Segment Registers .
o
— . ...BAT3Y_ ]
. IBAT3L
EA15-EA19
15 ~
: &
Upper 24 Bits of
Virtual Address
r _OF—CFip_ A EAOEALA Dl?AT_OU ________
I s | DBATOL
L— ——— - . BAT
. it O
_______ DBAT3U |
DBAT3L
Page Table
Search Logic |
PAO-PA14 =]
<
PA15-PA19 Rl
<
SDR1 SPR25
X
PAO-PA19
+
— — — Optional to the PowerPC architecture. Implemented in the
PAO-PA31
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5.1.3 Address Translation Mechanisms
PowerPC processors support the following four types of address translation:
» Page address trand ation—transdl ates the page frame address for a4-Kbyte page size

» Block addresstranslation—translates the block number for blocksthat rangein size
from 128 Kbyte to 256 Mbyte.

 Direct-store interface address trand ation—used to generate direct-store interface
accesses on the external bus; not optimized for performance—present for
compatibility only.

* Real addressing mode addresstranslation—when addresstrand ation isdisabled, the
physical addressisidentical to the effective address.

Figure 5-4 shows the four address trandation mechanisms provided by the MMUs. The
segment descriptors shown in the figure control both the page and direct-store interface
address trandlation mechanisms. When an access uses the page or direct-store interface
address trandation, the appropriate segment descriptor is required. In 32-bit
implementations, one of the 16 on-chip segment registers (which contain segment
descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interface is present only for compatibility with existing 1/O devicesthat used thisinterface.
When an access is determined to be to the direct-store interface space, the implementation
invokes an elaborate hardware protocol for communication with these devices. The
direct-store interface protocol is not optimized for performance, and therefore, its use is
discouraged. The most efficient method for accessing 1/0O devices is by memory-mapping
the /O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address trandlation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address tranglation
misses in an on-chip TLB, the MMU causes a search of the page tablesin memory (using
the virtual address information and a hashing function) to locate the required physica
address.

Block address tranglation occurs in parallel with page and direct-store segment address
trangdlation and is similar to page address trandlation; however, fewer higher-order effective
address bits are trandlated into physical address bits (more lower-order address bits (at least
17) are untranglated to form the offset into a block). Also, instead of segment descriptors
and aTLB, block address translations use the on-chip BAT registers as a BAT array. If an
effective address matches the corresponding field of a BAT register, the information in the
BAT register is used to generate the physical address; in this case, the results of the page
tranglation and the direct-store tranglation (occurring in parallel) are ignored.
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Figure 5-4. Address Translation Types

Direct-store address tranglation is used when the direct-store translation control bit (T bit)
in the corresponding segment descriptor is set. In this case, the remaining information in
the segment descriptor is interpreted as identifier information that is used with the
remaining effective address bits to generate the packets used in a direct-store interface
access on the externa interface; additionally, no TLB lookup or page table search is
performed.

Real addressing mode translation occurs when address trandation is disabled; in this case
the physical address generated is identical to the effective address. Instruction and data
address trandation is enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus
when the processor generates an access, and the corresponding address translation enable
bitin MSR (MSR[IR] for instruction accesses and MSR[DR] for data accesses) is cleared,
the resulting physical address is identical to the effective address and all other translation
mechanisms are ignored.

5-10 PowerPC 604e RISC Microprocessor User's Manual



5.1.4 Memory Protection Facilities

In addition to the trandation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

Table 5-2. Access Protection Options for Pages

User Read Supervisor Read .

e i
I-Fetch Data I-Fetch Data
Supervisor-only — — — v v v
Supervisor-only-no-execute — — — — v v
Supervisor-write-only v v — v v v
Supervisor-write-only-no-execute — v — — v v
Both user/supervisor v v v v v v
Both user-/supervisor-no-execute — v v — v v
Both read-only v v — v v —
Both read-only-no-execute — v — — v —
Guarded

v Access permitted
— Protection violation

The operating system programs whether instructions can be fetched from an area of
memory by appropriately using the no-execute option provided in the segment register.
Each of the remaining options is enforced based on a combination of information in the
segment descriptor and the page table entry. Thus, the supervisor-only option allows only
read and write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, thereisafacility inthe VEA and OEA that allows pages or blocks to be designated
as guarded preventing out-of order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to control 1/O devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unlessthey are
explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.
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5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bitsin the
page address translation mechanism that can be used as history information relevant to the
page. Thisinformation can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required.

I mplementation Note—In the process of loading the TL B, the 604e checksthe state of the
changed and referenced bits for the matched PTE. If the referenced hit is not set and the
table search operation isinitialy caused by aload operation or by an instruction fetch, the
604e automatically sets the referenced bit in the trandation table. Similarly, if the table
search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bitsin the translation table. In addition,
during the address trandlation portion of a store operation that hits in the TLB, the 604e
checks the state of the changed bit. If the bit is not already set, the hardware automatically
updates the TLB and the tranglation table in memory to set the changed bit. For more
information, see Section 5.4.1, “ Page History Recording.”

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data

trandation is disabled (MSR[IR] = 0 or MSR[DR] = 0), rea addressing mode is used

(physical address equals effective address) and the access continues to the memory

subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address trand ation or to use the segment descriptor to select either
direct-store interface or page address trandlation.
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Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Notethat if the BAT array search resultsin ahit, the accessis qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (1S| or DS
exception) is generated.

Implementation Note—The 604e BAT registers are not initialized by the hardware after
the power-up or reset sequence. Consequently, all valid bits in both instruction and data
BAT areas must be cleared before setting any BAT area for the first time. This is true
regardless of whether addresstranslation is enabled. Also, software must avoid overlapping
blocks while updating a BAT area or areas. Even if trandation is disabled, multiple BAT
area hits are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.
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5.1.6.2 Page and Direct-Store Interface Address Translation
Selection

If address trandlation is enabled and the effective address information does not match with
a BAT array entry, then the segment descriptor must be located. Once the segment
descriptor islocated, the T bit in the segment descriptor selects whether thetrandationisto
a page or to a direct-store segment as shown in Figure 5-6. In addition, Figure 5-6 also
shows the way in which the no-execute protection is enforced; if the N bit in the segment
descriptor is set and the accessis an instruction fetch, the accessis faulted as described in
Chapter 7, “Memory Management,” in The Programming Environments Manual. Note that
the figure shows the flow for these cases as described by the PowerPC OEA, and sothe TLB
references are shown as optional. As the 604e implements TLBs, these branches are valid,
and described in more detail throughout this chapter.
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5.1.6.2.1 Selection of Page Address Translation

If the T bit in the corresponding segment descriptor is 0, page address trandation is
selected. The information in the segment descriptor is then used to generate the 52-bit
virtual address. The virtual address is then used to identify the page address tranglation
information (stored as page table entries (PTES) in a page table in memory). For increased
performance, the 604e has two on-chip TLBsto store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page trandation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 604e hardware performs the
page table search operation. If the PTE is successfully found, anew TLB entry is created
and the page trandation is once again attempted. This time, the TLB is guaranteed to hit.
Oncethe PTE is located, the access is qualified with the appropriate protection bits. If the
accessis aprotection violation (not allowed), either an ISl or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISl or DSI exception occurs so software can handle the page faullt.

5.1.6.2.2 Selection of Direct-Store Interface Address Translation

When the segment descriptor has the T bit set, the access is considered a direct-store
interface access and the direct-store interface protocol of the external interface is used to
perform the accessto direct-store space. The selection of addresstranglation type differsfor
instruction and data accesses only in that instruction accesses are not alowed from
direct-store segments; attempting to fetch an instruction from a direct-store segment causes
an ISl exception. See Section 5.5, “Direct-Store Interface Address Tranglation,” for more
detailed information about the trandlation of addresses in direct-store space.

5.1.7 MMU Exceptions Summary

In order to complete any memory access, the effective address must be trandated to a
physical address. As specified by the architecture, an MMU exception condition occurs if
thistrandlation fails for one of the following reasons:

« Thereisnovalid entry in the page table for the page specified by the effective
address (and segment descriptor) and thereis no valid BAT trandlation.

e Anaddresstrandation is found but the accessis not allowed by the memory
protection mechanism.

The trand ation exception conditions defined by the OEA for 32-bit implementations cause
either the ISl or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identifiesthe address of thefailing instruction. Refer to Chapter 4, “ Exceptions,” for amore
detailed description of exception processing.
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Table 5-3. Translation Exception Conditions

Condition Description Exception
Page fault (no PTE found) No matching PTE found in page tables (and no | access: IS| exception
matching BAT array entry) SRR1[1]=1
D access: DSI exception
DSISR[1] =1
Block protection violation Conditions described for block in “Block Memory | access: IS| exception
Protection” in Chapter 7, “Memory Management,” SRR1[4]=1

in The Programming Environments Manual.* -
D access: DSI exception

DSISR[4] =1
Page protection violation Conditions described for page in “Page Memory | access: IS| exception
Protection” in Chapter 7, “Memory Management,” SRR1[4]=1
in The Programming Environments Manual. Note: DSISR[6] is also set for

store operations

D access: DSI exception

DSISR[4] =1
No-execute protection Attempt to fetch instruction when SR[N] = 1 ISI exception
violation SRR1[3]=1
Instruction fetch from Attempt to fetch instruction when SR[T] = 1 ISI exception
direct-store segment SRR1[3] =1
Instruction fetch from Attempt to fetch instruction when MSR[IR] =1 and | ISI exception
guarded memory either matching xBAT[G] = 1, or no matching BAT SRR1[3] =1

entry and PTE[G] = 1

In addition to the translation exceptions, there are other MM U-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur. These exception conditions map to the processor
exception as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are the conditions that cause the alignment exception for data accesses. For
more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 4.5.6, “Alignment Exception
(0x00600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
“Memory/Cache AccessAttributes,” in Chapter 5, “ Cache Modedl and Memory Coherency,”
of The Programming Environments Manual. Refer to Chapter 4, “Exceptions,” and to
Chapter 6, “Exceptions,” in The Programming Environments Manual for a complete
description of the SRR1 and DSISR hit settings for these exceptions.
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Table 5-4. Other MMU Exception Conditions for the PowerPC 604e Processor

Condition

Description

Exception

dcbzwithW=1lorl=1

dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

dcbz when the data cache is
locked

The dcbz instruction takes an alignment
exception if the data cache is locked (HIDO
bits 18 and 19) when it is executed.

Alignment exception

lwarx or stwex. with W =1

Reservation instruction to write-through
segment or block

DSl exception DSISR[5] = 1

lwarx, stwcx., eciwx, or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSI exception
DSISR[5] = 1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1

Alignment exception (not
required by architecture)

Load or store that results in a
direct-store error

Direct-store interface protocol signalled with
an error condition

DSI exception
DSISR[0] =1

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] = 0

DSI exception
DSISR[11] =1

Imw, stmw, Iswi, Iswx, stswi, or
stswx instruction attempted in
little-endian mode

Imw, stmw, Iswi, Iswx, stswi, or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment

Translation enabled and operand is
misaligned as described in Chapter 4,
“Exceptions.”

Alignment exception (some
of these cases are
implementation-specific)

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up
the block address trandlation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tablesin memory whenever changes are made to the tablesin memory.
When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, alowing the trangation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the 604e implements all TLB-related instructions except tlbia, which is treated
asanillegal instruction.

Because the MMU specification for PowerPC processorsis so flexible, it is recommended
that the software that uses these instructions and registers be “encapsulated” into
subroutines to minimize the impact of migrating across the family of implementations.
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Table 5-5 summarizes 604e instructions that specifically control the MMU.

Table 5-5. PowerPC 604e Microprocessor Instruction Summary—Control MMUs

Instruction Description
mtsr SR,rS Move to Segment Register
SR[SR#] « rS
mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0-3]] < S
mfsr rD,SR Move from Segment Register
rD « SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD « SR[rB[0-3]]

tibie rB * Execution of this instruction causes all entries in the congruence class corresponding to the EA to
be invalidated in the processor executing the instruction and in the other processors attached to
the same bus.

Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync * The tibsync operation appears on the bus as a distinct operation that causes synchronization of
snooped tlbie instructions.

* These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program the 604e
MMUSs. Theseregisters are accessible to supervisor-level software only. Theseregistersare
described in Chapter 2, “Programming Model .

Table 5-6. PowerPC 604e Microprocessor MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SRO-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as
DBATOU-DBAT3U, and 32-bit registers in 32-bit implementations. These are special-purpose registers that
DBATOL-DBAT3L) are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in

memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.
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5.1.9 TLB Entry Invalidation

For PowerPC processors such as the 604e that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optiona TLB
Invalidate Entry (tlbi€) instruction provides away to invalidate the TLB entries.

Execution of thisinstruction causes all entriesin the congruence class corresponding to the
presented EA to be invalidated in the processor executing the instruction and in the other
processors attached to the same bus.

The tlbsync operation appears on the bus as a distinct operation, that causes
synchronization of snooped tlbie instructions. Section 5.4.3.2, “TLB Invalidation,”
describes the TLB invalidation mechanisms in the 604e.

5.2 Real Addressing Mode

If address trandation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective addressis treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, “ Synchronization.”

Note that the PowerPC architecture states that, for data accesses performed in red
addressing mode (MSR[DR] = 0), the WIMG hits are assumed to be 0b0011 (the data is
write-back, caching is enabled, memory coherency is enforced, and memory is guarded).
For instruction accesses performed in real addressing mode (MSR[IR] = 0), the WIMG bits
are assumed to be 0b0001 (the data is write-back, caching is enabled, memory coherency
is not enforced, and memory is guarded).

5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides away to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such asamemory-mapped display buffer or an extremely large array of numerical
data.

Block address trand ation in the 604e is described in Chapter 7, “Memory Management,” in
The Programming Environments Manual for 32-bit implementations.

5.4 Memory Segment Model

The 604e adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
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memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by alarge virtual address space (52 bits).

The segment/page address transl ation mechanism may be superseded by the block address
trand ation (BAT) mechanism described in Section 5.3, “Block Address Tranglation.” If not,
the tranglation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of thevirtual page number and the byte
offset within a page), and

2. from virtual addressto physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 604e.

5.4.1 Page History Recording

Referenced (R) and changed (C) bitsreside in each PTE to keep history information about
the page. They are maintained by a combination of the 604e table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be alocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
trandation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address trandlation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 604e, the referenced and changed bits are updated as follows:
e For TLB hits, the C bit is updated according to Table 5-7.

e For TLB misses, when atable search operation isin progressto locate aPTE. The
R and C hits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

Rand C bits Processor Action
in TLB Entry
00 Combination doesn’t occur
01 Combination doesn’t occur
10 Read: No special action
Write: The 604e initiates a table search operation to update C.
11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of aTLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tablesif thereisa TLB hit). Therefore, when software clears the R and C bitsin
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the page tables in memory, it must invaidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The dcbt and dcbtst instructions can execute if thereis a TLB/BAT hit or if the processor
isin real addressing mode. In case of a TLB/BAT miss, these instructions are treated as
no-ops; they do not initiate atable search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address trandation were disabled (real addressing mode). Additionally, these updates are
performed with single-beat read and byte write transactions on the bus.

5.4.1.1 Referenced Bit

Thereferenced (R) bit of a page islocated in the PTE in the page table. Every time a page
is referenced (with aread or write access) and the R bit is zero, the 604e sets the R bit in
the page table. The OEA specifies that the referenced bit may be set immediately, or the
setting may be delayed until the memory accessis determined to be successful. Becausethe
reference to a page iswhat causes a PTE to be loaded into the TL B, the referenced bit in all
604e TLB entries is effectively always set. The processor never automatically clears the
referenced hit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of thisin
PowerPC systems include the following:

« Fetching of instructions not subsequently executed
e Accesses generated by an Iswx or stswx instruction with a zero length

e Accesses generated by an stwcex. instruction when no store is performed because a
reservation does not exist

« Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of apageislocated both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if aTLB isimplemented, asin the 604€). Whenever adata store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is aready set, the
processor does not change the C bit. If the TLB changed bit is 0, the 604e setsit and atable
search operation is performed to also set the C bit in the corresponding PTE in the page
table. The 604e initiates the table search operation for setting the C bit in this case.
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The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation isallowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
Set:

» The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

« Theexecution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
Z€ero.

» Thestore operationisnot performed because an exception occurs beforethe storeis
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the 604e updates the R and C bitsin memory, the
accesses are performed as if MSR[DR] =0 and G = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to thetop of the table takes precedence over amatching scenario closer to the bottom
of thetable. For example, if an stwcx. instruction causes a protection violation and thereis
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructionsthat aretreated as aload with respect
to address trandation. Similarly, store operations include those operations generated by
storeinstructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.
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Table 5-8. Model for Guaranteed R and C Bit Settings

Causes Setting of | Causes Setting of
Priority Scenario RBit CBit
OEA 604e OEA 604e
1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation contingent on a branch, trap, | Maybe No No No
sc or rfi instruction, or a possible exception
5 Out-of-order store operation contingent on an exception, Maybe No No No
other than a trap or sc instruction, not occurring
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybel No Maybel No
8 Store conditional (stwcx.) that does not store Maybe! | Yes Maybe® | Yes
9 In-order instruction fetch Yes? Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx, or dcbz instruction Yes Yes Yes Yes
12 ichi, dcbt, dcbtst, dcbst, or dcbf instruction Maybe Yes no no
13 dcbi instruction Maybe! | Yes Maybe! | Yes

1if Cis set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set
(does not apply for 604e).

For more information, see “Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.2 Page Memory Protection

The 604e implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual .

5.4.3 TLB Description

Because the 604e has two MMUs (IMMU and DMMU) that operate in parallel, some of
the MMU resources are shared, and some are actually duplicated (shadowed) in each MMU
to maximize performance. For example, although the architecture defines a single set of
segment registers for the MM U, the 604e maintains two identical sets of segment registers,
one for the IMMU and one for the DMMU; when a segment register instruction executes,
the 604e automatically updates both sets.
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5.4.3.1 TLB Organization

The 604e implements separate 128-entry data and instruction TLBs to support the
implementation of separate instruction and data MMUs. This section describes the
hardware resources provided in the 604e to facilitate page address trand ation. Note that the
hardware implementation of the MMU is not specified by the architecture, and while this
description applies to the 604e, it does not necessarily apply to other PowerPC processors.

Each TLB contains 128 entries organized as atwo-way set associative array with 64 sets as
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
is being trandated, a set of two TLB entries is indexed in paralel with the access to a
segment register. If the address in one of the two TLB entries is valid and matches the
virtual address, that TLB entry contains the physical address. If no match isfound, aTLB
MiSS OCCUrs.

EAO-EA31 Segment Registers
0 78 31
o|T
EAO-EA3 o . o VSID
. L] .
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Figure 5-7. Segment Register and DTLB Organization
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Unless the accessiis the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into a particular TLB entry
selected by the least-recently-used (LRU) replacement algorithm, and the translation
process begins again, thistime with aTLB hit.

TLB entries are on-chip copies of PTESs in the page tables in memory and are similar in
structure. TLB entries consist of two words; the upper-order word contains the VSID and
API fields of the upper-order word of the PTE and the lower-order word contains the RPN,
the C hit, the WIMG bits and the PP bits (as in the lower-order word of the PTE). To
uniquely identify aTLB entry asthe required PTE, the PTE al so contains four more bits of
the page index, EA10—EA13 (in addition to the API bits of the PTE). Formats for the PTE
are given in “PTE Format for 32-Bit Implementations,” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

Software does not have direct access to the TLB arrays, except to invalidate an entry with
the tlbie instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when those
entriesin the same set are indexed. LRU bits are updated whenever a TLB entry is used or
after the entry is replaced. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception isreported at atime.

Although addresstranslation is disabled on areset condition, the valid bits of the BAT array
and TLB entriesare not automatically cleared. Thus, TLB entries must be explicitly cleared
by the system software (with the tlbie instruction) before the valid entries are |oaded and
address tranglation is enabled. Also, note that the segment registers do not have avalid bit,
and so they should also be initialized before trandation is enabled.

5.4.3.2 TLB Invalidation

The 604e implements the optional tlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of the tlbie instruction always invalidates four
entries—both the ITLB entriesindexed by EA14-EA 19 and both the indexed entries of the
DTLB.

Execution of the tlbie instruction causes all entries in the congruence class corresponding
to the specified EA to be invalidated in the processor executing the instruction and also in
the other processors attached to the same bus by causing a TLB invalidate broadcast
operation on the bus as described in Section 7.2.4, “Address Transfer Attribute Signals”
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A TLB invalidate broadcast operation is an address-only transaction issued by a processor
when it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12—19 of the EA in their correct respective bit positions.

When a snooping 604e detects a TLB invalidate operation on the bus, it accepts the
operation only if no TLB invalidation is being performed by this processor and all
processors on the bus accept the operation (ARTRY is not asserted). Once accepted, the
TLB invalidation is performed unless the processor is executing a multiple/string
instruction, in which case the TLB invalidation is delayed until the instruction has
completed. Note that a 604e processor can only have one TLB invalidation operation
pending internally. Thus if the 604e has a pending TLB invalidate operation, it asserts the
ARTRY snoop status in response to another TLB invalidate operation on the bus. Detected
TLB invalidate operations on the bus and the execution of the tlbie instruction both cause
a congruence-class invalidation on both instruction and data TL Bs.

The OEA requires that a synchronization instruction be issued to guarantee completion of
a tlbie instruction across all processors of a system. The 604e implements the tibsync
instruction which causes a TLBSYNC broadcast operation to appear on the bus as an
address-only transaction, distinct from a SYNC operation. It is this bus operation that
causes synchronization of snooped tlbie instructions. Multiple tlbie instructions can be
executed correctly with only one tibsync instruction, following the last tibie, to guarantee
all previous tlbie instructions have been performed globally.

When the TLBSYNC bus operation is detected by a snooping 604e, the 604e asserts the
ARTRY snoop statusif any operations based on an invalidated TLB are pending.

Software must ensure that instruction fetches or memory references to the virtual pages
specified by the tibie have been completed prior to executing the tlbie instruction.

Other than the possible TLB miss on the next instruction prefetch, the tibie does not affect
the instruction fetch operation—that is, the prefetch buffer isnot purged and does not cause
these instructions to be refetched.

Thetlbiainstructionisoptional for animplementation if its effects can be achieved through
some other mechanism. As described above, the tibie instruction can be used to invalidate
aparticular index of the TLB based on EA[14-19]. With that concept in mind, a sequence
of 64 tlbie instructions followed by a single tibsync instruction would cause al the 604e
TLB structures to be invalidated (for EA[14-19] = 0, 1, 2, ..., 63). Therefore the tlbia
instruction is not implemented on the 604e. Execution of a tlbia instruction causes an
illegal instruction program exception.

Thetlbie and tlbsync instructions are described in detail in Section 2.3.6.3.3, “ Translation
L ookaside Buffer Management Instructions—(OEA).” For more information about how
other processors react to TLB operations broadcast on the system bus of a multiprocessing
system, see Section 3.9.6, “ Cache Reaction to Specific Bus Operations.”

Chapter 5. Memory Management 5-27



5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands
on the “TLB Hit” branch of Figure 5-6. The detailed flow for the “TLB Miss’ branch of
Figure 5-6 isdescribed in Section 5.4.5, “Page Table Search Operation.” Note that asin the
case of block address trandation, if the dcbz instruction is attempted to be executed either
in write-through mode or as cache-inhibited (W = 1 or | = 1), the alignment exception is
generated. The checking of memory protection violation conditions for page address
trandlation is described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.
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5.4.5 Page Table Search Operation

If the trandation is not found in the TLBs (a TLB miss), the 604e initiates a table search
operation which isdescribed in this section. Formats for the PTE are given in “PTE Format
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

Thefollowing is a summary of the page table search process performed by the 604e;

1

The 32-bit physical address of the primary PTEG is generated as described in “ Page
Table Addresses’ in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

Thefirst PTE (PTEQ) in the primary PTEG is read from memory. PTE reads occur
with animplied WIM memory/cache mode control bit setting of 0bOO1. Therefore,
they are considered cacheable and read (burst) from memory and placed in the
cache.

The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN istheV SID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] =0

— PTE[V] =1

— PTE[VSID] = VA[0-23]

— PTE[API] =VA[24-29]

If amatch is not found, step 3 isrepeated for each of the other seven PTEs in the
primary PTEG. If amatch isfound, the table search process continues as described
in step 8. If amatch isnot found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

Thefirst PTE (PTEQ) in the secondary PTEG isread from memory. Again, because
PTE reads have aWIM bit combination of 0b001, an entire cache lineis read into
the on-chip cache.

The PTE in the selected secondary PTEG istested for amatch with the virtual page
number (VPN) of the access. For amatch to occur, the following must be true:

— PTE[H] =1

— PTE[V] =1

— PTE[VSID] =VA[0-23]

— PTE[API] = VA[24-29]

If amatch is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).
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8. If amatchisfound, the PTE iswritten into the on-chip TLB and the R bit is updated
inthe PTE in memory (if necessary). If thereisno memory protection violation, the
C bit isaso updated in memory (if the access is awrite operation) and the table
search is complete.

9. If amatchis not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an |SI exception or aDSI
exception).

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary
page table search operations, described in The Programming Environments Manual are
realized in the 604e.

Figure 5-9 shows the case of a dcbz instruction that is executed withW =1 or | =1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.
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PA — PA+8 Fetch PTE (84 Bits)
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/

Set SRR1[1] = 1 Set DSISR[1] = 1

ISI Exception DSI Exception

Figure 5-10. Secondary Page Table Search Flow

If the address in one of the two selected TLB entries is valid and matches the virtual
address, that TLB entry contains the physical address. If no match is found, a TLB miss
occursand, if thisisan in-order access, a hardware table search operation begins. Once the
matching PTE isfound in memory, it is loaded into the appropriate TLB entry depending
on the LRU bit setting and translation continues.

The LSU initiates out-of-order accesses without knowledge of whether it islegal to do so.
Therefore, the MMU does not perform hardware table search due to TLB misses until the
request is nonspeculative. In these out-of-order cases, the MMU does detect protection
violations and whether a dcbz instruction specifies a page marked as write-through or
cache-inhibited. The MMU also detects alignment exceptions caused by the dcbz
instruction, which prevents the changed bit in the PTE from being updated erroneously.

Note that when a TLB miss occurs, the MMU does not begin the table search operation if
the accessis out of order.

Chapter 5. Memory Management 5-33



If the MMU registers are being accessed by an instruction in the instruction stream, the
IMMU stallsfor one translation cycle to perform those operation. The sequencer serializes
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer
classifies those operations as fetch serialization. After such an instruction is dispatched, the
instruction buffer is flushed and the fetch stalls until the instruction completes. However,
for reading from the IBATS, the operation is classified as execution serialization. Aslong as
the LSU ensuresthat al previous instructions can be executed, subsequent instructions can
be fetched and dispatched.

5.4.6 Page Table Updates

This section describes the requirements on the software when updating page tables in
memory via some pseudocode examples. Multiprocessor systems must follow the rules
described in this section so that all processors operate with a consistent set of page tables.
Even single-processor systems must follow certain rules, because software changes must
be synchronized with the other instructions in execution and with automatic updates that
may be made by the hardware (referenced and changed bit updates). Updates to the tables
include the following operations:

* AddingaPTE
» Modifying aPTE, including modifying the R and C hits of a PTE
* DeletingaPTE

PTEs must be locked on multiprocessor systems. Access to PTES must be appropriately
synchronized by software locking of (that is, guaranteeing exclusive access to) PTEs or
PTEGs if more than one processor can modify the table at that time.

When TLBs are implemented, they are defined as noncoherent caches of the page tables.
TLB entries must be invalidated explicitly with the TLB invalidate entry instruction (tIbie)
whenever the corresponding PTE is modified. In a multiprocessor system, the tlbie
instruction must be controlled by software locking, so that the tibie is issued on only one
processor at a time. The sync instruction causes the processor to wait until the TLB
invalidate operation in progress by this processor is complete.

The PowerPC OEA defines the tlbsync instruction that ensures that TLB invalidate
operations executed by this processor have caused all appropriate actions in other
processors. In asystem that contains multiple processors, the tibsync functionality must be
used in order to ensure proper synchronization with the other PowerPC processors. Note
that for compatibility with PowerPC 601 microprocessor systems a sync instruction must
aso follow the tlbsync to ensure that the tlbsync has completed execution on this
processor.

Any processor, including the processor modifying the page table, may accessthe pagetable
at any timein an attempt to reload a TLB entry. An inconsi stent page table entry must never
accidentally become visible; thus, there must be synchronization between modificationsto
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the valid bit and any other modifications (to avoid corrupted data). This requires as many
as two sync operations for each PTE update.

BecausetheV, R, and C bits each reside in a distinct byte of a PTE, programs may update
these bits with byte store operations (without requiring any higher-level synchronization).
However, extreme care must be taken to ensure that no store overwrites one of these bytes
accidentally. Processors write referenced and changed bits with unsynchronized, atomic
byte store operations.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly atering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. Thiskind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly undefined results. Therefore, PTES must not be
changed in amanner that causes an implicit branch. Chapter 2, “ PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and M SR bits are changed.

5.4.7 Segment Register Updates

There are certain synchronization requirements for using the move to segment register
instructions. These are described in “ Synchronization Requirements for Special Registers
and for Lookaside Buffers’ in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

5.5 Direct-Store Interface Address Translation

As described for memory segments, all accesses generated by the processor map to a
segment descriptor in the segment table. If T = 1 for the selected segment descriptor and
there are no BAT hits, the access maps to the direct-store interface, invoking a specific bus
protocol for accessing some special-purpose /O devices. Direct-store segments are
provided for POWER compatibility. As the direct-store interface is present only for
compatibility with existing I/O devices that used thisinterface and the direct-store interface
protocol is not optimized for performance, its useis discouraged. Applications that require
low latency load/store access to external address space should use memory-mapped 1/0,
rather than the direct-store interface.

5.5.1 Direct-Store Interface Accesses

When the address translation process determines that the segment descriptor has T = 1,
direct-store interface address translation is selected and no reference is made to the page
tables and referenced and changed bits are not updated. These accesses are performed as if
the WIMG bits were 0b0101; that is, caching is inhibited, the accesses bypass the cache,
hardware-enforced coherency is not required, and the accesses are considered guarded.

The specific protocol invoked to perform these accessesinvolvesthe transfer of address and
data information in packets; however, the PowerPC OEA does not define the exact
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hardware protocol used for direct-store interface accesses. Some instructions cause
multiple address/data transactions to occur on the bus. In this case, the address for each
transaction is handled individually with respect to the DMMU.

Thefollowing datais sent by the 604e to the memory controller in the protocol (two packets
consisting of address-only cycles) described in Section 8.6, “Direct-Store Operation.”
o Packet0
— One of the Kx bits (Ks or Kp) is selected to be the key asfollows:
— For supervisor accesses (MSR[PR] = 0), the Kshit isused and Kp isignored.
— For user accesses (MSR[PR] = 1), the Kp bit is used and Ksis ignored.

— The contents of bits 3-31 of the segment register, which isthe BUID field
concatenated with the “ controller-specific” field.

» Packet 1—SR[28-31] concatenated with the 28 lower-order bits of the effective
address, EA4-EA3L.

5.5.2 Direct-Store Segment Protection

Page-level memory protection as described in Section 5.4.2, “ Page Memory Protection,” is
not provided for direct-store segments. The appropriate key bit (Ksor Kp) from the segment
descriptor is sent to the memory controller, and the memory controller implements any
protection required. Frequently, no such mechanism is provided; the fact that a direct-store
segment is mapped into the address space of a process may be regarded as sufficient
authority to access the segment.

5.5.3 Instructions Not Supported in Direct-Store Segments

The following instructions are not supported at all and cause a DSI exception (with
DSISR[5] set) when issued with an effective address that selects a segment descriptor that
hasT = 1 (or when MSR[DR] = 0):

o lwarx

e stwcx.

*  eciwx

*  ecowx

5.5.4 Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective address
that selects a segment where T = 1:

e dcbt

* dcbtst

o dcbf

* dcbhi
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e dcbst
e dcbz
e jchi

5.5.5 Direct-Store Segment Translation Summary Flow

Figure 5-11 shows the flow used by the MMU when direct-store segment address
trandation is selected. This figure expands the direct-store segment trandlation stub found
in Figure 5-6 for both instruction and data accesses. In the case of a floating-point load or
store operation to adirect-store segment, other implementations may not take an alignment
exception, as is alowed by the PowerPC architecture. In the case of an eciwx, ecowx,
Iwarx, or stwex. instruction, the implementation either sets the DSISR register as shown
and causes the DSI exception, or causes boundedly undefined results.

Direct-Store
Segment Translation

T=1
Instruction Access Data Access
~
SRR1[3] ~ 1 Floating-Point
Load or Store
. = ~
ISI Exception otherwise 1
r - — —— — — 7
Alignment Exception
L - - e - — — .
eciwx, ecowx, lwarx, )
or stwcx. instruction otherwise
-—_— - — Cache Instruction (dcbt,
DSISR[5] ~ 1 otherwise dcbtst, dcbf, dcbi, dcbst,

dcbz, or ichi)

L — _|_ — 4
DSI Exception or Boundedly
Undefined Results
Perform Direct-Store
Interface Access

— — - Optional to the PowerPC architecture. Implemented in the 604e.

Figure 5-11. Direct-Store Segment Translation Flow
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Chapter 6
Instruction Timing

This chapter describes instruction prefetch and execution through all of the execution units
of the PowerPC 604e microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions.

6.1 Terminology and Conventions

This section describes terminology and conventions used in this chapter. This section
defines terms used in this chapter.

Stage—An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perform its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipelineis forced to stall
initscycle.

In some cases, an instruction may aso occupy more than one stage
simultaneously—for example, instructions may complete and write back their
resultsin the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

Pipeline—In the context of instruction timing, the term pipeline refersto the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—analogous to an assembly line. Asan instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cyclesis called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

Chapter 6. Instruction Timing 6-1



Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same time. In
the 604e these instructions can leave the execute stage out of order but must leave
the other stagesin order.

Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted asit is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
ameans for static branch prediction, which is part of the instruction encoding. The
604e al so implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of that
instruction, which is recorded in the branch history table (BHT).

Branch resol ution—T he determination of whether a branch is taken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, speculatively executed instructions can
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced with the
instructions from the nonpredicted path.

Program order—The original order in which program instructions are provided to
the instruction queue from the cache.

Stall—An occurrence when an instruction cannot proceed to the next stage.

L atency— The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

Throughput—A measure of the number of instructionsthat are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available. In the 604e, each execution unit has a two-entry reservation
station. The 604e implements two types of reservation stations. The integer units
implement out-of-order execution units so integer instructions can be executed out
of order within individual integer units and among the three units. The reservation
stations for the other execution units are in-order reservation stations—that is, all
noninteger instructions must pass through its assigned unit in program order with
respect to other like instructions.

Rename buffer—Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

Finish—Thetermindicatesthefinal cycle of execution. Inthiscycle, the completion
buffer is updated to indicate that the instruction has finished executing.
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» Completion—Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previousinstructionswill cause no exceptions. In some situations,
an instruction can finish and complete in the same cycle.

»  Write-back—Write-back (in the context of instruction handling) occurs when a
result is written from the rename registersinto the architectural registers (typically
the GPRs and FPRs). Results are written back at completion time or are moved into
the write-back buffer. Resultsin the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

6.2 Instruction Timing Overview

The 604e has been designed to maximize instruction throughput and minimize average
instruction execution latency. For many of the instructions in the 604e, this can be
simplified to include only the execute phase for a particular instruction. Note that the
number of additional cycles required by data access instructions depends on whether the
access hits in the cache in which case there is a single cycle required for the cache access.
If the access missesin the cache, the number of additional cyclesrequired is affected by the
processor-to-bus clock ratios and other factors pertaining to memory access.

In keeping with this definition, most integer instructions have alatency of one clock cycle
(for example, results for these instructions are ready for use on the next clock cycle after
issue). Other instructions, such as the integer multiply, require more than one clock cycle
to finish execution.

Figure 6-1 provides a detailed block diagram—showing the additional data paths that
contribute to the improved efficiency in instruction execution and more clearly shows the
relationships between execution units and their associated register files.
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Figure 6-1. Block Diagram—Internal Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock cycle
can berealized by the many performance featuresin the 604e including multiple execution
units that operate independently and in parallel, pipelining, superscalar instruction issue,
dynamic branch prediction, the implementation of two reservation stations for each
execution unit to avoid additional latency due to stalls in individua pipelines, and result
buses that forward results to dependent instructions instead of requiring those instructions
to wait until results become available in the architected registers.

The reservation stations and result buses for the GPRs are shown in Figure 6-2
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Figure 6-2. GPR Reservation Stations and Result Buses

Although it is not shown in Figure 6-1, the LSU and FPU are pipelined.

The 604€e's completion buffer can retire four instructions every clock cycle. In general,
instruction processing is accomplished in six stages—fetch stage, decode stage, dispatch
stage, execute stage, completion stage, and write-back stage. The instruction fetch stage
includes the clock cycles necessary to request instructions from the on-chip cache as well
asthe time it takes the on-chip cache to respond to that request. The decode stage consists
of the time it takes to fully decode the instruction. In the complete stage, as many as four
instructions per cycle are completed in program order. In the write-back stage, results are
returned to the register file. Instructions are fetched and executed concurrently with the
execution and write-back of previous instructions producing an overlap period between
instructions. The details of these operations are explained in the following paragraphs.

6.2.1 Pipeline Structures

The master instruction pipeline of the 604e has six stages. Instructions executed by the
machine flow through these stages. Some instructions combine the completion and write-
back stages into a single cycle. Some instructions (load, store, and floating-point
instructions) flow through additional execution pipeline stages.

The six basic stages of the master instruction pipeline are as follows:
e Fetch (IF)
e Decode (ID)
» Dispatch (DS)
« Execute (E)
e Completion (C)
»  Write-back (W)
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These stages are shown in Figure 6-3. Some instructions occupy multiple stages
simultaneously and some individual execution units, such as the FPU and MCIU, have
multiple execution stages.

Fetch (IF)

A

(Four-instruction dispatch per clock
cycle in any combination)

Complete (C)

Write-Back (W)

Figure 6-3. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure 6-4.
Note that this figure does not accurately reflect the latencies for al instructions that pass
through each of the pipelines. The division of instructions into branch, integer, load/store,
and floating-point instructions indicates the execution unit in which the instructions
execute. For example, mtspr instructions, which are not thought of as integer instructions
from afunctional perspective, are considered with integer instructions here because they
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same cycle.
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions that
miss in the cache can occupy both the final stage of execute (finish) and complete (and
write-back) simultaneously.
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Figure 6-4. PowerPC 604e Microprocessor Pipeline Stages
Table 6-1 lists the latencies and throughputs for general groups of instructions.

Table 6-1. Execution Latencies and Throughputs

Instruction Latency Throughput
Most integer instructions 1 1
Integer multiply (32x32) 4 2
Integer multiply (others) 3 1
Integer divide 20 19
Integer load 2 1
Integer store 3 1
Floating-point load 3 1
Floating-point store 3 1
Double-precision floating-point multiply-add 3 1
Single-precision floating-point divide 18 18
Double-precision floating-point divide 31 31

6.2.1.1 Description of Pipeline Stages
This section gives a brief description of each of the six stages of the master instruction
pipeline.
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6.2.1.1.1 Fetch Stage

Thefetch stage primarily is responsible for fetching instructions from the instruction cache
and determining the address of the next instruction to be fetched. Instructions fetched from
the cache are latched into an instruction buffer for subsequent consideration by the decode

stage.

The fetch unit keeps the instruction buffer (four-entry decode and four-entry dispatch
buffer) supplied with instructions for the dispatcher to process. Normally, the fetch unit
fetchesinstructions sequentially, even when the instruction buffer isfull because space may
become available by the time the instruction cache supplies them. Instructions are fetched
from the instruction cache in groups of four along double-word boundaries. Instructions
can be fetched from only one cache block at atime, so if only two instructions remain in
the cache block, only two instructions are fetched. If fetching is sequential, then it resumes
at four instructions per clock from the next cache block.

If trandation isdisabled (MSR[IR] = 0), the 604e fetches instructions when they hit in the
cache or if the previous completed instruction fetch was to the same page as thisinstruction
fetch. Where an instruction access hits in the cache, the 604e continues to fetch any
consecutive accesses to that same page.

The next address to be fetched is affected by several different conditions. Each stage offers
its own candidate for the next instruction to be fetched, and the latest stage has the highest
priority. As ablock is prefetched, the branch target address cache (BTAC) and the branch
history table (BHT) are searched with the fetch address. If the fetch addressisfound in the
BTAC, it is the fetch stage candidate for being the next instruction address (as shown in
Section 6.4.4.1.1, “Timing Example—Branch Timing for a BTAC Hit"); otherwise, the
next sequential address is the candidate provided by the fetch stage.

The decode logic may indicate, based on the BHT or an unconditional branch decode, that
an earlier BTAC prediction was incorrect. The BPU can indicate that a previous branch
prediction, either from the BTAC or the decoder wasincorrect and it can supply anew fetch
address. In this casg, the contents of the instruction buffers are flushed. Exception logic
within the completion logic may indicate the need to vector to an exception handler address.
From these choices the exception has first priority, the branch unit has second priority, the
decode correction of aBTAC prediction hasthird priority, and the BTAC prediction hasthe
final priority for instruction prefetching.

6.2.1.1.2 Decode Stage

The decode stage handles all time-critical instruction decoding for instructions in the
instruction buffer. The decode stage contains afour-instruction buffer that shifts one or two
pairs of instructions into the dispatch buffer as space becomes available.

On the 604e, the branch correction in the decode stage predicts branches whose target is
taken from the CTR or LR. This correction occurs if no CTR or LR updates are pending.
This correction, like al other decode stage corrections, is done only on the first two
instructions of the decode stage. This correction saves at least one cycle on branch
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correction when the mtspr instruction can be separated from the branch that uses the SPR
as atarget address.

6.2.1.1.3 Dispatch Stage

The dispatch pipeline stage is responsible for non—time-critical decoding of instructions
supplied by the decode stage and for determining which of the instructions can be
dispatched in the current cycle. Also, the source operands of the instructions are read from
the appropriate register file and dispatched with the instruction to the execute stage. At the
end of the dispatch stage, the dispatched instructions and their operands are latched into
reservation stations or execution unit input latches.

6.2.1.1.4 Execute Stage

As shown in Figure 6-3, after an instruction passes through the common stages of fetch,
decode, and dispatch, they are passed to the appropriate execution unit where they are said
to be in execute stage. Note that the time that an instruction spends in the execute stage
varies depending on the execution unit. For example, the floating-point unit has a fully-
pipelined, three-stage execution unit, so most floating-point instructions have athree-cycle
execute latency, regardless whether they are single- or double-precision. Someinstructions,
such asinteger divides, must repeat some stages in order to calculate the correct result.

The execute stage executes the instruction selected in the dispatch stage, which may come
from the reservation stations or from instructions arriving from dispatch. At the end of
execute stage, the execution unit writes the results into the appropriate rename buffer entry,
and notifies the complete stage that the instruction has finished execution.

If it is determined that the direction of a branch instruction was mispredicted in an earlier
stage, the instructions from the mispredicted path are flushed and fetching resumes at the
correct address.

If an instruction causes an exception, the execution unit reports the exception to the
complete stage and continues executing instructions regardless of the exception. Under
certain conditions, results can write directly into the register file and bypass the rename
registers.

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

* Integer divide, multiply when OE = 0 (Note that this does not include instructions
that change OV or CA (OE =1).)

« All mfspr
« All mtspr instructions except when LR/CTR isinvolved because they are not
serialized
An example of one of theseinstructions, mulli, is shown in the instruction timing examples

in Figure 6-8 through Figure 6-11. An instruction can finish execution and complete only
if it isthe first instruction to complete. Whether an instruction is able to complete in the
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same cycle in which it finishes execution is aso subject to the normal considerations that
affect execution and completion.

For more information about individual execution units, see Section 6.5, “Execution Unit
Timings.”

6.2.1.1.5 Complete Stage

The complete stage maintains the correct architectural machine state. In doing this it
considers a number of instructions residing in the completion buffer and uses the
information about the status of instructions provided by the execute stage.

When instructions are dispatched, they are issued a position in the 16-entry completion
buffer which they hold until they meet the constraints of completion. When an instruction
finishes execution, its status is recorded in its completion buffer entry. The completion
buffer is managed as afirst-in, first-out (FIFO) buffer; it examines the entriesin the order
in which the instructions were dispatched. The fact that the completion buffer alows the
processor to retain the program order ensures that instructions are completed in order.

The status of four entries are examined during each cycle to determine whether the results
can be written back, and therefore, as many as four instructions can compl ete per clock. If
an instruction causes an exception, the status information in the completion buffer reflects
this, and thisinformation in the completion buffer is used to generate the exception. In this
way the completion buffer is used to ensure a precise exception model. Typically,
exceptions are detected in the fetch, decode, or execute stage.

Apart from those restrictions necessary to support a precise exception model, the 604e
imposes the following restrictions per each cycle:

e Completion stops before a store since store datais read directly from GPRs or FPRs

» Completion stops after a taken branch instruction to simplify the program counter
logic.

Note that the 604e decouples instruction completion from the actual update (write-back) of
the register file; therefore, instructions can complete regardless of how many registersthey
must update, and a few instructions, such as load cache misses can complete before the
result isknown. The write-back occurs during the complete stageif the ports and resultsare
available; otherwise, the write-back is treated as a separate stage, as shown in the timing
examplesin Section 6.4.1, “ General Instruction Flow.” This provision allows the processor
to complete instructions, without concern for the number or presence of results. Note that
if aread operation missesin the cache, the instruction can complete (aslong asit is certain
that the instruction can cause no exceptions) even though the result is not available.

Rename buffer entriesfor the FPRs, GPRs, and CR act astemporary buffersfor instructions
that have not completed and as write-back buffers for those that have.
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Each of the rename buffers has two read ports for write-back, corresponding to the two
ports provided for write-back for the GPRs, FPRs, and CR. As many as two results are
copied from each write-back buffer to aregister per clock cycle.

If the completion logic detects an instruction containing exception status or an instruction
that can cause subsequent instructions to be flushed at completion (such as mtspr[xer],
instructionsthat set the summary overflow (SO) bit, and other instructionslisted below), all
following instructions are cancelled, their execution results in the rename buffers are
discarded, and fetching resumes at the correct stream of instructions. Other architectural
registers, such as CTR, LR, and CR, are updated during this stage. A complete list of the
affected instructionsis as follows:

e mtspr (xer)

e mcrxr

e isync

e Instructions that set the summary overflow, SO, bit
« |swx with O bytesto load

* Hoating-point arithmetic, frsp, fctiw, and fctiwz instructions that cause an
exception with FPSCR[VE] = 1

» A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE=1)

6.2.1.1.6 Write-Back Stage

The write-back stage is used to write back any information from the rename buffers that
was not written back by the complete stage.

As mentioned in Section 6.2.1.1.5, “Complete Stage,” each of the rename buffers has two
read ports for write-back, corresponding to the two ports provided for write-back for the
GPRs, FPRs, and CR. As many as two results are copied from the write-back buffersto a
register per clock cycle. To compensate for the extra write-back stage, the GPR rename
buffer has 12 entries, which reduces the chances for dispatch stalls for applications that
depend heavily on integer instructions.

6.3 Memory Performance Considerations

Due to the 604€'s instruction throughput of four instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the 604e to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.
If there are many processors in a system environment, one processor may experience long
memory latencies while another bus master (for example, a direct memory access
controller) is using the external bus.
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To reduce this possible contention, the PowerPC architecture provides three memory
update modes—write-back, write-through, and cache-inhibit. Each page of memory is
specified to be in one of these modes. If apageisin write-back mode, data being stored to
that page is written only to the on-chip cache. If apageisin write-through mode, writes to
that page update the on-chip cache on hits and always update main memory. If a page is
cache-inhibited, data in that page is never stored in the on-chip cache. All three of these
modes of operation have advantages and disadvantages. A decision asto which modeto use
depends on the system environment as well as the application. Although these modes are
described in detail in Chapter 3, “ Cache and Bus Interface Unit Operation,” Section 6.3.4,
“Memory Operations,” briefly describes how these modes may affect instruction timing.

6.3.1 MMU Overview

The 604e implements separate 128-entry, two-way set-associative TLBs, one each for
instruction and data accesses. The TLBs are managed in hardware and adhere to the
specifications for segmented page virtual memory provided in the operating environment
architecture (OEA). Theblock addresstrandation (BAT) registers makeit possibleto easily
manage large contiguous areas of memory (128 Kbyte to 256 Mbyte).

The MMUs also control memory protection aswell asthe cache functions, such as whether
ablock or pageiswrite-back or write-through, is cacheable/noncacheabl e, iskept coherent,
or isavailable for speculative execution.

For more information about the 604e MMU implementation, see Chapter 5, “Memory
Management.”

6.3.2 Cache Overview

The nonblocking data cache, shown in Figure 6-5, provides continuous load or store access
during a cache block reload.

6-12 PowerPC 604e RISC Microprocessor User's Manual



Bus Interface

Load/Store Unit

Y

Line-Fill Buffer
\i \i
Store Queue Load Queue
Data Cache
Store Miss Load Miss
Queue Queue
_ Result Buses

Figure 6-5. Data Caches and Memory Queues

For aload operation, the cache is accessed first by the LSU and data is forwarded to the
execution unit and to the rename buffer if the access hits in the cache. Otherwise, the load
operation is added to the load queue.

Store operations are added to the store queue after they are successfully translated. As each
store operation is completed with respect to the execution unit, it is only marked as
completed in the queue so instruction processing can continue without having to wait for
the actual store operation to take place either in the cache or in system memory. When the
cache is not busy, one completed store can be written to the cache per cycle. In the case of
a cache miss on a store operation, that store information is placed in the store miss queue
to allow subsequent store operations to continue while the missing cache block is brought
in from system memory. The store queue can hold six instructions.

As each load miss completes, the cache is accessed a second time. If it misses again, the
instruction is moved to the load miss register while the missing cache block is brought in.
Thisallows asecond load missto begin without having to wait for thefirst one to complete.
The load queue can hold as many as four instructions.
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Requests from a mispredicted branch path are selectively removed from the memory
gueues when the misprediction is corrected, eliminating unnecessary memory accesses and
reducing traffic on the system bus. The 604e also implements the cache block touch
instructions (dcbt and dcbtst) which allows the processor to schedule bus activity more
efficiently and increase the likelihood of a cache hit.

The data cache is kept coherent using MESI protocol and maintains a separate port so
snooping does not interfere with other bustraffic. Note that coherency is not maintained in
the instruction cache. Instructions are provided by the PowerPC architecture to ensure
coherency in the instruction cache.

Both caches can be disabled, invalidated, or locked by using bits in the HIDO register. For
more information, see Section 2.1.2.3, “Hardware | mplementation-Dependent Register 0.

For moreinformation about the 604e cache implementation, see Chapter 3, “ Cacheand Bus
Interface Unit Operation.”

6.3.3 Bus Interface Overview

The bus interface unit (BIU) on the 604e is compatible with that on the PowerPC 601 and
603 processors. The BIU supports both tenured and split-transaction modes and can handle
asmany asthree outstanding pipelined operations. The BIU can complete one or morewrite
transactions between the address and data tenures of aread transaction. The BIU provides
critical doubleword first, so the datain the double word requested by theinstruction fetcher
or LSU ispresented to the cache before the other datain the cache block. Thecritical double
word is forwarded to the fetcher or to the LSU without having to wait for the entire cache
block to be updated.

For more information about the BIU, see Chapter 3, “Cache and Bus Interface Unit
Operation.”

6.3.4 Memory Operations

The 604e provides features that provide flexible and efficient accesses to memory in both
single- and multiple-processor systems.

6.3.4.1 Write-Back Mode

When storing data while in write-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified line replacements, cache flushes, or when another processor attempts to
access a specific address for which there is a corresponding modified cache entry. For this
reason, write-back mode may be preferred when external bus bandwidth is a potential
bottleneck—for example, in a multiprocessor environment. Write-back mode is also well
suited for datathat is closely coupled to a processor, such as local variables.
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If more than one device uses data stored in apage that isin write-back mode, snooping must
be enabled to allow write-back operations and cache invalidations of modified data. The
604e implements snooping hardware to prevent other devices from accessing invalid data.
When bus snooping is enabled, the processor monitorsthe transactions of the other devices.
For example, if another device accesses a memory location and its memory-coherent (M)
bit is set, and the 604€’s on-chip cache has amodified value for that address, the processor
preempts the bus transaction, and updates memory with the cache data. If the cache
contents associated with the snooped address are unmodified, the 604e invalidatesthe cache
block. The other device is then free to attempt an access to the updated memory address.
See Chapter 3, “Cache and Bus Interface Unit Operation,” for complete information about
bus snooping.

Write-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.3.4.2 Write-Through Mode

Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the data in the cache must
aways agree with external memory (for example, video memory), or when there is shared
(global) data that may be used frequently, or when allocation of a cache block on a cache
miss is undesirable. Cached data is not automatically written back if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time astoreis performed to memory in write-through mode, the bus remains busy for
the extra clock cycles required to update memory; therefore, load operations that miss the
cache must wait until the external store operation completes.

6.3.4.3 Cache-Inhibited Mode
If amemory page is specified to be cache-inhibited, data from this page is not cached.

Areas of the memory map can be cache-inhibited by the operating system software. If a
cache-inhibited access hits in the on-chip cache, the corresponding cache block is
invalidated. If the line is marked as modified, it is written back to memory before being
invalidated.

In summary, the write-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the cache-inhibited mode causes memory access for both loads and stores.
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6.4 Timing Considerations

A superscalar machine is one that can issue multiple instructions concurrently from a
conventional linear instruction stream. The 604e is atrue superscal ar implementation of the
PowerPC architecture since a maximum of four instructions can be issued to the execution
units during each clock cycle. Although a superscalar implementation complicates
instruction timing, these complications are transparent to the functionality of software.
While the 604e appears to the programmer to execute instructions in sequential order, the
604e provides increased performance by executing multiple instructions at atime, and by
using hardware to manage dependencies.

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the bus.
The register files and source buses have sufficient bandwidth to allow the dispatching of
four instructions per clock. If an operand is unavailable, the instruction is kept in a
reservation station until the operand becomes available.

The 604e contains the following execution units that operate independently and in parallel:
» Branch processing unit (BPU)
e Condition register unit (CRU)
e Two 32-bit single-cycle integer units (SCIU)
e One 32-bit multiple-cycle integer units (MCIU)
e 64-bit floating-point unit (FPU)
e Load/store unit (LSU)

AsshowninFigure 6-1, the BPU directsthe program flow with the aid of a dynamic branch
prediction mechanism. The instruction unit determines to which of the six other execution
units an instruction is dispatched.

6.4.1 General Instruction Flow

When the IU or FPU finishes executing an instruction, it places the resulting data, if any,
into one of the GPR, FPR, or condition register rename registers. The results are then stored
into the correct register file during the write-back stage. If a subsequent instruction is
waiting for this data, it is forwarded from the result buses, directly into the appropriate
execution unit for the immediate execution of the waiting instruction. This alows a data-
dependent instruction to be executed without waiting for the data to be written into the
register file and then read back out again. This feature, known as feed forwarding,
significantly shortens the time the machine may stall on data dependencies.
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Asmany asfour instructions are fetched from the instruction cache per cycle and placed in
the decode buffer. After they are decoded, instructions advance to the dispatch buffers as
space becomes available. The 604e tries to keep the 1Q full at al times. Although four
instructions can be brought in from the on-chip cache in asingle clock cycle, if thereisa
two-instruction vacancy in the 1Q, two instructions can be fetched from the cache to fill it.
If while filling the 1Q, the request for new instructions misses in the on-chip cache,
arbitration for a memory access begins. Whenever a pair of positions opens in the queue,
the next two instructions are shifted in.

6.4.2 Instruction Fetch Timing

The timing of the instruction fetch mechanism on the 604e depends heavily on the state of
the on-chip cache. The speed with which the required instructions are returned to the
fetcher depends on whether the instruction being asked for is in the on-chip cache (cache
hit) or whether a memory transaction is required to bring the data into the cache (cache
miss).

6.4.2.1 Cache Hit Timing Example

Assuming that the instruction fetcher is not blocked from the cache by a cache reload
operation and the instructions it needs are in the on-chip cache (a cache hit has occurred),
there will only be one clock cycle between the time that the instruction fetcher requeststhe
instructions and thetimethat theinstructions enter the |Q. Aspreviously stated, instructions
are fetched in pairs from a single cache block, so usually four instructions are
simultaneously fetched from the on-chip cache and loaded into the 1Q. If the fetch address
pointsto the last two instructionsin the instruction cache block, asisthe casein Figure 6-6,
only two instructions can be fetched into the 1Q.

Figure 6-6 shows the timing for the following simple code sequence for instructions that
use the SCIUs and the FPU:

and
or

f add
f sub
addc
subfc
f madd
f msub
xor
neg

f adds
f subs
add
subf
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EX XY
[ 0and ]

[ 1or ]
2 fadd

3 fsub

4 addc

[ 5 subfc |

6 fmadd

7 fmsub

8 xor

[ 9neg ]
[10 fadds] [
11 fsubs

12 add

[ 13 subf | [
| | | | | | | | |

[ 1] Fetch I Execute
[ ] Decode MM complete
E——= Dispatch I \Viite-Back

Figure 6-6. Instruction Timing—Cache Hit

The instruction timing for this example is described cycle-by-cycle asfollows:

0. Twointeger instructions (and and or) and two floating-point instructions (fadd and
fsub) are fetched in cycle 0. These were fetched from the second double-word
boundary in theinstruction cache, so only two instructions can befetched in the next
clock cycle.

1. Incyclel, thelast two instructionsin the cache block (addc and subfc) are fetched,
while instructions 0-3 pass into the decode stage.

2. Incycle 2, the two integer add instructions (0 and 1) are dispatched, one to each of
the SCIUs. The fadd instruction (2) is dispatched to the FPU. The fsub instruction
cannot be dispatched, so is held in the dispatch stage until the next cycle.
Instructions 4 and 5 are in the decode stage.

Instructions 6-9 are fetched from a new cache block. Note that thisisthe typical,
and the most efficient, alignment for instructions fetching, allowing al eight
instruction in the cache block to be fetched in two cycles (four instructions per

cycle).
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3. Thefollowing occursin cycle 3:

— Thefirst two integer instructions (and and or) enter the execute stages of thetwo
SClUs. The two integer instructions decoded in cycle 2 (addc and subfc) are
dispatched without delay to the two SCIUs. The next pair of integer instructions
(xor and neg) isin decode stage and the final pair of integer instructions (add
and subf) is fetched from the second quad word in the instruction cache block.

— Thefadd instruction enters execute stage in the FPU, vacating the dispatch stage,
allowing thefsub instruction to dispatch. Thefmadd and fmsub instructionsare
in decode stage, and thefinal pair of floating-point instructions (faddsand fsubs)
isfetched.

4. Thefollowing occursin cycle 4:

— Inthe SClUs, thefirst twointeger instructions compl ete execution and write back
their results, and the second pair of integer instructions (addc and subfc) enters
execute stage. The next pair of integer instructions (xor and neg) is heldin the
dispatch stage because the fmsub instruction cannot dispatch.

— Thefadd instruction isin the second of the three execute stages and fsub isin
thefirst. Thefmadd instruction (6) isin the dispatch stage, which forcesfmsub
to remain in the dispatch stage, similar to the situation in cycle 1 when two
floating-point instructions were ready for dispatch. Note that because of in-order
dispatch, the integer instructions (8 and 9) are also held in the dispatch stage
behind the fmsub instruction. Thefinal pair of floating-point instructions enters
decode stage.

5. Thefollowing occursin cycle 5:

— Thefirst two integer instructions have completed, written back their results, and
vacated the pipeline. The second pair of integer instructions has executed and
vacated the execution stages, but must remain in the completion buffer until the
previous floating-point instructions can complete. The third pair of integer
instructions is allowed to dispatch, and the final pair of integer instructionsis
held in the decode stage behind the previous floating-point instructions
(10 and 11).

— Inthe FPU, fadd isin thefinal execute stage, fsub isin the second stage, fmadd
isinthefirst, and fmsub isallowed to dispatch. Becauseinstructions 7-9 occupy
the two available positions for instruction pairs in the dispatch unit, fadds and
fsubsareheldin decode, again, forcing subsequent integer instructionsto remain
in decode.

6. Thefollowing occursin cycle 6:
— Thesecond pair of integer instructions (4 and 5) remainsin the compl etion buffer
waiting for the previous fl oating-point instructions to complete. Thethird pair of

integer instructions isin execute stage, and the final pair of integer instructions
isheld in the dispatch stage behind the fsubs instruction.
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— Inthe FPU, fadd is in the complete and write-back stages, fsub isin the fina
execute stage, fmadd isin the second stage, and fmsub isin thefirst. Thefadds
instruction isin dispatch, causing the final floating-point instruction, fsubs, to
stall in dispatch.

7. Thefollowing occursin cycle 7:

— Integer instructions 4 and 5 are allowed to complete and writeback because the
previous fsub instruction completes. However, the next pair of integer
instructions (8 and 9) must wait in the complete stage until fmadd and fmsub
can complete. Theadd and subf instructions arein the dispatch stage along with
the previous fsubs instruction.

— Thefsub instruction completes, allowing integer instructions 4 and 5 to
complete. Floating-point instructions continue to move through the floating-
point pipeline with fmadd in the final execute stage, fmsub in the second stage,
and faddsin the first. The final floating-point instruction, fsubs, is allowed to
dispatch.

8. Thefollowing occursin cycle 8:
— Integer instructions 8 and 9 continue to wait in the compl ete stage until fmsub
can complete. The add and subf instructions move into execute stage along with
the previous fsubs instruction, which isin the first stage of execute.

— Thefmadd instruction completes and writes back and the subsequent floating-
point instructions each move to the next stage in the floating-point pipeline.

9. Thefollowing occursin cycle 9:

— Integer instructions 8 and 9 are allowed to complete with the fmsub instruction.
However, the final pair of integer instructions (12 and 13) must wait in the
complete stage until fadds and fsubs can complete and write back.

— Thefmsub instruction completes and writes back and the subsequent floating-
point instructions each move to the next stage in the floating-point pipeline.

10. The following occursin cycle 10:

— Thetwo remaining integer instructions remain in the complete stage until the
fsubsinstruction completes.

— Thefadds instruction completes and writes back and the remaining floating-
point instruction, fsubs, isin the last execute stage in the floating-point pipeline.

11.1n cycle 11 al remaining instructions complete.
Note that the double-precision floating-point add instructions each has a latency of three

cycles (assuming no register dependencies) but can be fully pipelined and achieve a
throughput of one floating-point instruction per clock cycle.
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6.4.2.2 Cache Miss Timing Example
Figure 6-7 illustrates the timing for a cache miss using the following code sequence.

add
f add
add
f add
br

add
fsub
add
fsub
add
f add

Note that this example assumes a best-case scenario.

EEI—— ji

I e
== [0
T —— j

L1 Adaress )
[

N T e o D G

5 add

lefso] [ [ [ ]
[ R T

[ ] Fetch I cxecute — jn

[ ] Decode [ complete TV

= Dispatch B \rite-Back i
1 [ [ [

Figure 6-7. Instruction Timing—Instruction Cache Miss (BTAC Hit)
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Theinstruction timing for this example is described cycle-by-cycle as follows:

0.
1

Incycle 0, thefirst pair of add and fadd instructions is fetched.

Incycle 1, the second pair of add and fadd instructionsis fetched asthefirst pair is
decoded.

Incycle 2, thefirst pair of add and fadd instructions is dispatched, the second pair
is decoded and the br instruction is fetched.

In cycle 3, thefirst pair of add and fadd instructions is in execute, the second pair
isin dispatch stage, and the br instruction isin decode. By this time the target
instruction, add (5) was not found in theinstruction cache and arbitration for theline
fill has begun.

In cycle 4, thefirst add instruction completes and writes back, the first fadd
instruction isin the second execute stage, and the second pair of add/fadd
instructions enter execute stage. The br instruction isin dispatch stage and
arbitration continuesfor thelinefill. Thetarget instruction, add (5), and fsub remain
in the fetch state.

Incycle5, fadd (1) isin the final execute stage in the floating-point pipeline, which
prevents the subsequent add instruction from completing and writing back. The
second fadd instruction isin the second cycle of the floating-point execute stage and
the br instruction isin execute stage. During this cycle, the address for the target
instruction is on the address bus and access has been granted for the data bus.

In cycle 6, fadd (1) completes and writes back, allowing the add (2) instruction to
complete and write back. The fadd (3) instruction isin the final execute stage and

the br instruction isin complete stage. The first beat of the four-beat burst (which

contains the critical double word) is sent over the data bus.

In cycle 7, fadd (3) completes and writes back, allowing the br instruction to
complete. The second best of the burst transfer begins on the data bus.

Incycle8, thetwoinstructionsin the critical doubleword transferred in cycles6 and
7 (add (5) and fsub (6)) are placed in theinstruction queue. All previousinstructions
have vacated the completion buffer.

Incycle 9, add (5) and fsub (6) are in decode stage and the pair of instructions
loaded in the second beat of the data burst (add (7) and fsub (8)) are fetched. Note
that although there isroom in the instruction queue for as many asfour instructions,
only instructions 7 and 8 are available.

10.In cycle 10, instructions 5 and 6 are in dispatch stage, instructions 7 and 8 arein

decode stage, and the third pair of instructions are fetched. The fourth pair of
instructions are sent in the fourth and final beat of the four-beat data burst.

11. Inthe remaining clock cycles, theinstructions shown complete processing similarly

toinstructions0-3. Note again that although theinteger instructionsadd (7) and add
(9) complete, they cannot write back until the previous floating-point instructions
fsub (6) and fsub (8) write back.
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6.4.3 Cache Arbitration

When a cache miss occurs, aline-fill operation isinitiated to update the appropriate cache
block. When the double word containing the data at the specified address (the critical
doubleword) isavailable, it isforwarded to the cache and made avail able to other resources
on the 604e. Likewise, subsequent double words are also forwarded as they reach the
memory unit.

Fetches to different lines can hit in the cache during the line-fill operation; however, if a
miss occurs before the cache block has been updated, the line-fill operation must complete
before the line-fill operation caused by the subsequent miss can begin.

For more information about the cache implementation in the 604e, see Chapter 3, “Cache
and Bus I nterface Unit Operation.”

6.4.4 Branch Prediction

The 604e implements several features to reduce the latencies caused by handling branch
instructions. In particular, it provides a means of dynamic branch prediction. This is
especialy critical for the 604e to take fullest advantage of the possibilities of increased
throughput made available from its pipelined and highly paralel organization. Dynamic
branch prediction is implemented in the fetch, decode, and dispatch stages, as described in
the following:

In the fetch stage, the fetch address is used to access the branch target address cache
(BTAC), which contains the target address of previously executed branch instructions that
are predicted to be taken. The 64-entry BTAC is fully associative to provide a high hit
percentage. If afetch addressisinthe BTAC, the target addressis used in the next cycleto
fetch the instructions from the predicted path. If the address is not present, sequentia
instruction flow is assumed and the appropriate sequential addressis generated based on the
number of instructions added to the decode buffer. The fetch address, rather than the first
branch address, is sufficient to access the BTAC, since a BTAC entry contains the first
predicted taken branch beyond the current fetch address.

In the decode and dispatch stages, the first branch instruction is identified and its outcome
is predicted. For an unconditional branch instruction, the instruction prefetch is redirected
to the target address if this branch was predicted as not taken by a previous stage.
Conditional instructions whose direction depends on the value in the CTR are predicted
based on that value. If the prediction differsfrom the current branch prediction, the prefetch
is redirected.

Note that the 604e has modified branch correction in the decode stage to predict branches
whose target istaken from the CTR or LR. This correction occursif no CTR or LR updates
arepending. Thiscorrection, like all other decode stage corrections, isdone only on thefirst
two instructions of the decode stage. This correction saves at least one cycle on branch
correction when the mtspr instruction can be separated from the branch that uses the SPR
as atarget address.
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For conditional branch instructionsthat depend only on abit inthe CR, the BHT isused for
the prediction. The BHT is a 512-entry, direct-mapped cache with 2 bits that can indicate
four prediction states—strongly taken, taken, not-taken, and strongly not-taken. The entry
is updated each time a conditional branch instruction that depends on a bit in the condition
register is executed. For example, aBHT entry that predicts“taken” is updated to “ strongly
taken” after the branch istaken or is updated to “not-taken” if the next branch is not-taken.
Note that clearing HIDO[29] disables the use of the branch history table.

6.4.4.1 Branch Timing Examples

This section shows how the timing of a branch is affected depending upon whether the
branch hits in the BTAC, or whether correction is required in one of the stages. The
following examples use the following code sequence:

and

I d

add

bc
or

cnp
Id
mul |

6.4.4.1.1 Timing Example—Branch Timing for a BTAC Hit
Figure 6-8 shows the timing for a branch instruction that had a BTAC hit.

7 mulli_ |

I |
[ ] Fetch I Execute I |
[ ] Decode [ complete : :
E== Disratch | write-Back ! !

T T T T T ! :

Figure 6-8. Instruction Timing—Branch with BTAC Hit
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Thetiming for this example is described, cycle-by-cycle, asfollows:

0.

7.

In clock cycle 0, instructions 0-3 are fetched. The target instruction of the bc
instruction is found in the BTAC.

In cycle 1, instructions 0—3 are decoded and instructions 47, using the addressin
the BTAC, are fetched.

In cycle 2, instructions 03 are dispatched and instructions 4—7 are decoded.

In cycle 3, instructions 03 are in the execute stage and instructions 4-7 are in the
dispatch stage.

Incycle 4, instructions 0, 2, and 3 are in the complete stage, but only instruction 0
is alowed to complete and write back because the Id instruction (1) is still in the
execute stage of the LSU pipeline. Instructions 2and 3 wait in the compl ete stage.
Instructions 4-7 all enter the execute stage.

Incycle5, theld (1) instruction is ableto complete and write back, allowing theadd
instruction to write back and vacate the pipelinein the next cycle. Thebr instruction
also completes. Because the branch is taken, the or (4) instruction, which could
otherwise write back in this cycle, staysin the complete stage and completes and
writes back inthe next cycle. Thecmp (5) instruction also entersthe compl ete stage;
Id (6) and mulli (7) enter the second stages of the LSU and MCIU pipelines,
respectively.

In cycle 6, instructions 4-6 complete and write back their results. The mulli
instruction, which is one of the instructions that can compl ete and write back during
itsfinal cycle in the execute stage, occupies the execute and complete stages, but

cannot write back because both GPR write-back ports are occupied by the or and Id
instructions.

The mulli instruction writes back its results.

6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction

In the example shown in Figure 6-9, the branch target address is not found in the BTAC
during the fetch cycle of the bc instruction, as was the case in Figure 6-8. This one-cycle
delay causes the second group of instructions to be executed one cycle later than if thereis
aBTAC hit.
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Figure 6-9. Instruction Timing—Branch with BTAC Miss/Decode Correction

A cycle-by-cycle description of this exampleis as follows:

0.

Incycle 1, instructions 0 and 1 are in decode stage, but instructions 2-5 cannot be
fetched because of amissin the BTAC.

In cycle 2, instructions 0 and 1 are dispatched and instructions 2-5 are located and
fetched.

In cycle 3, instructions 0 and 1 are in the execute stage and instructions 2-5 arein
the decode stage, and the instruction timing proceeds as normal.

Incycle 5, theld (1) instruction is able to write back, alowing the following add
instruction (which completed in the previous cycle) to write back and vacate the
pipelinein the next cycle. Instructions 4—7 are in the execute stage.

Incycle6, theor and cmp (5) instructions complete and write back; Id (6) and mulli
(7) enter the second stages of the LSU and MCIU execute pipelines, respectively.

Incycle 7, the ld (6) instruction completes and writes back its results. The mulli
instruction finishes executing, completes, and writes back its results. Note that the
mulli instruction is able to completein the same cycle asthe ld instruction because,
unlike in the previous example, the two GPR write-back ports are available.
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6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction
Figure 6-10 uses the same code sequence as the example shown in Figure 6-8, and shows
the timing when the BTAC miss is corrected in the dispatch stage. The timing in this
example isidentical to that in Figure 6-9, except that the timings for instructions 4-7 are
shifted over by one cycle.
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Figure 6-10. Instruction Timing—Branch with BTAC Miss/Dispatch Correction

6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction
Figure 6-11 uses the same code sequence as the previous examples, and shows the timing
when the BTAC miss is corrected in the execute stage. The timing in this example is
identical to that in Figure 6-9, except that the timings for instructions 4—7 are shifted over
by two cycles (and over one cycle when compared to the timing when correction is provided
in the dispatch stage, as shown in Figure 6-10).
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Figure 6-11. Instruction Timing—Branch with BTAC Miss/Execute Correction

6.4.5 Speculative Execution

To take fullest advantage of pipelining and parallelism, the 604e speculatively executes
instructions along a predicted path until the branch is resolved. The 604e can handle as
many as four dispatched, uncompleted branch instructions (with four more in the
instruction queue) and can execute instructions from the predicted path of two unresolved
branch instructions. The results of speculatively executed instructions (the predicted state)
are kept in temporary locations, such as rename buffers, the completion buffer, and various
shadow registers. Architecturaly defined resources are updated only after a branch is
resolved.

To record the predicted state, the 604e uses many of the same resources (primarily the
rename buffers and completion buffer) and logic as the mechanism used to maintain a
precise exception model, as is common among superscalar implementations. The 604e
design avoids the performance degradation that may come from such a design due to
speculative execution of longer latency instructions, by implementing additional logic to
record the predicted state whenever a predicted branch instruction is dispatched. This
allows the state to be quickly recovered when the branch prediction is incorrect. The
recording of these predicted states makes it possible to identify and selectively remove
instructions from the mispredicted path.

A shadow register isused with the CTR and LR to accel erate instructions that access these
registers. Shadow registers are updated and the old value is saved whenever a branch
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instruction isdispatched, evenif it isfrom apredicted path for abranch that has not yet been
resolved. If the prediction is correct, there is no penalty. If the prediction is incorrect,
shadow registers are restored from the saved values so instructions fetched from the correct
path can be dispatched and executed. When the branch instruction completes, architected
registers are updated.

6.4.6 Instruction Dispatch and Completion Considerations

The 604¢€'s ability to dispatch instructions at a peak rate of four per cycle is affected by
availability of such resources as execution units, destination rename registers, and
completion buffer entries. To avoid dispatch unit stalls due to instruction data
dependencies, each execution unit has two reservation stations. If a data dependency could
prevent an instruction from beginning execution, that instruction is dispatched to the
reservation station associated with its execution unit, clearing the dispatch unit. When the
data that the operation depends upon is returned via a cache access or as a result of a
previous operation, execution begins during the cycle after the rename register is updated.
If the second instruction in the dispatch unit requires the same execution unit, that
instruction is not dispatched until the first instruction completes execution.

Instructions are dispatched to reservation stations in order, but from the perspective of the
overall program flow, instructions can execute out of order. The following aspects of the
604¢€'s support for out-of-order execution should be noted:

 TheBPU, CRU, FPU, and LSU each have two-entry in-order reservation stations.
These stations allow instructions to clear the dispatch stage even though operands
may not yet be available for execution to occur. The BPU, CRU, FPU, and LSU
instructions may execute out of order with respect to one another and to other
execution units, but the BPU, CRU, FPU, and L SU instructions pass through their
respective reservation stations and pipelines in program order.

The 604e-specific condition register unit (CRU) executes all condition register
logical and flow control instructions. Because the CRU shares the dispatch buswith
the BPU, only one condition register or branch instruction can be issued per clock
cycle. In the 604e, the CR logical unit operations are handled by the BPU. The
addition of the CRU allows branch instructionsto potentially execute/resolve before
apreceding CR logical instruction. Although one CR logical or branch instruction
can be dispatched per clock cycle, both branch and CR logical instructions can
execute simultaneously. Branches are still executed in order with respect to other
branch instructions. If either the CR logical reservation station or the branch
reservation station is full then no instructions can be dispatched to either unit.

» Each integer unit has a two-entry out-of-order reservation station which allows
integer instructions to execute out-of-order within each execution as well aswith
respect to instructions in other execution units.

The completion unit can track instructions from dispatch through execution and ensure that
they are completed in program order. In-order completion ensures the correct architectural

Chapter 6. Instruction Timing 6-29



state when the 604e must recover from a mispredicted branch, or any other exception or
interrupt.

Therate of instruction completion is unaffected by the 604€’s ability to writetheinstruction
results from the rename registers to the architecturally defined registers when the
instruction is retired. The 604e can perform two write-back operations from each of the
rename registersto the register files (CR, GPRs, and FPRs) each clock cycle.

Dueto the 604€'s out-of-order execution capability, thein-order completion of instructions
by the completion unit provides a precise exception mechanism. All program-related
exceptions are signaled when the instruction causing the exception has reached the last
position in the completion buffer. All prior instructions are allowed to complete and write
back before the exception is taken.

6.4.6.1 Rename Register Operation

To avoid contention for agiven register filelocation in the course of out-of-order execution,
the 604e provides rename registers for the storage of instruction results prior to their
commitment (in program order) to the architecturally defined register by the completion
unit. Register renaming minimizes architectural resource dependencies, namely the output
and antidependencies, that would otherwise limit opportunities for out-of-order execution.
Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight for the
condition register.

A GPR rename buffer entry is alocated when an instruction that modifies a GPR is
dispatched. This entry is marked as alocated but not valid. When the instruction executes,
it writes its result to the entry and sets the valid bit. When the instruction completes, its
result is copied from the rename buffer entry to the GPR and the entry is freed for
reallocation. For load with update instructions that modify two GPRs, onefor load dataand
another for address, two rename buffer entries are allocated.

The rename register for the GPRs is shown in Figure 6-12.
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Eight Source Operand Register Numbers
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SCIUl —
32
SCIU 2 ———
Rename Buffers GPR
MCIU 3 ——— 32
LSU ——
Y \i
2:1 MUX (8)
32 bitx 8

GPR Operand Bus (8)

Figure 6-12. GPR Rename Register

When an integer instruction is dispatched, its source operands are searched simultaneously
from the GPR file and its rename buffer. If avalueisfound in the rename buffer, that value
is used; otherwise, the value is read from the GPR. However, the rename buffer entry may
not yet be valid if the instruction that updates the GPR has not yet executed. In this case,
the instruction is dispatched with the rename buffer entry identifier in place of the operand,
which will be supplied by the reservation station when the result is produced. The GPR file
and its rename buffer have eight read ports for source operands to support dispatching of
four integer instructions each cycle.

The FPR file has 32 registers of 64 bitswide and an eight-entry rename buffer. The FPR file
and its rename buffer have three read ports for three source operands, which alow one
floating-point instruction to be dispatched per cycle.
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The 604e treats each of the 4-bit fields in the condition register as a register and applies
register renaming for each with an eight-entry rename buffer.

Along with the reorder buffer, the rename buffers provide the basis of the precise exception
mechanism, because the 604€'s architectural state represents, at all times, the results of
instructions completed in program order. Precise exceptions greatly simplify the exception
model by allowing the appearance of serialized execution.

6.4.6.2 Execution Unit Considerations

As previously noted, the 604e is capable of dispatching and retiring four instructions per
clock cycle. One of the factors affecting the peak dispatch rate is the availability of
execution units on each clock cycle.

For an instruction to be issued, the required reservation station must be available. The
dispatcher monitorsthe availability of all execution units and suspendsinstruction dispatch
if the required reservation station is not available. An execution unit may not be available
if it can accept and execute only one instruction per cycle, or if an execution unit’s pipeline
becomesfull. Thissituation may occur if instruction execution takes more clock cyclesthan
the number of pipeline stages in the unit, and additional instructions are issued to that unit
to fill the remaining pipeline stages.

6.4.7 Instruction Serialization

Some instructions, such as mfspr and most mtspr instructions, extended arithmetic
instructions that require the carry bit, and condition register instructions, require
seridlization to execute correctly. For this reason, the 604e implements a simple
serialization mechanism that allows such instructions to be dispatched properly but delays
execution until they can be executed safely. When all previousinstructions have compl eted
and updated their results to the architectural states, the serialized instruction is executed by
directly reading and updated in the architectural states. If the instruction target is a GPR,
FPR, or the CR, the register isrenamed to allow later nondependent instructionsto execute.

Store instructions are dispatched to the LSU where they are trandated and checked for
exception conditions. If no exception conditions are present, the instruction is passed to the
store queue where it waits for all previous instructions to complete before it can be
completed. Direct-storage accesses are handled in the same way to ensure that exceptions
are precise.

The performance is not degraded since instructions following a serializing instruction are
dispatched and executed usually before the seriaizing instruction is executed. One
serialized instruction can complete per clock cycle.

The following sections describe the serialization modes.
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6.4.7.1 Dispatch Serialization Mode

Dispatch serialization occurs when an mtspr instruction that accesses either the counter or
link or amterf instruction that accesses multiple bits is dispatched to the MCIU. In these
instances, an interlock is set so that no other such instructions or branch unit instructions
(branch and CR logical) can dispatch until the original instruction executes and clears the
interlock. The interlock is cleared when the instruction that sets the interlock finishes
executing. On the next cycle the instruction that is waiting can dispatch.

6.4.7.2 Execution Serialization Mode

The occurrence of an execution serialization instruction has no effect on the dispatching
and execution of any following instructions. The only difference between an execution
serialization instruction and a nonserialization instruction is that the execution serialization
instruction cannot be executed until it isthe oldest uncompleted instruction in the processor.
In other words, the instruction is dispatched into a reservation station, but cannot be
executed until the completion block informs the execution unit to execute the instruction.
Thismeansit is guaranteed to wait at |east one cycle before it can execute.

Instructions causing execution serialization include the following:

« Condition register logical operations (crand, crandc, creqv, crnand, crnor, cror,
crorc, crxor, and merf)

e mfspr and mfmsr
* mtspr (except count and link registers) and mtmsr

» Instructions that use the carry bit (adde, addeo, subfe, subfeo, addme, addmeo,
subfme, subfmeo, addze, addzeo, subfze, and subfzeo)

6.4.7.3 Postdispatch Serialization Mode
Postdispatch serialization occurs when the serializing instruction is being completed. All
instructions following the postdispatch serialized instruction are flushed, refetched, and re-
executed. Instructions causing postdispatch serialization include the following:

e mtspr (xer)

* mcerxr

e isync

* Instructions that set the summary overflow, SO, bit

* Iswx with O bytesto load

» Foating-point arithmetic, frsp, fctiw, and fctiwz instructions that cause an
exception with FPSCR[VE] = 1

» Floating-point instructions with the Rc (record bit) set
e FPSCR instructions—mtfsb0, mtfsh1, mtfsfi, mffs, mtfsf, and merfs

» A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE=1)
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6.4.7.4 Serialization of String/Multiple Instructions

Seridlization is required for al load/store multiple/string instructions. These instructions
are broken into a sequence of register-aligned operations. The first operation is dispatched
along with any preceding instructions in the dispatch buffer. Subsequent operations are
dispatched one-word-per-cycle until the operation is finished. String/multiple instructions
remain in the dispatch buffer for at least two cycleseven if they only require asingle-word—
aligned memory operation.

Instructions causing string/multiple serialization include Imw, stmw, Iswi, Iswx, stswi, and
stswx.

6.4.7.5 Serialization of Input/Output

In this serialization mode, all noncacheableloads are performed in order with respect to the
eieio instruction.

6.5 Execution Unit Timings

The following sections describe instruction timing considerations within each of the
respective execution units in the 604e. Refer to Table 6-2 for branch instruction execution
timing.

6.5.1 Branch Unit Instruction Timings

The 604e can have two unresolved branches in the branch reservation station and two
resolved branches that have not yet completed. The branch unit serves to validate branch
predictionsmadein earlier stages. It also verifiesthat the predicted target matches the actual
target address. If amisprediction is detected, it redirects the fetch to the correct address and
starts the branch misprediction recovery.

The branch execution unit aso executes condition register logical instructions, which the
PowerPC architecture provides for calculating complex branch conditions. Other
architecturesthat lack such instructions would need to use a series of branch instructionsto
resolve complex branching conditions. All execution units can update the CR fields, but
only the branch and CR logical operations use CR fields as source operands.

6.5.2 Integer Unit Instruction Timings
The two SClUs and the MCIU execute al integer and bit-field instructions, and are shown
in Figure 6-13 and Figure 6-14, respectively.

The SCIUs consist of three one-cycle subunits:
e A fast adder/comparator subunit
* A logic subunit
« A rotator/shifter/count-leading zero subunit
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These subunits handle all of the one-cycle arithmetic instructions. Only one subunit in each
SCIU can obtain and execute an instruction at atime.

Instruction Dispatch Buses
GPR Operand Buses

Result Buses
i
Y Y Y N
Reservation Station B
\
Y y Q)
o
=
Rotate/Shift/ Adder / . . S
CTLZ Comparator Logic - =
%.
\ﬁ ! ﬁ‘
3:1 MUX -
Ve

Figure 6-13. SCIU Block Diagram

The MCIU, which handles all integer multiple-cycle integer instructions, consists of a 32-
bit integer multiplier/divider subunit. The multiplier supports early exit on 32 x 16-bit
operations. In addition the MCIU executes all mfspr and mtspr instructions.
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Figure 6-14. MCIU Block Diagram

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

* Integer divide, multiply when OE =0
* All mfspr instructions
e All mtspr instructions except when LR/CTR isinvolved

Note that all instructions that execute in the MCIU can complete during the same cyclein
which they finish executing except for the following:

* Instruction that changes OV or CA (OE =1)
« Themoveto CTR/LR instructions cannot because they are not execution-serialized

6.5.3 Floating-Point Unit Instruction Timings

The floating-point unit on the 604e executes al floating-point instructions. Execution of
most floating-point instructions is pipelined within the FPU, alowing up to three
instructions to be executing in the FPU concurrently. While most floating-point instructions
execute with three-cycle latency and one-cycle throughput, three instructions (fdivs, fdiv,
and fres) execute with latencies of 18 to 33 cycles. The fdivs, fdiv, fres, mtfsb0, mtfsbl,
mtfsfi, mffs, and mtfsf instructions block the floating-point pipeline until they complete
execution and thereby inhibit the execution of additional floating-point instructions. With
the exception of the mcrfsinstruction, all floating-point instructions immediately forward
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their CR results to the CRU for fast branch resol ution without waiting for the instruction to
be retired by the completion unit and the CR to be updated. Refer to Table 6-2 for floating-
point instruction execution timing.

Asshown in Figure 6-15, The FPU on the 604eis asingle-pass, double-precision unit. This
means that both single- and double-precision floating-point operations require one-
pass/one-cycle throughput with a latency of three cycles. This hardware implementation
supports the IEEE 754-1985 standard for floating-point arithmetic, including support for
the NaNs and denormalized data types.

Instructions are obtained from the instruction dispatcher and placed in the reservation
station queue. The operand sources are the FPR, the floating-point rename buffers, and the
result buses. The result of an FPU operation is written to the floating-point rename buffers
and to the reservation stations. I nstructions are executed from the reservation station queue
in the order they were originally dispatched.

Instruction Dispatch Bus

FPR Operand Buses
FPU Result Bus
LS Result Bus
FPSCR Bus
- > Queue 1 \%
Queue 0 \%
o \ \
s} > Floating-Point Multiply
% Add Pre-Alignment Stage 1
o o Floating-Point Pipeline Add Stage 2
> Normalize/Round/Write-Back Stage 3
T Result Status Bus v

Figure 6-15. FPU Block Diagram
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6.5.4 Load/Store Unit Instruction Timings

The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages; the first stage is for effective address calculation, and MMU trandation, and the
second stage is for accessing the data in the cache. Load instructions have a two-cycle
latency and one-cycle throughput, and store instructions have a two-cycle latency and
single-cycle throughput.

The primary function of the LSU isto transfer data between the data cache and the result
bus, which routes data to the other execution units. The LSU supports the address
generation and all the data alignment to and from the data cache. As shown in Table 6-2,
the LSU also executes specia instructions such as string transfers and cache control.

To improve execution performance, the LSU alows aload operation to be executed ahead
of pending store operations. All data dependencies introduced by this out-of-order
execution are resolved by the LSU. These dependencies arise when, in the instruction
stream, a store is followed by a load from the same address. If the load instruction is
speculatively executed before the store has madified the cache, incorrect dataisloaded into
the rename registers. If the low-order 12 bits of the effective addresses are equal, the two
effective addresses may be aliases for the same physical address, in which case the load
instruction waits until the store data is written back to the cache, guaranteeing that the load
operation retrieves the correct data.

The LSU provides hardware support for denormalization of floating-point numbers. Within
the 604e, all floating-point numbers are represented as double-precision numbers.
Denormalization can occur during a store floating-point single instruction, when the
double-precision number is converted to a single-precision number.

A block diagram of the load/store unit is shown in Figure 6-16. The unit is composed of:
reservation stations, an address calculation block, data alignment blocks, load queues, and
store queues.

6-38 PowerPC 604e RISC Microprocessor User's Manual



Instruction Flow and Result Bus
A

Y

A A
Y
Reservation
Station
\i
EA
Calculation
Floating-Point Load
l Convert Align
Y Y
Finish Load A A
Store < >
Queue Queue
Complete
Store
Queue
Y Y
FP Convert Store Align
Y Y Y \ 1

Y

MMU/Cache Interface

Address —
Data ==

Figure 6-16. LSU Block Diagram

The reservation stations are used as temporary storage of dispatched instructions that
cannot be executed until al of the instruction operands are valid. The address calculation
block includes a 32-bit adder that computesthe effective addressfor al operations. Thedata
alignment blocks manage the necessary byte manipulationsto support aligned or unaligned
datatransfersto and from the data cache. The load and store queues are used for temporary
storage of instructions for which the effective addresses have been translated and are
waiting to be completed by the sequencer unit.
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Figure 6-17 shows the structure of the store queue. There are four regions that identify the
state of the store instructions.

Empty

Finished

Completed

Committed

Figure 6-17. Store Queue Structure

When a store instruction finishes execution, it is placed in the finished state. When it is
completed, the finish pointer advances to place it in the completed state. When the store
datais committed to memory, the completion pointer advancesto placeit in the committed
state. If the store operation hits in the cache, the commit pointer advances to effectively
remove the instruction from the queue. Otherwise, the commit pointer does not advance
until the cache block is reloaded and the store operation can occur. During this time, the
next store instruction pointed to by the completion pointer can access the cache. If this
second storeinstruction hitsin the cache, it isremoved from the queue. If not, another cache
block reload begins.

6.5.5 isync, rfi, and sc Instruction Timings

The isync, rfi, and sc instructions do not execute in one of the execution units. These
instructions decode to branch unit instructions, as specified by the PowerPC architecture,
but they do not actually execute in the BPU in the same sense that other branch instructions
do. The completion unit treats the rfi and sc instructions as exceptions, and handles them
precisely. When an isync instruction reaches the top of the completion buffer, subsequent
instructions are flushed from the pipeline and are refetched during the next clock cycle.

Although the rfi and sc are dispatched to the branch reservation stations, these instructions
do not execute in the ordinary sense, and do not occupy a position in an execute stage in
one of the BPU. Instead, these instructions are given a position in the completion buffer at
dispatch. When the sc instruction reaches the top of the completion buffer, the system call
exception is taken. When the rfi instruction reaches the top of the completion buffer, the
necessary operations required for restoring the machine state upon returning from an
exception are performed.

The isync instruction causes instructions to be flushed when it is completed. This means
that the decode buffers, dispatch buffers, and execution pipeline are al flushed. Fetching
resumes from the instruction following the isync.

6-40 PowerPC 604e RISC Microprocessor User's Manual



6.6 Instruction Scheduling Guidelines

The performance of the 604e can be improved by avoiding resource conflicts and
promoting parallel utilization of execution units through efficient instruction scheduling.
Instruction scheduling on the 604e can be improved by observing the following guidelines:

» Scheduleinstructions such that they can maximize the dispatch rate.

e Scheduleinstructions to minimize execution-unit-busy stalls

» Avoid using serializing instructions

» Scheduleinstructions to avoid dispatch stalls due to renamed resource limitations

6.6.1 Instruction Dispatch Rules

The following list provides limitations on instruction dispatch that should be kept in mind
in order to ensure stalls:

« At mogt, four instructions can be dispatched per cycle.

« Aninstruction cannot be dispatched unless all preceding instructionsin the dispatch
buffer are dispatched

e Oneinstruction can be dispatched per functional unit.
— The branch unit executes all branch and condition register logical instructions

— Thetwo SClUs areidentical and either can be used to execute any integer
arithmetic, logical, shift/rotate, trap, and mtcrf instructionsthat update only one
field.

— The MCIU executes al integer multiply, divide and move to/from instructions
except mter f instructionsthat update only one field, which are executed in either
of the SCIUs.

— Theload/store unit executes load, store, and cache control instructions
— The FPU executes all floating-point instructionsincluding move to/from FPSCR
Table 6-2 indicates which execution unit executes each instruction.

e Eachinstruction must have an entry in the 16-entry reorder buffer. The dispatch unit
stallswhen the reorder buffer isfull. Reorder buffer entries become available on the
cycle after the instruction has completed.

* Aningtruction that modifies a GPR is assigned one of the 12 positions in the GPR
rename buffer. L oad with updateinstructions get two positionssincethey updatetwo
registers. When the GPR rename buffer is full, the dispatch unit stallswhen it
encounters the first instruction that needs an entry. A rename buffer entry becomes
available one cycle after the result iswritten to the GPR.

* Any floating-point instruction except mcrfs, mtfsfi, mtfsfi., mtfsf, mtfsf., mtfsbO,
mtfsb0., mtfsbl, and mtfsbl. gets one entry in the eight-entry FPR rename buffer.
When the FPR rename buffer is full, dispatch stalls on the next floating-point
instruction. A rename buffer entry can become available one cycle after theresult is
written to the FPR.
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The eight-entry CR rename buffer is similar to the GPR rename buffer in that an
instruction that modifies a CR field gets one entry. Thisincludes, for example, al
condition register logical instructions and mtcrf instructions that update only one
CR field. When the CR rename buffer is full, dispatch stalls when the next
instruction to be dispatched needs a CR entry. A rename buffer entry becomes
available one cycle after the result is written to the CR.

Each execution unit has atwo-entry reservation station that holds instructions until
they are ready for execution. Instructions cannot be dispatched if the reservation
station isfull.

No following instruction can dispatch in the same cycle as a branch instruction.

Since instructions are dispatched in program order, alater instruction cannot be
dispatched until al earlier ones have.

Thereisan interlock mechanism between CTR and LR. After dispatching amoveto
CTR/LR or mter f with multiple field update, the dispatch stalls on thefirst branch,
CR logical, moveto CTR/LR, or mtcrf that update multiple fields until one cycle
after the dispatched move to CTR/LR or mterf instruction executes. Those mtcr f
instructions that update multiple fields are execution-serialized.

The 604e can handle as many as four branch instructions in the execute and
complete stages. The dispatch stalls on the first instruction after the fourth branch
until the first branch compl etes.

An instruction cannot be dispatched until all destination registersfor the instruction
have been assigned to a rename register.

An instruction may not be dispatched if a seriaization mode isin effect for the
instruction.

6.6.2 Additional Programming Tips for the PowerPC 604e Processor
The following guidelines should be followed when writing assembly code for the 604e.

Interleave memory instructionswith integer and floating-point operations.

The 604¢e has adedicated L SU that does not require the use of theinteger or floating-
point unitsto process memory operations. Asaresult, when scheduling code for the
604e, interleaving memory operations with integer or floating-point instructions
typically result in better performance.

Interleave integer operations.

Becausethe 604e hasthreelUs, it isalso possibleto interleave multiple, independent
integer operations. Two of these integer units support simple integer operations,
while the third supports complex integer operations such as bit-field manipulation.

Avoid using instructionsthat writeto multipleregisters.

The 604€'s dynamic register renaming permits instructions to execute out of order
with respect to their original program segquence, which increases overall throughput.
However, in other PowerPC processors, certain instructionsincluding theload/store
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multiple/string operations, monopolizetheseinternal hardware resources, which can
affect performance. For software portability, such instructions should be avoided,
even though they do not suffer the performance degradation in the 604e that they
might in other PowerPC processors. The most common use of such instructionsisin
subroutine prologues or epilogues The following alternatives are typically more
efficient:

— Expanding the register save/restore codein-line

— Branching to special save/restorefunctions (sometimescalled millicode) that use
in-line sequences of save and restore instructions.

* Usetheload with updateinstruction judicioudly.

Another frequently used set of instructions that are subject to this multiple register
usage effect are the load with update instructions. While use of such instructionsis
usually desirablefrom a performance standpoint (they eliminate adependent integer
operation), care must still be taken to not issue too many of these instructions
consecutively.

» Schedule code to take advantage of rename registers.

As discussed previously, the 604e provides register renaming as a means of
improving execution speed. Since there are alimited number of rename buffers
implemented in hardware, it is always desirable to minimize pressure on this
resource. Onerelatively simple means of doing thisisto useimmediate addressing
when the option exists. For example, an integer register copy can be performedin a
single cycle using anumber of different instructions. However, using an ori
instruction (with an immediate operand of zero) uses only one source register
operand; whereas, the register indirect form of the or instruction uses two source
registers.

« Minimizeuse of instructionsthat serialize execution.

Some operations, such as memory synchronization primitives and trap instructions,
have well-known serialization properties that are intended when used by a
programmer. Other instructions, however, have more subtle serialization effects that
may affect performance. For example, if operations that manipulate condition
register fields are used frequently, they can significantly hinder performance,
particularly when multiple condition fields are being accessed by asingle
instruction, described in the following:

« Avoid using the mterf instruction to update multiple fields.

Note that the performance of the mtcr f instruction depends greatly on whether only
onefield is accessed or either no fields or multiple fields are accessed as follows:

— Those mtcrf instructions that update only one field are executed in either of the
SClUs and the CR field is renamed as with any other SCIU instruction.

— Those mtcrf instructions that update either multiple fields or no fields are
dispatched to the MCIU and a count/link scoreboard hit is set. When that bit is
set, no more mtcrf instructions of the same type, mtspr instructions that update
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the count or link registers, branch instructions that depend on the condition
register and CR logical instructions can be dispatched to the MCIU. The bit is
cleared when the mtctr, mtcrf, or mtlr instruction that set the bit is executed.

Because mtcrf instructions that update a single field do not require such
synchronization that other mter f instructions do, and because two such single-field
instructions can execute in paralel, it is typically more efficient to use multiple
mtcr f instructionsthat update only onefield apiecethan to use one mtcr f instruction
that updates multiple fields. A rule of thumb follows:

— Itisalways moreefficient to usetwo mtcr f instructionsthat update only onefield
apiece than to use one mterf instruction that updates two fields.

— Itisalmost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcer f instruction that updates three
fields.

— Itisoften more efficient to use more than four mtcr f instructionsthat update only
one field than to use one mtcrf instruction that updates four fields.

Minimize branching.

The 604e supports dynamic branch prediction and other mechanismsthat reduce the
impact of branching; nevertheless, changing control flow in aprogramis relatively
expensive, in that fullest advantage cannot be taken of resources that can improve
throughput. such as superscalar instruction dispatch and execution. In some cases,
branches can be minimized by simply rewriting an algorithm. In other cases, specia
PowerPC instructions, such asfsel, can be used to eliminate a conditional branch
atogether.

Notethat thefsel instruction isoptional to the PowerPC architecture and may not be
implemented on all PowerPC implementations, so use of thisinstruction to improve
performance in the 604e should be weighed against portability considerations.

6.7 Instruction Latency Summary

Table 6-2 summarizes the execution cycle time of each instruction. Note that the latencies
themselves provide limited insight asto the actual behavior of aninstruction. Thefollowing
list summarizes some aspects of instruction behavior:

For a store operation, availability means datais visible to the following loads from
the same address. Misaligned load or store operations require one additional cycle,
assuming cache hits.

— Floating-point stores that require denormalization take an additional cycle for
each bit of shifting that is needed up to a maximum of 23.

— Store multiple instructions are taken in pairs and take one additional cycleif an
odd number of registersis stored.
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— Misaligned load string operations require two cycles per register plus two
additional cycles.

— Misaligned store string operations take six cycles per register being stored
(although the final store may only take three cyclesif it does not cross aword
boundary).

» For instructions with both a CR result and either a GPR or an FPR result, the cycle
count shown is for the GPR or FPR result. CR results from logical or bit field
instructions that execute in the SCIU and CR results from instructions that execute
in the FPU take one additional cycle.

» Integer multipliesthat detect an early exit condition finish acycleearlier than others.
For signed multiplies, if the top 15 bits of the RB operand are al the same itisan
early out condition. For unsigned multiplies, if the top 15 bitsare all zerositisan
early out condition.

« All instructions are fully pipelined except for divides and some integer multiplies.
Theinteger multiplier is athree-stage pipeline. Integer multiplies other than those
that can exit early (described in the previous bullet) stall for one cyclein the first
stage of the pipeline. Integer divideinstructionsiteratein stage two of the multiplier.
Special-purpose register operations can execute in the MCIU in parallel with
multiplies and divides.

— The FPU unit is athree-stage pipeline. Floating-point divides iterate in the
floating-point pipeline. The floating-point unit aso has some data-dependent
delays not shown inTable 6-2. If the rounder has a carry out, that is, 1.11...111
roundsto 2.00...000, the FPU takes an additional cycle. If thefinal normalization
of the result requires a shift of more than 63, the FPU takes an additional cycle.
Underflow and overflow take an additional cycle. Denormalization to zero takes
an additional cycle. Massive cancellation resulting in zero takes an additional

cycle.
Table 6-2. Instruction Execution Timing
Instruction Unit Cycle (cycle) Serialization
add SCIU 1 —
addc SCIU 1 —
adde SCIU 1 Execute
addi SCIU 1 —
addic SCIU 1 —
addic. SCIU 1 —
addis SCIU 1 —
addme SCIU 1 Execute
addze SCIU 1 Execute
and SCIU 1 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
andc SCIU 1 —
andi. SCIU 1 —
andis. SCIU 1 —

b BPU 1 —
bc BPU 1 —
bccetr BPU 1 —
bclr BPU 1 —
cmp SCIU 1 —
cmpi SCIU 1 —
cmpl SCIU 1 —
cmpli SCIU 1 —
cntlzw SCIU 1 —
crand CRU 1 Execute
crandc CRU 1 Execute
creqv CRU 1 Execute
crnand CRU 1 Execute
crnor CRU 1 Execute
cror CRU 1 Execute
crorc CRU 1 Execute
crxor CRU 1 Execute
dcbf LSuU — Execute
dcbi LSuU 3 Execute
dcbst LSuU — Execute
dcbt (BS1V) — Execute
dcbtst LSuU — Execute
dcbz LSuU 3 Execute
divw MCIU 20 —
divwu MCIU 20 —
eciwx LSuU 2 + bus Execute
ecowx LSuU 3+ bus Execute
eieio LSuU — 110
eqv SCIU 1 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

extsb SCIU 1 —

extsh SCIU 1 —

fabs FPU 3 —

fadd FPU 3 —

fadds FPU 3 —

fcmpo FPU 3 —

fcmpu FPU 3 —

fctiw FPU 3 —

fctiwz FPU 3 —

fdiv FPU 32 FP empty!
fdivs FPU 18 FP empty!
fmadd FPU 3 —
fmadds FPU 3 —

fmr FPU 3 —

fmsub FPU 3 —
fmsubs FPU 3 —

fmul FPU 3 —

fmuls FPU 3 —

fnabs FPU 3 —

fneg FPU 3 —
fnmadd FPU 3 —
fnmadds FPU 3 —
fnmsub FPU 3 —
fnmsubs FPU 3 —

fres FPU 18 FP empty!
frsp FPU 3 —

frsqrte FPU 3 —

fsel FPU 3 —

fsub FPU 3 —

fsubs FPU 3 —

icbi LSuU — —

isync Completion 1 Postdispatch
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

Ibz LSuU 2 —

lbzu LSuU 2 —

Ibzux LSU 2 —

Ibzx LSuU 2 —

Ifd LSuU 3 —

Ifdu LSuU 3 —

Ifdux LSuU 3 —

Ifdx LSuU 3 —

Ifs LSuU 3 —

Ifsu LSuU 3 —

Ifsux LSuU 3 —

Ifsx LSuU 3 —

lha LSuU 2 —

lhau LSuU 2 —

lhaux LSU 2 —

lhax LSuU 2 —

lhbrx LSuU 2 —

lhz LSuU 2 —

lhzu LSuU 2 —

lhzux LSuU 2 —

lhzx LSuU 2 —

Imw LSU #regs + 2 String/multiple
Iswi LSU 2(#regs) + 2 String/multiple
Iswx LSuU 2(#regs) + 2 String/multiple
lwarx LSuU 3+bus Execute
Iwbrx LSuU 2 —

lwz LSuU 2 —

lwzu LSuU 2 —

lwzux LSuU 2 —

lwzx LSuU 2 —

mcrf CRU 1 Execute
mcrfs FPU 3 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
mcrxr MCIU 3 Execute
mfcr MCIU 3 Execute
mffs FPU 3 —
mfmsr MCIU 3 Execute
mftb MCIU 3 Execute
mfspr LR/CTR MCIU 3 Execute
mfspr (others) MCIU 3 Execute
mtcrf (O/multiple bit) MCIU 1 Dispatch/Execute
mtcrf (single bit) SCIU 1 —
mtfsb0 FPU 3 —
mtfsbl FPU 3 —
mtfsf FPU 3 —
mtfsfi FPU 3 —
mtmsr MCIU 1 Execute
mtspr (LR/CTR) MCIU 1 Dispatch
mtspr (XER) MCIU 1 Complete 2
mtspr (others) MCIU 1 Execute
mulhw MCIU 4(3) —
mulhwu MCIU 4(3) —
mulli MCIU 3 —
mullw MCIU 4(3) —
nand SCIU 1 —
neg SCIU 1 —
nor SCIU 1 —
or SCIU 1 —
orc SCIU 1 —
ori SCIU 1 —
oris SCIU 1 —
rfi Completion — Postdispatch
riwimi SCIU 1 —
rlwinm SCIU 1 —
rlwnm SCIU 1 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
sc Completion — Postdispatch
slw SCIU 1 —
sraw SCIU 1 —
srawi SCIU 1 —

Srw SCIU 1 —

stb LSuU 3 Execute

stbu LSuU 3 Execute
stbux LSuU 3 Execute

stbx LSuU 3 Execute

stfd LSuU 3 Execute

stfdu LSuU 3 Execute
stfdux LSuU 3 Execute

stfdx LSuU 3 Execute
stfiwx LSuU 3 Execute

stfs LSuU 3 Execute

stfsu LSuU 3 Execute
stfsux LSuU 3 Execute

stfsx LSuU 3 Execute

sth LSuU 3 Execute
sthbrx LSuU 3 Execute

sthu LSuU 3 Execute
sthux LSuU 3 Execute

sthx LSuU 3 Execute
stmw (BS1V) #regs + 2 String/multiple
stswi LSU #regs + 2 String/multiple
stswx LSU #regs + 2 String/multiple
stw LSuU 3 Execute
stwbrx LSuU 3 Execute
stwcex. LSuU 3 Execute

stwu LSuU 3 Execute
stwux LSU 3 Execute

stwx LSuU 3 Execute
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
subf SCIU 1 —
subfc SCIU 1 —
subfe SCIU 1 Execute
subfic SCIU 1 —
subfme SCIU 1 Execute
subfze SCIU 1 Execute
sync LSU — —
tibie LSuU — Execute
tlbsync LSuU — —
tw SCIU 1 —
twi SCIU 1 —
xor SCIU 1 —

Xori SCIU 1 —
xoris SCIU 1 —

1 These instructions are not pipelined. They cannot be executed until the previous
instruction in the FPU completes; subsequent FPU instructions cannot begin

execution until these instructions complete.

2The mtspr (XER) instruction causes instructions to be flushed when it executes.
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Chapter 7
Signal Descriptions

This chapter describes the PowerPC 604e microprocessor’'s external signals. It contains a
concise description of individual signals, showing behavior when the signal is asserted and
negated and when the signal is an input and an outpuit.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
arenot active-low, such asAP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

The 604e signals are grouped as follows:

Addressarbitration signals—The 604e uses these signalsto arbitrate for address bus
mastership.

Addresstransfer start signals—These signalsindicate that a bus master has begun a
transaction on the address bus.

Address transfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

Transfer attribute signals—These signals provide information about the type of
transfer, such asthe transfer size and whether the transaction is bursted, write-
through, or cache-inhibited.

Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They aso indicate whether a condition
exists that requires the address phase to be repeated.

Data arbitration signals—The 604e uses these signals to arbitrate for data bus
mastership.

Datatransfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.
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Data transfer termination signals—Data termination signals are required after each
data beat in adatatransfer. In asingle-beat transaction, the data termination signals
also indicate the end of the tenure, whilein burst accesses, the data termination
signalsapply toindividual beatsand indicate the end of thetenure only after thefinal
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

Interrupt signals—These signals include the external interrupt signal, machine
check signal, and system reset signal. These signals are used to interrupt and, under
various conditions, to reset the processor.

Processor state signals—These signalsinclude the memory reservation signal, hard
reset signal, and checkstop signals.

Clock signals—These signals provide for system clock input and frequency control.

JTAG/COP interface signals—The JTAG (IEEE 1149.1) interface and common on-
chip processor (COP) unit provides a seria interface to the system for performing
monitoring and boundary tests.

Miscellaneous signals—These signals include the time base enable signal, L2
intervention signal, the run and halted signals, and the analog VDD signal.

7.1 Signal Configuration
Figure 7-1 illustrates the pin configuration of the 604e, showing how the signals are

grouped.
NOTE
A pinout showing actual pin numbers is included in the 604e
hardware specifications.
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1 VOLTDETGND (BGA only)

Figure 7-1. Signal Groups

7.2 Signal Descriptions

This section describes individual 604e signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, “System Interface Operation,” describes many of these signalsin greater detail,
both with respect to how individual signals function and how groups of signalsinteract.
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7.2.1 Address Bus Arbitration Signals

The address arbitration signals are a collection of input and output signals the 604e uses to
reguest the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 8.3.1, “Address Bus Arbitration.”

7.2.1.1 Bus Request (BR)—Output
Thebusrequest (BR) signal isan output signal on the 604e. Following are the state meaning
and timing comments for the BR signal.

State M eaning

Timing Comments

Asserted—Indicates that the 604e is requesting mastership of the
address bus. Note that BR may be asserted for one or more cycles,
and then deasserted due to an internal cancellation of the bus request
(for example, due to the loss of a memory reservation). See
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604e is not requesting the address bus.
The 604e may have no bus operation pending, it may be parked, or
the ARTRY input was asserted on the previous bus clock cycle.

Assertion—Occurs when a bus transaction is needed and the 604e
does not have a qualified bus grant. This may occur even if the three
possible pipeline accesses have occurred.

Negation—Occursfor at least one bus clock cycle after an accepted,
qualified bus grant (see BG and ABB), even if another transaction is
pending. It isalso negated for at |east one cycle after the assertion of
ARTRY, unless that processor was responsible for the assertion of
ARTRY dueto the need to perform acache block push for that snoop
operation.

7.2.1.2 Bus Grant (BG)—Input
The bus grant (BG) signal is an input signal on the 604e. Following are the state meaning
and timing comments for the BG signal.

State Meaning

Asserted—I ndicatesthat the 604e may, with the proper qualification,
assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted, ABB and ARTRY are not asserted, and
ARTRY has been negated on the previous cycle. The ABB and
ARTRY signals are driven by the 604e or other bus masters. If the
604e is parked, BR need not be asserted for the qualified bus grant.
See Section 8.3.1, “Address Bus Arbitration.”

Negated— Indicates that the 604e is not the next potential address
bus master.
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Timing Comments Assertion—May occur at any time to indicate the 604e isfreeto use

the address bus. After the 604e assumes bus mastership, it does not
check for aqualified bus grant again until the cycle during which the
address bustenure is completed (assuming it has another transaction
to run). The 604e does not accept aBG in the cycles between the
assertion of any TS or XATS through to the assertion of AACK.

Negation—May occur at any timeto indicate the 604e cannot usethe
bus. The 604e may still assume bus mastership on the busclock cycle
of the negation of BG because during the previous cycle BG

indicated to the 604e that it was free to take mastership (if qualified).

7.2.1.3 Address Bus Busy (ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB)—Output
Following are the state meaning and timing comments for the ABB output signal.

State Meaning

Timing Comments

Asserted—Indicates that the 604e is the address bus master. See
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604e is not using the address bus. If
ABB is negated during the bus clock cycle following a qualified bus
grant, the 604e did not accept mastership, even if BR was asserted.
This can occur if apotential transaction is aborted internally before
the transaction is started.

Assertion—Occurs on the bus clock cycle following aqualified BG
that is accepted by the processor (see Negated).

Negation—Occurs on the bus clock cycle following the assertion of
AACK. If ABB is negated during the bus clock cycle following a

qualified bus grant, the 604e did not accept mastership, even if BR
was asserted.

High Impedance—Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) after ABB is negated. Occurs during fractional portion of
the bus cycleinwhichABB is negated. ABB isguaranteed by design
to be high impedance by the end of the cycle in which it is negated.

7.2.1.3.2 Address Bus Busy (ABB)—Input
Following are the state meaning and timing comments for the ABB input signal.

State Meaning

Asserted—Indicates that the address bus isin use. This condition
effectively blocks the 604e from assuming address bus ownership,
regardless of the BG input; see Section 8.3.1, “Address Bus
Arbitration.” Note that the 604e will not take the address bus for the
sequence of cycles beginning with TS and ending with AACK;; thus
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effectively making the use of ABB optional, provided that other bus
masters respond in the same way.

Negated—Indicates that the address busis not owned by another bus
master and that it is available to the 604e when accompanied by a
qualified bus grant.

Timing Comments Assertion—May occur when the 604e must be prevented from using
the address bus (and the processor is not currently asserting ABB).

Negation—May occur whenever the 604e can use the address bus.

7.2.2 Address Transfer Start Signals

Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction; extended address transfer start (XATS) identifies the transaction as a direct-
store operation.

For detailed information about how TS and XATS interact with other signals, refer to
Section 8.3.2, “Address Transfer,” and Section 8.6, “ Direct-Store Operation,” respectively.

7.2.2.1 Transfer Start (TS)
The TS signal is both an input and an output signal on the 604e.

7.2.2.1.1 Transfer Start (TS)—Output
Following are the state meaning and timing comments for the TS output signal.

State M eaning Asserted—I ndicates that the 604e has begun a memory bus
transaction and that the address-bus and transfer-attribute signalsare
valid. When asserted with the appropriate TT[0-4] signalsitisaso
animplied data bus request for amemory transaction (unlessitisan
address-only operation).

Negated—Has no special meaning. However, TSis negated during
an entire direct-store address tenure.

Timing Comments  Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after TS is asserted.
High Impedance—Occurs one bus clock cycle after the negation of
TS. For the 604e, the TS negation is only one bus cycle long,
regardless of the TS-to-AACK delay.

7.2.2.1.2 Transfer Start (TS)—Input
Following are the state meaning and timing comments for the TS input signal.

State Meaning Asserted—I ndicates that another master has begun abus transaction
and that the address bus and transfer attribute signals are valid for
snooping (see GBL).

Negated—I ndicates that no bus transaction is occurring.
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Timing Comments Assertion—May occur at any time outside of the cycles that define
the window of an address tenure. This window is marked by either
theinterval that includesthe cycle of aprevious TS assertion through
the cycle after AACK.

Negation—Must occur one bus clock cycle after TSis asserted.

7.2.2.2 Extended Address Transfer Start (XATS)
The XATS signal is both an input and an output signal on the 604e.

7.2.2.2.1 Extended Address Transfer Start (XATS)—Output
Following are the state meaning and timing comments for the XATS output signal.

State M eaning Asserted—I ndicates that the 604e has begun a direct-store operation
and that the first address cycle is valid. When asserted with the
appropriate XATC signalsit is also an implied data bus request for
certain direct-store operation (unlessit isan address-only operation).

Negated—Has no special meaning; however, XATS remains negated
during an entire memory address tenure.

Timing Comments Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after the assertion of XATS.

High Impedance—Occurs one bus clock cycle after the negation of
XATS. For the 604e, the XATS negation is only one bus-cyclelong,
regardless of the XATSto-AACK delay.

7.2.2.2.2 Extended Address Transfer Start (XATS)—Input
Following are the state meaning and timing comments for the XATS input signal.

State M eaning Asserted—Indicates that the 604e must check for a direct-store
operation reply.

Negated—Indicates that there is no need to check for a direct-store
operation reply.

Timing Comments Assertion—May occur at any time outside of the cycles that define
the window of an address tenure. This window is marked by either
the interval that includes the cycle of a previous XATS assertion
through the cycle after AACK or by the cyclesin which ABB is
asserted for a previous address tenure, whichever is greater.
Negation—M ust occur one bus clock cycle after XATS is asserted.

7.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signalsinteract, refer
to Section 8.3.2, “Address Transfer.”
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7.2.3.1 Address Bus (A[0-31])
The address bus (A[0-31]) consists of 32 signals that are both input and output signals.

7.2.3.1.1 Address Bus (A[0-31])—Output (Memory Operations)
Following are the state meaning and timing comments for the A[0-31] output signals.

State Meaning

Timing Comments

Asserted/Negated—Represents the physical address (real addressin
the architecture specification) of the datato be transferred. On burst
transfers, the address bus presents the double-word—aligned address
containing the critical code/data that missed the cache on aread
operation, or the first double word of the cache line on awrite
operation. Note that the address output during burst operationsis not
incremented. See Section 8.3.2, “Address Transfer.”

Assertion/Negation—Occurs on the bus clock cycle after aqualified
bus grant (coincides with assertion of ABB and TS).

High Impedance—Occurs one bus clock cycle after AACK is
asserted.

7.2.3.1.2 Address Bus (A[0-31])—Input (Memory Operations)
Following are the state meaning and timing comments for the A[0-31] input signals.

State Meaning

Timing Comments

Asserted/Negated—Represents the physical address of a snoop
operation.

Assertion/Negation—Must occur on the same bus clock cycle asthe
assertion of TS; is sampled by 604e only on this cycle.

7.2.3.1.3 Address Bus (A[0-31])—Output (Direct-Store Operations)

Following are the state meaning and timing comments for the address bus signals (A0O-
A31) for output direct-store operations on the 604e.

State M eaning

Timing Comments

Asserted/Negated—For direct-store operationswherethe 604eisthe
master, the address tenure consists of two packets (each requiring a
bus cycle). For packet 0, these signals convey control and tag
information. For packet 1, these signals represent the physical
address of the data to be transferred. For reply operations, the
address bus contains control, status, and tag information.

Assertion/Negation—Address tenure consists of two beats. Thefirst
beat occurs on the bus clock cycle after aqualified bus grant,
coincidingwith XATS. Theaddress bustransitionsto the second beat
on the next bus clock cycle.

High Impedance—Occurs on the bus clock cycle after AACK is
asserted.
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7.2.3.1.4 Address Bus (A[0-31])—Input (Direct-Store Operations)

Following are the state meaning and timing comments for input direct-store operations on
the 604e.

State M eaning Asserted/Negated—When the 604e is not the master, it snoops (and
checksaddress parity) on thefirst address beat only of al direct-store
operationsfor an I/O reply operation with areceiver tag that matches
its PID tag. See Section 8.6, “ Direct-Store Operation.”

Timing Comments Assertion/Negation—Thefirst beat of the /O transfer addresstenure
coincides with XATS, with the second address bus beat on the
following cycle.

7.2.3.2 Address Bus Parity (AP[0-3])

The address bus parity (AP[0-3]) signas are both input and output signals reflecting one
bit of odd-byte parity for each of the four bytes of address when avalid addressis on the
bus.

7.2.3.2.1 Address Bus Parity (AP[0-3])—Output

Following are the state meaning and timing comments for the AP[0-3] output signal on the
604e.

State M eaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for atransaction. Odd parity meansthat an odd
number of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

APO A[0-7]
AP1 A[8-15]
AP2 A[16-23]
AP3 A[24-31]

For more information, see Section 8.3.2.1, “Address Bus Parity.”

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.3.2.2 Address Bus Parity (AP[0-3])—Input

Following are the state meaning and timing comments for the AP[0-3] input signal on the
604e.

State Meaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for snooping and direct-store operations.
Detected even parity causes the processor to enter the checkstop
state, or take a machine check exception depending on whether
address parity checking is enabled in the HIDO register and the
condition of the MSR[ME] bit; see Section 2.1.2.3, “Hardware
Implementation-Dependent Register 0.” (See also the APE signal
description.)

Timing Comments Assertion/Negation—The same as A[0-31].
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7.2.3.3 Address Parity Error (APE)—Output

The address parity error (APE) signal is an output signal on the 604e. Note that the (APE)
signal is an open-drain type output, and requires an external pull-up resistor (for example,
10 kQ to Vdd) to assure proper deassertion of the APE signal). Following are the state
meaning and timing comments for the APE signal on the 604e. For more information, see
Section 8.3.2.1, “Address Bus Parity.”

State Meaning Asserted—Indicates incorrect address bus parity has been detected
by the processor on a snoop of a transaction type that the processor
recognizes and can respond to. Thisincludesthefirst address beat of
adirect-store operation.

Negated—I ndicates that the 604e has not detected a parity error
(even parity) on the address bus.

Timing Comments Assertion—Occurs on the second bus clock cycle after TS or XATS
is asserted.

High Impedance—Occurs on the third bus clock cycle after TS or
XATS is asserted.

7.2.4 Address Transfer Attribute Signals

Thetransfer attribute signals are a set of signalsthat further characterize the transfer—such
as the size of the transfer, whether it is aread or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 8.3.2, “Address Transfer.”

Note that some signal functions vary depending on whether the transaction is a memory
access or an 1/0O access. For a description of how these signals function for direct-store
operations, see Section 8.6, “ Direct-Store Operation.”

7.2.4.1 Transfer Type (TT[0-4])

The transfer type (TT[0-4]) signals consist of five input/output signals on the 604e. For a
complete description of TT[0-4] signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TT[0—4])—Output

Following are the state meaning and timing comments for the TT[0-4] output signals on
the 604e.

State Meaning Asserted/Negated—I ndicates the type of transfer in progress.

For direct-store operations these signals are part of the extended
address transfer code (XATC) along with TSIZ and TBST:

XATC(0-7)=TT(0-3)||ITBST||ITSIZ(0-2).
Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].
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7.2.4.1.2 Transfer Type (TT[0-4])—Input
Following are the state meaning and timing comments for the TT[0-4] input signals on the
604e.

State M eaning Asserted/Negated—I ndicates the type of transfer in progress (see

Table 7-1). For direct-store operations, the TTO-TT3 signalsform
part of the XATC and are snooped by the 604e if XATS is asserted.

Timing Comments Assertion/Negation—The same as A[0-31].
Table 7-1 describes the transfer encodings for a 604e bus master and the 60x bus
specification.

Table 7-1. Transfer Encoding for PowerPC 604e Processor Bus Master

TT[0-4] 604e Bus Master Transaction Transaction Source
Transaction
00000 |Clean block Address only Cache operation
00100 | Flush block Address only Cache operation
01000 |[SYNC Address only Cache operation
01100 |[Kill block Address only Store hit/shared or cache operation
10000 |Ordered I/O operation Address only eieio (The 604e does not snoop eieio transactions.)
10100 |External control word write | Single-beat write |ecowx (The 604e does not snoop ecowx transactions.)
11000 |TLB invalidate Address only tibie
11100 |External control word read | Single-beat read |eciwx (The 604e does not snoop eciwx transactions.)
00001 |[lwarx reservation set Address only lwarx operation that hit in the cache at the time of its
execution. The cache block may have been flushed
between execution of the Iwarx and broadcast of the
reservation set operation. Note that the 604e does not
snoop lwarx reservation set operations.
00101 |Reserved Address only N/A
01001 |[TLBSYNC Address only tibsync
01101 |ICBI Address only N/A
1xx01 |Reserved — N/A (The 604e does not snoop.)
00010 | Write with flush Single-beat write | Caching-inhibited or write-through store
or burst
00110 | Write with kill Single-beat write | Cast-out, snoop copy-back, dcbf, or dcbst instruction
or burst that hit on modified data.
01010 |Read Single-beat read | Cacheable load miss—cacheable instruction miss,
or burst cache-inhibited load, cache-inhibited instruction fetch.
01110 |Read with intent to modify | Burst Store miss
10010 | Write with flush atomic Single-beat write |stwcx.
10110 |Reserved N/A N/A
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Table 7-1. Transfer Encoding for PowerPC 604e Processor Bus Master (Continued)

TT[0-4] 604e Bus Master Transaction Transaction Source
Transaction
11010 |Read atomic Single-beat read [Iwarx
or burst
11110 |Read with intent to modify | Burst stwcx. miss with valid reservation
atomic
00011 |Reserved — N/A (The 604e does not snoop.)
00111 |[Reserved — N/A (The 604e does not snoop.)
01011 [Read with no intent to Single-beat read [N/A
cache or burst
01111 |[Reserved — N/A (The 604e does not snoop.)
1xx11 |Reserved — N/A (The 604e does not snoop.)

7.2.4.2 Transfer Size (TSIZ[0-2])
The transfer size (TSIZ[0-2]) signals consist of three input/output signals on the 604e.

7.2.4.2.1 Transfer Size (TSI1Z[0-2])—Output
Following are the state meaning and timing comments for the TSIZ[0-2] output signals on

the 604e.
State M eaning

Timing Comments

Asserted/Negated—For memory accesses, these signals along with
TBST, indicate the datatransfer sizefor the current bus operation, as
shown in Table 7-2. Table 8-4 shows how the TSIZ signals are used
with the address signals for aligned transfers. Table 8-5 shows how
the TSIZ signals are used with the address signals for misaligned
transfers. For I/O transfer protocol, these signalsform part of thel/O
transfer code; see the description in Section 7.2.4.1, “Transfer Type
(TT[O-4])”"

For external control instructions (eciwx and ecowx), TSIZ[0-2] are
used to output bits 29-31 of the external access register (EAR),
which are used to form the resource ID (TBST|[TSIZ[0-2]).

Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].
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Table 7-2. Data Transfer Size

TBST TSIZ[0-2] Transfer Size
Asserted 010 Burst (32 bytes)
Negated 000 8 bytes
Negated 001 1 byte
Negated 010 2 bytes
Negated 011 3 bytes
Negated 100 4 bytes
Negated 101 5 bytes
Negated 110 6 bytes
Negated 111 7 bytes

7.2.4.2.2 Transfer Size (TSIZ[0-2])—Input
Following are the state meaning and timing comments for the TSIZ[0-2] input signals on

the 604e.
State Meaning

Timing Comments

Asserted/Negated— For the direct-store protocol, these signalsform
part of the I/O transfer code; see Section 7.2.4.1, “Transfer Type
(TT[O0-4])”

Assertion/Negation—The same as A[0-31].

7.2.4.3 Transfer Burst (TBST)
Thetransfer burst (TBST) signal is an input/output signal on the 604e.

7.2.4.3.1 Transfer Burst (TBST)—Output
Following are the state meaning and timing comments for the TBST output signal.

State Meaning

Timing Comments

Asserted—Indicates that a burst transfer isin progress.

Negated—Indicates that aburst transfer isnot in progress. Also, part
of I/O transfer code; see Section 7.2.4.1, “Transfer Type (TT[0-4]).”

For external control instructions (eciwx and ecowx), TBST isused to
output bit 28 of the EAR, which is used to form the resource ID
(TBST|[TSIZ[0-2)).

Assertion/Negation—The same as A[0-31].
High Impedance—The same asA[0-31].
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7.2.4.3.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for the TBST input signal.

State M eaning

Asserted/Negated— For the 1/0 transfer protocol, this signal forms
part of the /O transfer code; see Section 7.2.4.1, “ Transfer Type
(TT[O4])”

Timing Comments Assertion/Negation—The same as A[0-31].

7.2.4.4 Transfer Code (TC[0-2])—Output

The transfer code (TC[0-2]) consists of three output signals on the 604e that, when
combined with the WT signal, provide additional information about the transaction in
progress. Following are the state meaning and timing comments for the TC[0-2] signals.

State M eaning

Timing Comments

Asserted/Negated—Represents aspecial encoding for thetransfer in
progress (see Table 7-3).
Assertion/Negation—The same as A[0-31].
High Impedance—The same asA[0-31].
Table 7-3. Transfer Code Signal Encoding

Transfer
Type

wr?!

TC[0-2]

2
x|

Asserted
2,3

From
Copyback
Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State®

Comments

Write
with kill

100

Never

Always

Don'’t
care

Cache copy-back

xx0

No

Yes

Yes

M, E, Sor

Could be cache copy-back, block
clean (dcbst), or block flush (dcbf)
To distinguish between these
operations, this transaction must be
ARTRYd. This transaction eventually
returns (before anything but another
snoop push directly from the data
cache) indicating another WT/TC code
combination.

100

No

Yes

No

Block flush (dcbf)

000

No

Yes

No

M, E, orl

Block clean (dcbst)

The dcbst instruction changes the
data cache state to E when the
modified line is placed in the copy-
back buffer queue. Before the low-
priority copy-back buffer entry
successfully completes its address
tenure, the data cache line state can
be changed to M by a subsequent
store to that line; it can be changed to |
by either a subsequent dcbi
instruction or by a cache-miss.
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Table 7-3. Transfer Code Sighal Encoding

(Continued)

Transfer
Type

wrtt

TC[0-2]

2
x|

Asserted
2,3

From
Copyback
Buffer

TS after
ARTRYd
Snoop 4

Final
MESI
State®

Comments

Write
with kill

010

Yes

No

Don’t
care

Sorl

Snoop push® directly from data cache
(read or read-atomic)

The read or read-atomic snoop
changes the data cache state to S
when the modified line is placed in the
snoop push buffer queue. Before the
snoop push buffer successfully
completes its address tenure, the data
cache line state can be changed to |
by either a subsequent dcbi
instruction or cache-miss.

010

Yes

Yes

Don'’t
care

Sorl

Snoop push® from copy-back buffer
(read or read-atomic)

In this case, the processor keeps a
shared copy in the data cache if this
copy-back buffer contained a block
clean (dcbst) transaction. If the copy-
back buffer contained a block flush
(dcbf) or a cache copy-back
transaction, the processor has no valid
copy of this line in its data cache after
this transaction completes
successfully.

To determine whether the processor
has kept a shared copy or has
invalidated this line, this transaction
must be ARTRYd. If this transaction
originated from the copy-back buffers
and no new snoops are given to the
processor, the transaction immediately
comes back as the next TS and
indicates a DCBF, DCBST, or copy-
back WT/TC code. If the transaction
comes back as a snoop push read, it
came from the data cache.

100

Yes

No

Don’t
care

Snoop push® directly from data cache
(RWITM, RWITM-atomic, flush, write
with flush, write with flush-atomic, or
kill)

100

Yes

Yes

Don’t
care

Snoop push® from copy-back buffers
(RWITM, RWITM-atomic, flush, write
with flush atomic, write with flush, write
with kill, or kill)
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Table 7-3. Transfer Code Signhal Encoding (Continued)

2
x|

Transfer | —— From TS after Final
Tvpe WT? | TC[0-2] | Asserted | Copyback | ARTRYd MESI Comments
P 23 Buffer Snoop 4 State®

Write 0 000 Yes No Don't M, E, or | Snoop push® from data cache (clean
with kill care or RWNITC).

The clean or RWNITC snoop changes
the data cache state to E when the
modified line is placed in the snoop
push buffer queue. Before the snoop
push buffer successfully completes its
address tenure, the data cache line
state can be changed to M by a
subsequent store to that line, or it can
be changed to | by either a
subsequent DCBI instruction or cache
miss.

000 Yes Yes Don't M, E, orl Snoop push® from copy-back buffers
care (if dcbst (clean or RWNITC)

in buffer) If this snoop hit on a block flush (dcbf)
or a cache copy-back in the copy-back
| (if cache | buffers, the processor does not have a
copy-back | valid copy of this address after this

or dcbfin | transaction completes successfully. If
buffer) this snoop hit on a block store (dcbst)
in the copy-back buffers, the processor
can keep an exclusive copy of the
cache block.

X 100 Never No Don't | Kill block deallocate (dcbi)

care
1 000 M Kill block & allocate no castout

required (dcbz)

1 001 Kill block & allocate castout required
(dcbz)

1 000 Kill block; write to block marked S

Read w8 0x0 Never No Don't EorS Data read no castout required

care The cache state is S if SHD was
asserted to the processor for a read or
read-atomic transaction. If SHD was
not asserted or if the transaction was
an RWITM or RWITM-atomic
transaction, the cache state is E.

w 0ox1 EorS Data read castout required

The cache state is S if SHD was
asserted to the processor for a read or
read-atomic transaction. If SHD was
not asserted, or if the transaction was
an RWITM or RWITM-atomic
transaction, the cache state is E.
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Table 7-3. Transfer Code Signhal Encoding (Continued)

Transfer | —_ BR From TS after Final
Tvpe WT! | TC[0-2] | Asserted | Copyback | ARTRYd MESI Comments
P 23 Buffer Snoop 4 State®
Read w 1x0 Never No Don't Valid in Instruction read
care instruction
cache
ICBI X 100 Never No Don't Invalid in Kill block deallocate (ichi®)
care instruction
cache

1 The value shown in the WT column reflects the actual logic value seen on the signal (active low).

2The window of opportunity for the assertion of BR is defined as the second cycle after AACK if ARTRY were asserted the
cycle after AACK.

3 The full condition for this column is “The BR corresponding to this transaction was asserted in the window of opportunity
for the last snoop to this address.”

4 The full condition for this column is “This transaction is the first TS asserted by this processor after one or more ARTRYd
snoop transactions and the address of this transaction matches the address of at least one of those ARTRYd snoop
transactions.”

5 This column reflects the final MESI state in the processor of the line referenced by this transaction after the transaction
completes successfully without ARTRY.

6 This snoop push is guaranteed to push the most recently modified data in the processor. No more snoop operations are
required to ensure that this snoop has been fully processed by the processor.

7 READ in this case encompasses all of read or RWITM, normal or atomic.

8 W = write-through bit from translation. WT is active-high and is the inverse of the setting of the W bit.

9 jchi is distinguished from kill block by assertion of TT4.

7.2.4.5 Cache Inhibit (Cl)—Output
The cache inhibit (CI) signal is an output signa on the 604e. Following are the state
meaning and timing comments for the CI signal.

State M eaning Asserted—I ndicates that a single-beat transfer will not be cached,
reflecting the setting of the | bit for the block or page that contains
the address of the current transaction.

Negated—Indicates that a burst transfer will allocate alinein the
604e data cache.

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.4.6 Write-Through (WT)—Output
The write-through (WT) signal is an output signal on the 604e. Following are the state
meaning and timing comments for the WT signal.

State Meaning Asserted—Indicates that a single-beat transaction is write-through,
reflecting the value of the W bit for the block or page that contains
the address of the current transaction.

Negated—Indicates that a transaction is not write-through.

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

Chapter 7. Signal Descriptions 7-17



7.2.4.7 Global (GBL)
Theglobal (GBL) signa is an input/output signal on the 604e.

7.2.4.7.1 Global (GBL)—Output

Following are the state meaning and timing comments for the GBL output signal.

State Meaning Asserted—Indicatesthat atransaction isglobal, reflecting the setting
of the M bit for the block or page that contains the address of the

current transaction (except in the case of copy-back operations,
which are nonglobal.)

Negated—Indicates that a transaction is not global.

Timing Comments Assertion/Negation—The same as A[0-31].

High Impedance—The same asA[0-31].

7.2.4.7.2 Global (GBL)—Input

Following are the state meaning and timing comments for the GBL input signal.

State Meaning Asserted—Indicates that a transaction may be snooped by the 604e.
The 604e will not snoop, regardless of GBL signal assertion,
reserved transaction types, bus operations associated with the eieio,
€ciwx, ecowx instructions, or the address-only bus transaction
associated with alwar x reservation set.

Negated—Indicates that a transaction is not snooped by the 604e.

Timing Comments Assertion/Negation—The same as A[0-31].

7.2.4.8 Cache Set Element (CSE[0-1])—Output
Following are the state meaning and timing comments for the CSE[0-1] signals.

State M eaning Asserted/Negated—Represents the cache replacement set element
for the current transaction reloading into or writing out of the cache.
Can be used with the address bus and the transfer attribute signalsto
externally track the state of each cache linein the 604€’s cache.

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be

terminated. For detailed information about how these signals interact, see Section 8.3.3,
“Address Transfer Termination.”

7.2.5.1 Address Acknowledge (AACK)—Input

The address acknowledge (AACK) signa is an input signal (input-only) on the 604e.
Following are the state meaning and timing comments for the AACK signal.
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State Meaning Asserted—I ndicates that the address phase of atransactionis
complete. The address bus will go to a high-impedance state on the
next bus clock cycle. The processor samplesARTRY on the bus
clock cyclefollowing the assertion of AACK. The 604e al so supports
sampling of ARTRY as early as the second cycle after TS.

Negated—Indicates that the address bus and the transfer attributes
must remain driven, if negated during ABB.

Timing Comments Assertion—M ay occur as early asthe bus clock cycle after TS or
XATSisasserted; assertion can be delayed to allow adequate address
access time for slow devices. For example, if an implementation
supports slow snooping devices, an external arbiter can postponethe
assertion of AACK.

Negation—Must occur one bus clock cycle after the assertion of
AACK.

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY') signal is both an input and output signal on the 604e.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for the ARTRY output signal.

State M eaning Asserted—I ndicates that the 604e detects a condition in which a
snooped address tenure must be retried. If the processor needs to
update memory as aresult of the snoop that caused the retry, the
processor asserts BR in the window of opportunity for that snoop.
The window of opportunity is defined as the second cycle after
AACK if ARTRY was asserted the cycle after AACK.

High Impedance—Indicates that the 604e does not need the snooped
address tenure to be retried.

Timing Comments Assertion—Asserted the second bus cycle after the assertion of TSif
aretry isrequired. Thus, when aretry isrequired, thereis only one
empty cycle between the assertion of TS and the assertion of ARTRY.

Negation—Occursthe second bus cycle after the assertion of AACK.
Since this signal may be simultaneously driven by multiple devices,
it isdriven negated in the following ways:

« 1:1 and 2:1 bus ratio—high-impedance for 1/2 bus clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.

« 3:1 busratio—high-impedance for 1/3 bus clock cycle, deasserted
for 2/3 bus clock cycle, then high-impedance.

* 3:2 busratio—high-impedance for 1/3 system clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.
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This special method of negation may be disabled by setting the
disable snoop response high state restore bit (bit 7) in HIDO.

ARTRY becomeshighimpedancefor at least one half buscycle, then
is driven high for approximately one bus cycle. ARTRY isthen
guaranteed by design to become high impedance at latest by the start
of third cycle after AACK.

7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for the ARTRY input signal.

State Meaning

Timing Comments

Asserted—If the 604e is the address bus master, ARTRY indicates
that the 604e must retry the preceding address tenure and
immediately negate BR (if asserted). I the associated datatenure has
already started, the 604e will also abort the data tenure immediately,
evenif the burst datahas been received. If the 604eisnot the address
bus master, this input indicates that the 604e should immediately
negate BR for one bus clock cyclefollowing the assertion of ARTRY
by the snooping bus master to allow an opportunity for a copy-back
operation to main memory.

Negated/High Impedance—I ndicates that the 604e does not need to
retry the last address tenure.

Assertion—May occur as early as the second cycle following the
assertion of TS or XATS, and must occur by the bus clock cycle
immediately following the assertion of AACK if an addressretry is
required.

Negation—M ust occur during the second cycle after the assertion of
AACK.

7.2.5.3 Shared (SHD)
The shared (SHD) signal is both an input and output signal on the 604e.

7.2.5.3.1 Shared (SHD)—Output
Following are the state meaning and timing comments for the SHD output signal.

State M eaning

Timing Comments

Asserted—If ARTRY is not asserted, indicates that after this
transaction completes successfully, the master will keep avalid
shared copy of the address or that areservation exists on thisaddress.
If SHD is asserted with ARTRY for a given snooping master, this
indicates that the snoop scored a hit on modified data that will be
pushed from that master as its next address transaction.

Negated/High Impedance—Indicates that after this address
transaction completes successfully, the processor will not have a
valid copy of the snooped address.

Assertion/Negation—Same asARTRY.
High Impedance—Same asARTRY.
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7.2.5.3.2 Shared (SHD)—Input
Following are the state meaning and timing comments for the SHD input signal .

State M eaning Asserted—If ARTRY is not asserted, indicates that for a self-
generated transaction the 604e must allocate the incoming cache
block as shared-unmodified.

Negated—If ARTRY is not asserted, indicates that for a self-
generated read or read-atomic transaction, the master can alocate
the incoming cache block as exclusive-unmaodified.

Timing Comments Assertion/Negation—The same asARTRY.

7.2.6 Data Bus Arbitration Signals

Like the address bus arhitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Notethat thereis no data bus arbitration signal
equivalent to the address bus arbitration signa BR (bus request), because, except for
address-only transactions, TS and XATSimply data bus requests. For adetailed description
on how these signals interact, see Section 8.4.1, “Data Bus Arbitration.”

One special signal, DBWO, allows the 604e to be configured dynamically to write data out
of order with respect to read data. For detailed information about using DBWO, see
Section 8.11, “Using Data Bus Write Only.”

7.2.6.1 Data Bus Grant (DBG)—Input

The data bus grant (DBG) signal isan input signal (input-only) on the 604e. Following are
the state meaning and timing comments for the DBG signal.

State Meaning Asserted—I ndicates that the 604e may, with the proper qualification,
assume mastership of the data bus. The 604e derives aqualified data
bus grant when DBG is asserted and DBB, DRTRY, and ARTRY are
negated; that is, the databusis not busy (DBB is negated), thereisno
outstanding attempt to retry the current data tenure (DRTRY is
negated), and there is no outstanding attempt to perform an ARTRY
of the associated address tenure.

The master achieves the position of master of the data bus (that is,
has achieved a qualified data bus grant) when the following
conditions are met:

Thedatabusis not bus busy (DBB is negated). (This condition does
not apply to the 604e or 604e in fast-L 2 mode.)

DRTRY is negated. (This condition does not apply to the 604ein
fast-L2 mode or the 604e in fast-L2 or no-DRTRY mode.)

ARTRY isnegated if ARTRY applies to the associated address
tenure.

Negated—Indicates that the 604e must hold off its data tenures.
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Timing Comments

Assertion—May occur any time to indicate that the processor or
other master is free to assume the position of master of the data bus.
The earliest it is sampled by the processor is the same cycle TS or
XATS is asserted.

For the 604e in fast-L 2 mode, DBG must be asserted no earlier than
the cycle before 604€'s data tenure is to commence only when
another master currently owns the data bus (that is, when DBB
would normally be asserted for a data tenure). If no other masters
currently own the data bus (asserting DBB), the 604e allows the
system to park DBG on 604e. DBB is till an output-only signal in
fast-L2 Mode (that is, DBB does not participate in determining
qualified data bus grant), requiring the system to use DBG to ensure
that different masters do not collide on data tenures. If the system
attempts to stream any back-to-back data tenures by asserting DBG
withthefinal TA of thefirst datatenure, the processor will accept the
DBG asaqualified data bus grant only if the current datatenureisa
burst read and the next data tenure is aburst read. The 604e will not
allow the system to stream any two other types of data tenures.

7.2.6.2 Data Bus Write Only (DBWO)—Input

The data bus write only (DBWO) signal is an input signal (input-only) on the 604e.
Following are the state meaning and timing comments for the DBWO signal.

State Meaning

Timing Comments

Asserted—I ndicates that the 604e may run the data bustenurefor an
outstanding write address even if aread addressiis pipelined before
the write address. Refer to Section 8.11, “Using Data Bus Write
Only,” for detailed instructions for using DBWO.

Negated—I ndicates that the 604e must run the databustenuresin the
same order as the address tenures.

Assertion—Must occur no later than aqualified DBG for an
outstanding write tenure. DBWO is only recognized by the 604e on
the clock of aqualified DBG. If no write requests are pending, the
604e will ignore DBWO and assume data bus ownership for the next
pending read request.

Negation—May occur any time after a qualified data bus grant and
before the next qualified data bus grant.

7.2.6.3 Data Bus Busy (DBB)
The data bus busy (DBB) signal is both an input and output signal on the 604e.

7.2.6.3.1 Data Bus Busy (DBB)—Output
Following are the state meaning and timing comments for the DBB output signal.
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State Meaning Asserted—I ndicates that the 604e is the data bus master. The 604e
always assumes data bus mastership if it needs the databusand is
given aqualified data bus grant (see DBG).

Negated—I ndicatesthat the 604eis not using the data bus, unlessthe
datatenure is being extended by the assertion of DRTRY. Note that
for the 604e in no-DRTRY mode, DRTRY istied asserted and is
ignored.

Timing Comments Assertion—Occurs during the bus clock cycle following a qualified
DBG.

Negation—Occurs for afractional bus clock cycle following the
assertion of the final TA.

High Impedance—Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) after DBB is negated.

7.2.6.3.2 Data Bus Busy (DBB)—Input

Following are the state meaning and timing comments for the DBB input signal. Note that
the DBB input signal cannot be used in systems that use read data streaming.

State M eaning Asserted—Indicates that another device is bus master.
Negated—Indicates that the data bus is free (with proper
qualification, see DBG) for use by the 604e.

Timing Comments Assertion—Must occur when the 604e must be prevented from using
the data bus.

Negation—May occur whenever the data busis available.

7.2.7 DataTransfer Signals

Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signalsinteract, see Section 8.4.3, “Data Transfer.”

7.2.7.1 Data Bus (DH[0-31], DL[0-31])

Thedatabus (DH[0-31] and DL[0-31]) consists of 64 signalsthat are both input and output
on the 604e. Following are the state meaning and timing comments for the DH and DL
signals.

State M eaning The data bus has two halves—data bus high (DH) and data bus low
(DL). See Table 7-4 for the data bus lane assignments. Direct-store
operations use DH exclusively (that is, there are no 64-bit, 1/0
transfers).

Timing Comments The data busis driven once for noncached transactions and four
times for cache transactions (bursts).
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Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane
DH[0-7] 0
DH[8-15] 1
DH[16-23] 2
DH[24-31] 3
DL[0-7] 4
DL[8-15] 5
DL[16-23] 6
DL[24-31] 7

7.2.7.1.1 Data Bus (DH[0-31], DL[0-31])—Output
Following are the state meaning and timing comments for the DH and DL output signals.

State M eaning Asserted/Negated—Represents the state of data during a data write.
Byte lanes not selected for data transfer will not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides with DBB and, for
bursts, transitions on the bus clock cycle following each assertion of
TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion of TA.

7.2.7.1.2 Data Bus (DH[0-31], DL[0-31])—Input
Following are the state meaning and timing comments for the DH and DL input signals.

State M eaning Asserted/Negated—Represents the state of data during a data read
transaction.

Timing Comments Assertion/Negation—Datamust bevalid onthe same busclock cycle
that TA is asserted.

7.2.7.2 Data Bus Parity (DP[0-7])
The eight data bus parity (DP[0-7]) signals on the 604e are both output and input signals.

7.2.7.2.1 Data Bus Parity (DP[0-7])—Output
Following are the state meaning and timing comments for the DP output signals.

State M eaning Asserted/Negated—Represents odd parity for each of eight bytes of
datawrite transactions. Odd parity meansthat an odd number of bits,
including the parity bit, are driven high. The signal assignments are
listed in Table 7-5.
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Timing Comments Assertion/Negation—The same as DL[0-31].
High Impedance—The same as DL [0-31].

Table 7-5. DP[0-7] Signal Assignments

Signal Name Signal Assignments

DPO DH[0-7]

DP1 DH[8-15]

DP2 DH[16-23]

DP3 DH[24-31]

DP4 DL[0-7]

DP5 DL[8-15]

DP6 DL[16-23]

DP7 DL[24-31]

7.2.7.2.2 Data Bus Parity (DP[0-7])—Input
Following are the state meaning and timing comments for the DP input signals.

State M eaning Asserted/Negated—Represents odd parity for each byte of read data.
Parity is checked on al data byte lanes during data read operations,
regardless of the size of the transfer. During direct-store read
operations, only the DP[0-3] signals (corresponding to byte lanes
DHJ[0-31]) are checked for odd parity. Detected even parity causesa
checkstop or amachine check exception (and assertion of DPE) if
data parity errors are enabled in the HID register. (The DP[0-7]
signals function in the same way as the AP[0-3] signals.)

Timing Comments Assertion/Negation—The same as DL[0-31].

7.2.7.3 Data Parity Error (DPE)—Output

The data parity error (DPE) signal is an output signal (output-only) on the 604e. Note that
the (DPE) signal is an open-drain type output, and requires an external pull-up resistor (for
example, 10 kQ to Vdd) to assure proper deassertion of the (DPE) signal. Following arethe
state meaning and timing comments for the DPE signal.

State Meaning Asserted—Indicates incorrect data bus parity.
Negated—Indicates correct data bus parity.

Timing Comments  Assertion—Occurson the second bus clock cycleafter TA isasserted
to the 604e.

High Impedance—Occurs on the third bus clock cycle after TA is
asserted to the 604e.
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7.2.7.4 Data Bus Disable (DBDIS)—Input

The Data Bus Disable (DBDIS) signa is an input signal (input-only) on the 604e.
Following are the state meanings and timing comments for the DBDIS signal.

State Meaning Asserted—Indicates for a write transaction that the processor must
rel ease the data bus (DH[0-31] and DL[0-31]) and the data bus
parity (DP[0-7]) to high impedance during the following cycle. The
data tenure will remain active, DBB will remain driven, and the
transfer termination signals will still be monitored by the 604e.

Negated—Indicates the data bus should remain normally driven.
DBDIS isignored during read transactions.

Timing Comments Assertion/Negation—May be asserted on any clock cycle when the
604e isdriving, or will be driving the data bus; may remain asserted
multiple cycles.

7.2.8 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals aso indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, “Data Transfer
Termination.”

7.2.8.1 Transfer Acknowledge (TA)—Input

Thetransfer acknowledge (TA) signal isaninput signal (input-only) on the 604e. Following
are the state meaning and timing comments for the TA signal.

State M eaning Asserted— Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unlessDRTRY isasserted on the next bus clock cycle).
Note that TA must be asserted for each data beat in a burst
transaction. For more information, see Section 8.4.4, “ Data Transfer
Termination.”

Negated—(During DBB) indicates that, until TA is asserted, the
604e must continue to drive the data for the current write or must
wait to sample the data for reads.

Timing Comments Assertion—When the busis configured for normal operation, must
not occur earlier than one bus clock cycle before the beginning of the
valid ARTRY window, or when the bus is configured for fast-L2
mode, must not be asserted earlier than the first cycle of avalid
ARTRY window; otherwise, assertion may occur at any time during
the assertion of DBB. The system can withhold assertion of TA to
indicate that the 604e should insert wait statesto extend the duration
of the data beat.
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Negation—M ust occur after the bus clock cycle of thefinal (or only)
databeat of thetransfer. For aburst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

7.2.8.2 Data Retry (DRTRY)—Input

The dataretry (DRTRY) signal isinput only on the 604e. Following are the state meaning
and timing comments for the DRTRY signal.

State Meaning

Timing Comments

Asserted—I ndicates that the 604e must invalidate the data from the
previous read operation.

Negated—I ndicates that data presented with TA onthe previousread
operation isvalid. Thisis essentially alate TA to allow speculative
forwarding of data (with TA) during reads. Note that DRTRY is
ignored for write transactions.

Assertion—Must occur during the bus clock cycleimmediately after
TA isasserted if aretry isrequired. The DRTRY signa may be held
asserted for multiple bus clock cycles. When DRTRY is negated,
data must have been valid on the previous clock with TA asserted.

Negation—Must occur during the bus clock cycle after avalid data
beat. Thismay occur several cyclesafter DBB isnegated, effectively
extending the data bus tenure.

Startup—DRTRY issampled at the negation of HRESET; if DRTRY
isasserted, fast-L2 modeisselected. If DRTRY isnegated at startup,
DRTRY isenabled. DRTRY must be negated during normal
operation (following HRESET) if fast-L 2/data streaming modeis
selected.

7.2.8.3 Transfer Error Acknowledge (TEA)—Input

The transfer error acknowledge (TEA) signal is input only on the 604e. Following are the
state meaning and timing comments for the TEA signal.

State Meaning

Asserted—Indicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared

(MSR[ME] = 0)). For more information, see Section 4.5.2.2,
“Checkstop State (MSR[ME] = 0).” Assertion terminatesthe current
transaction; that is, assertion of TA and DRTRY areignored. The
assertion of TEA causes the negation/high impedance of DBB inthe
next clock cycle. However, data entering the GPR or the cache are
not invalidated. Note that the architecture specification refersto al
exceptions as interrupts.

Notethat if TEA is asserted during a direct-store transaction, the
machine check or checkstop action of the TEA isdelayed and the
following direct-store transactions continue until al data transfers
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from the direct-store segment complete. The bus agent that asserts
TEA must assert TEA for every direct-storedatatenureincluding the
last one. The processor takes a machine check or a checkstop no
sooner than the last direct-store data tenure has been terminated by
the assertion of TEA. The load or store reply is not necessary after
the last data tenure has received a TEA assertion.

Negated—Indicates that no bus error was detected.

Timing Comments Assertion—M ay be asserted while DBB is asserted, or during valid
DRTRY window. In fast-L 2/data streaming mode, the 604e will not
recognize TEA the cycle after TA during aread operation due to the
absence of aDRTRY assertion opportunity. The TEA signal should
be asserted for one cycle only.

Negation— The TEA signal must be negated no later than the
negation of DBB or thelast DRTRY. The 604¢e deasserts DBB within
one bus clock cycle following the assertion of TEA.

7.2.9 System Interrupt, Checkstop, and Reset Signals

Most of the system interrupt, checkstop, and reset signals are input signals that indicate
when exceptions are received, when checkstop conditions have occurred, and when the
604e must be reset. The 604e generates the output signal, CKSTP_OUT, when it detects a
checkstop condition. For adetailed description of these signal's, see Section 8.8, “ Interrupt,
Checkstop, and Reset Signals.”

7.2.9.1 Interrupt (INT)—Input

The interrupt (INT) signal is input only. Following are the state meaning and timing
comments for the INT signal.

State M eaning Asserted—The 604e initiates an interrupt if MSR[EE] is set;
otherwise, the 604e ignores theinterrupt. To guarantee that the 604e
will take the external interrupt, the INT signal must be held active
until the 604e takes the interrupt; otherwise, the 604e will take an
external interrupt depending on whether the MSR[EE] bit was set
whilethe INT signal was held active.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The INT input is level-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the INT signal should be asserted and negated synchronously with
the SYSCLK signal.
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7.2.9.2 System Management Interrupt (SMI)—Input

The system management interrupt (SMI) signal is input only. Following are the state
meaning and timing comments for the SMI signal.

State Meaning Asserted—The 604e initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 604e ignores the
interrupt condition. The system must hold the SMT signal active until
theinterrupt is taken.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “Externa Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The SMI input islevel-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the SM1 signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.3 Machine Check Interrupt (MCP)—Input

The machine check interrupt (MCP) signal isinput only on the 604e. Following arethe state
meaning and timing comments for the MCP signal.

State Meaning Asserted—The 604e initiates a machine check interrupt operation if
MSR[ME] and HIDO[EMCP] are set; if MSR[ME] is cleared and
HIDO[EMCP] is set, the 604e must terminate operation by internally
gating off all clocks, and releasing all outputs (except CKSTP_OUT)
to the high impedance state. If HIDO[EMCP] is cleared, the 604e
ignores the interrupt condition. The MCP signal must be held
asserted for two bus clock cycles.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “Externa Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to theinput clocks. The MCP input is negative edge-
sensitive.

Negation—May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor systems

operating in lock step), the M CP signal should be asserted and negated synchronously with

the SYSCLK signal.
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7.2.9.4 Checkstop Input(CKSTP_IN)—Input

The checkstop input (CKSTP_IN) signal isinput only on the 604e. Following are the state
meaning and timing comments for the CKSTP_IN signal.

State Meaning Asserted—I ndicates that the 604e must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP_OUT) to the high impedance state. Once CKSTP_IN has
been asserted it must remain asserted until the system has been reset.

Negated—Indicates that normal operation should proceed. See
Section 8.8.2, “ Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

Negation—May occur any time after the CKSTP_OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP_OUT)—Output

The checkstop (CKSTP_OUT) signal is output only on the 604e. Note that the
(CKSTP_OUT) signa is an open-drain type output, and requires an external pull-up
resistor (for example, 10 kQ to Vdd) to assure proper deassertion of the (CKSTP_OUT)
signal. Following are the state meaning and timing comments for the CKSTP_OUT signal.

State Meaning Asserted—I ndicates that the 604e has detected a checkstop
condition and has ceased operation.

Negated—Indicates that the 604e is operating normally.
See Section 8.8.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clocks.

Negation—Is negated upon assertion of HRESET.

7.2.9.6 Reset Signals

There are two reset signals on the 604e—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)—Input

The hard reset (HRESET) signal is input only and must be used at power-on to properly
reset the processor. Following are the state meaning and timing comments for the HRESET
signal.

State M eaning Asserted—I nitiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as
described in Section 4.5.1, “ System Reset Exception (0x00100).”
Output drivers are released to high impedance within five clocks
after the assertion of HRESET.

7-30 PowerPC 604e RISC Microprocessor User's Manual



Negated—I ndicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clock; must be held asserted for a
minimum of 255 clock cycles.

Negation—May occur any time after the minimum reset pulse width
has been met.
If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the HRESET signal should be asserted and negated synchronously
with the SY SCLK signal. The HRESET signal has additional functionality in certain test
modes.

7.2.9.6.2 Soft Reset (SRESET)—Input

The soft reset (SRESET) signal isinput only. Following are the state meaning and timing
comments for the SRESET signal.

State Meaning Asserted— Initiates processing for areset exception as described in
Section 4.5.1, “ System Reset Exception (0x00100).”

Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604e input clock. The SRESET input is
negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor systems

operating inlock step), the SRESET signal should be asserted and negated synchronously

with the SY SCLK signal. The SRESET signal has additional functionality in certain test
modes.

7.2.10 Processor Configuration Signals

The signals described in this section provide inputs for controlling the 604€’s timebase,
signal drive capabilities, L2 cache access, bus snooping while in nap mode, and PLL
configuration, along with output signals to indicate that a storage reservation has been set,
and that the 604€'sinternal clocking has stopped.

7.2.10.1 Drive Mode (DRVMOD)—Input

The DRVMOD signals must be pulled up to VDD for the 604e to operate in accordance
with the hardware specifications.

7.2.10.2 Timebase Enable (TBEN)—Input

The timebase enable (TBEN) signal is input only on the 604e. Following are the state
meanings and timing comments for the TBEN signal.
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State Meaning

Timing Comments

Asserted—I ndicates that the timebase should continue clocking.
Thisinput is essentially a“count enable” control for the timebase
counter.

Negated—I ndicates the timebase should stop clocking.
Assertion/Negation—May occur on any cycle.

7.2.10.3 Reservation (RSRV)—Output

Thereservation (RSRV) signal is output only on the 604e. Following are the state meaning
and timing comments for the RSRV signal.

State Meaning

Timing Comments

Asserted/Negated—Represents the state of the reservation
coherency bit in the reservation address register that is used by the
Iwar x and stwcx. instructions. See Section 8.9.1, “ Support for the
Iwarx/stwex. Instruction Pair.”

Assertion—Occurs synchronously one bus clock cycle after the
execution of an Iwarx instruction that sets the internal reservation
condition. On the 604 and 604e, the RSRV signal is asserted as late
as the fourth cycle after AACK for a read-atomic operation if the
Iwar x instruction requires a read-atomic operation.

Negation—Occurs synchronously one bus clock cycle after the
execution of an stwcx. instruction that clears the reservation or as
late as the second bus cycle after a TS for a snoop that clears the
reservation.

7.2.10.4 L2 Intervention (L2_INT)—Input

The L2 intervention (L2_INT) signa is input only on the 604e. Following are the state
meanings and timing comments for the L2 _INT signal.

State Meaning

Timing Comments

Asserted— Indicates that the current data transaction requires
intervention from other bus masters.

Negated—Indicates that the current data transaction requires no
intervention from other bus masters.

Assertion/Negation—The L2_INT signal is sampled by the 604e
concurrently with the first assertion of TA for a given data tenure.

7.2.10.5 Run (RUN)—Input

The run (RUN) signa is input only on the 604e. Following are the state meanings and
timing comments for the RUN signal.

State Meaning

Asserted— Forcestheinternal clocksto continue running during nap
mode, allowing bus snooping to occur.

Negated—Internal clocks are inhibited from running when 604e is
in nap mode.
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For additional information regarding the nap mode, refer to Section 7.2.13, “Power
Management.”

Timing Comments Assertion/Negation—Assertion may occur asynchronously to the
604einput clock; and must be held asserted for aminimum of 3 bus
clock cycles before snoop activity.

7.2.10.6 Halted (HALTED) —Output
The halted (HALTED) signal is output only on the 604e. Following are the state meaning
and timing comments for the HALTED signal.

State Meaning Asserted—Indicates that theinternal clocks have stopped due to the
604e entering nap mode, no snoop copy-back operations arein
progress, or a JTAG/COP request.

Negated—Indicates that internal clocks are running.

Timing Comments Assertion/Negation—Occurs synchronously with internal processor
clock.

For additional information regarding the nap mode, refer to Section 7.2.13, “Power
Management.”

7.2.11 COP/Scan Interface

The 604e has extensive on-chip test capability including the following:
e Built-ininstruction and data cache self test (BIST)
» Debug control/observation (COP)
* Boundary scan (IEEE 1149.1 compliant interface)

The BIST hardware is not exercised as part of the POR sequence. The COP and boundary
scan logic are not used under typical operating conditions.

Detailed discussion of the 604e test functions is beyond the scope of this document;
however, sufficient information has been provided to allow the system designer to disable
the test functions that would impede normal operation.

The COP/scan interface is shown in Figure 7-2. For more information, see Section 8.10.1,
“1EEE 1149.1 Interface Description.”

———»| TDI (Test Data Input)
—— | TMS (Test Mode Select)
—— | TCK (Test Clock input)
~<— | TDO (Test Data Output)

—>| TRST (Test Reset)

Figure 7-2. IEEE 1149.1-Compliant Boundary Scan Interface
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7.2.12 Clock Signals

The clock signal inputs of the 604e determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency. An analog voltage input signal is provided to supply stable power
for theinternal PLL clock generator.

Refer to the 604e hardware specifications for exact timing rel ationships of the clock signals.

7.2.13 Power Management

The 604e implements signalsthat allow the processor to operate in three different modes—
normal, nap, and doze. These signals are the HALTED signal, see Section 7.2.10.3,
“Reservation (RSRV)—Output,” and the RUN signal, see Section 7.2.10.5, “Run (RUN)—
Input,” for more information.

* Innorma mode, all clocks are running and instruction execution is proceeding
normally. The HALTED signal is not asserted.

» In doze mode, no instructions are being executed, but clocks are still running to
allow snooping of the caches. If necessary, the caches perform copybacks of
modified data. The HALTED signal is asserted unless a snoop-triggered copy-back
is pending. Asserting the RUN signal isequivalent to the doze modein the PowerPC
603™.

« Innap mode, al internal clocks except those necessary to keep the decrementer,
timebase, and interrupt logic running are stopped. The HALTED signal is always
asserted. The 604e supports nap mode with a RUN signal similar to the 604.

A transition state table for the three modesis shown in Figure 7-3.

Figure 7-3. Power Management States

The following sections describe how the processor can go from one mode to the other.
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7.2.13.1 State Transition from Normal Mode to Doze Mode

As shown in Figure 7-3, the only state transition allowed from the normal mode is to the
doze mode. This transition requires system support. The RUN signal must be asserted by
the system for at least 10 bus cycles before the software power management sequence can
begin. The RUN signal does not affect the 604e operation in the normal mode, but affects
operation during the transition from normal mode to doze mode. The software power
management sequence is the following code:

sync

nt msr

i sync

branch back to the sync instruction

The mtmsr instruction should modify only MSR[POW]. All other M SR values such asthe
external interrupt enable should be set up before the software power management sequence
isbegun. When mtmsr isexecuted, the processor waitsfor itsinternal stateto beidlebefore
asserting HALTED, puitting the processor in the doze mode. When entering the doze mode,
the system must assert RUN for at least 10 bus cycles after HALTED is asserted. When in
the doze state, the HALTED signal is deasserted only when a snoop-triggered copy-back is
in progress. The system must continually assert RUN whenever HALTED is negated in
doze mode due to a snoop copy-back.

7.2.13.2 State Transition from Doze Mode to Nap Mode
A processor in doze mode can enter nap mode by doing the following:
1. Thesystem should ensurethat the busisidle and the HALTED signal is asserted for
at least 10 bus cycles.

2. The system should negate RUN and continue to prevent bus grants for at least 10
additional bus cycles. At this point, the processor isin the nap mode and bus
transactions can be resumed. The processor does not snoop any subsequent bus
transactions.

In going from doze to the nap mode, the system must ensure that the 604e not receive any
TS (or XATS) assertions by negating address bus grants to other bus masters. If the busis
not quiescent throughout the 10 clock transition window, the system may hang.

7.2.13.3 State Transition from Nap Mode to Doze Mode
A processor in nap mode can enter doze mode with the following sequence:
1. The system should ensure that the busisidlefor at least 10 bus cycles.

2. The system should assert the RUN signal and continue to prevent bus grants
for at least an additional 10 bus cycles. At this point, the processor isin doze
mode and all bus transactions can be snooped.

7.2.13.4 State Transition from Nap Mode to Normal Mode

Normal execution resumes from the nap mode when an interrupt or reset condition occurs.
The transition from nap to norma mode is triggered by hard reset, soft reset, system
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management interrupt, machine check interrupt (if MSR[ME] = 1), external interrupt (if
MSR[EE] = 1), or decrementer interrupt (if MSR[EE] = 1). When thistransition occurs, the
processor resumes clocking and vectors to the proper exception handler. Note that SRRO
points to an instruction inside the software power management sequence.

To exit power management, the exception handler should return to code outside this loop.

To re-enter power management, the system must ensure that the above modetransition rules
are followed.

7.2.13.5 State Transition from Doze Mode to Normal Mode

The transition from doze to normal mode can be triggered by the same conditions as the
nap to normal mode transition. This transition can also be triggered by a snoop detecting a
parity error and causing a machine check exception. Other than the additional trigger
condition, thistransition isidentical to the nap-to-normal mode transition.

7.2.13.6 System Clock (SYSCLK)—Input

The 604einternal clocking schemeis more similar to the PowerPC 603e™ than to the 604.
The 604e requires asingle system clock (SY SCLK) input. Thisinput sets the frequency of
operation for the businterface. Internally, the 604e uses a phase-lock loop (PLL) circuit to
generate a master clock for all of the CPU circuitry (including the bus interface circuitry)
which is phase-locked to the SY SCLK input. The master clock may be set to a multiple
(x1.5, x2, x2.5, x3, or x4) of the SY SCLK frequency alowing the CPU core to operate at
an equal or greater frequency than the bus interface.

State Meaning Asserted/Negated—The SY SCLK input is the primary clock input
for the 604e, and represents the bus clock frequency for 604e bus
operation. Internally, the 604e may be operating at a multiple of the
bus clock frequency.

Timing Comments Duty cycle—Refer to the 604e hardware specifications for timing
comments.
Note: SYSCLK isused as the frequency reference for the internal
PLL clock generator, and must not be suspended or varied during
normal operation to ensure proper PLL operation.

7.2.13.7 Test Clock (CLK_OUT)—Output

TheTest Clock (CLK_OUT) signal isan output signal (output-only) on the 604e. Following
are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/Negated—Provides PLL clock output for PLL testing and
monitoring. CLK_OUT clocksat the processor clock frequency. The
CLK_OUT signal is provided for testing purposes only.

Timing Comments Assertion/Negation—Refer to the 604e hardware specifications for
timing comments.
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7.2.14 Analog VDD (AVDD)—Input

The analog VDD signal is an input for supplying a stable voltage to the on-chip phase-
locked loop clock generator. Although the 604e has the same signal configuration as the
604, the 604eV DD and AV DD must be connected to 2.5V dc and OV DD must be connected
t0 3.3V dc. The 604e uses split voltage planes, and for replacement compatibility, 604/604e
designs should provide both 2.5-V and 3.3-V planes and the ability to connect those two
planestogether and disablethe 2.5-V plane for operation with a604. For moreinformation
about the electrical requirements of the AVDD input signal, refer to the 604e electrical
specifications.

7.2.15 VOLTDETGND Signal (BGA Package Only)

The VOLTDETGND output signal, which isimplemented only on BGA packages, isan
indicator of the core voltage. On the 604e, which hasa2.5-V core, VOLTDETGND istied
to ground internally to indicate to a power supply that alow-power processor is present.
Thissignal connects to a control signal on a power supply capable of providing 2.5-V and
3.3-V outputs. Refer to the hardware specifications for more information about
VOLTDETGND.

7.2.16 PLL Configuration (PLL_CFG[0-3])—Input

ThePLL (phase-lock loop) is configured by the PLL_CFG[0-3] pins. For agiven SY SCLK
(bus) frequency, the PLL configuration pins set the internal CPU frequency of operation.

Following are the state meaning and timing comments for the PLL_CFG[0-3] signals.

State Meaning Asserted/Negated— Configures the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation.

The 604€'s PLL_CFG settings are compatible with the 603e and the
604, although the supported frequency ranges may differ. Changing
the PLL_CFG setting during nap mode is not permitted. Table 7-6
listsPLL_CFG settings used for specifying processor/bus frequency
ratios (r) and VCO divider values (d). For specific information, see
the hardware specifications.

Table 7-6. PLL Configuration Encodings

PLL_CFG[0-3]
Processor/Bus Frequency Ratio (r) VCO Divider (d)
Bin Dec
0000 0 1x 2
0001 1 1x 8
0010 2 7x 2
0011 3 PLL bypass n/a
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Table 7-6. PLL Configuration Encodings

PLL_CFG[0-3]
Processor/Bus Frequency Ratio (r) VCO Divider (d)

Bin Dec

0100 4 2x 2
0101 5 6.5x 2
0110 6 2.5x 2
0111 7 4.5x 12
1000 8 3x 2
1001 9 5.5x 2
1010 10 4x 2
1011 11 5x 2
1100 12 1.5x 2
1101 13 6X 12
1110 14 3.5x 2
1111 15 Off n/a
Notes:

1. The processor/bus frequency ratio (r) and the value of the VCO divider (d) shown
in Table 7-6 together determine the resulting frequency ranges according to the
following formulas:

¢ SYSCLK frequency range:
— Min = VCO;i/(r*d)
— Max = VCOyy/(r*d)
« Core frequency range:
— Min =VCO,/d
— Max = VCO,,/d

The actual values supported by a given 604e are provided in the 604e hardware
specifications.

2. Bus clock ratios—The 604e supports processor-to-bus frequency ratios of 1:1,
3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Each ratio is limited to the frequency ranges
specified in the PLL_CFG encodings shown in Table 7-6. Support for
processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.
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Chapter 8
System Interface Operation

This chapter describes the PowerPC 604e microprocessor businterface and its operation. It
shows how the 604e signals, defined in Chapter 7, “Signal Descriptions,” interact to
perform address and data transfers.

8.1 Overview

The system interface prioritizes requests for bus operations from the instruction and data
caches, and performs bus operations per the 604e bus protocol. It includes address register
gueues, prioritization logic, and the bus control unit. The system interface latches snoop
addresses for snooping in the data cache and in the address register queues, and snoops for
direct-store reply operations and for reservations controlled by the Load Word and Reserve
Indexed (Iwarx) and Store Word Conditional Indexed (stwcx.) instructions. The interface
alowstwo level of pipelining; that is, with certain restrictions discussed later, there can be
three outstanding transactions at any given time. Accesses are prioritized with load
operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
wherethey are dispatched to the execution units at a peak rate of four instructions per clock.
Conversely, load and store instructions explicitly specify the movement of operandsto and
from the integer and floating-point register files and the memory system.

When the 604e encounters an instruction or data access, it calculates the logical address
(effective address in the architecture specification) and uses the low-order address bits to
check for a hit in the on-chip, 16-Kbyte instruction and data caches. During cache lookup,
the instruction and data memory management units (MM US) use the higher-order address
bits to calculate the virtua address, from which they calculate the physical address (real
address in the architecture specification). The physical address bits are then compared with
the corresponding cache tag bits to determine if a cache hit occurred. If the access misses
in the corresponding cache, the physical addressis used to access system memory.

In addition to the loads, stores, and instruction fetches, the 604e performs hardware table
search operations following TLB misses, cache cast-out operations when least-recently
used cache lines are written to memory after a cache miss, and cache-line snoop push-out
operations when a modified cache line experiences a snoop hit from another bus master.
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Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the trandation logic to the caches and system interface logic.

The 604e provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signalsto
alow for avariety of system-level optimizations. The system interface is specific for each
PowerPC processor implementation. The interface is synchronous—all 604e inputs are
sampled at and al outputs are driven from the rising edge of the bus clock. The 604e
supports processor-to-bus frequency ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 4:1, and 7:2. Support
for processor/bus clock ratios 5:2, 7:2, and 4:1 is not supported in the 604.While the 604e
operates at 3.3 Volts, dl the l/O signals are 5.0-Volt TTL-compatible.

8.1.1 Operation of the Instruction and Data Caches

The 604e provides independent instruction and data caches. Each cache is a physically-
addressed, 16-Kbyte cache with four-way set associativity. Both caches consist of 128 sets
of four cache lines, with eight words in each cache line.

Because the data cache on the 604e is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations, direct-store operations, and single-beat
(noncacheabl e or write-through) memory read and write operations. Additionally, there can
be address-only operations, variants of the burst and single-beat operations (global memory
operations that are snooped, and atomic memory operations, for example), and address
retry activity (for example, when a snooped read access hits a modified line in the cache).

The 604e data cache tags are dual-ported to facilitate efficient coherency checking. This
allows data cache accesses to occur concurrently with snooping operations. Data cache
accesses are only interrupted when the snoop control logic detects a situation where snoop
push of modified datais required to maintain memory coherency.

The 604e supports a four-state coherency protocol that supports the modified, exclusive,
shared and invalid (MESI) cache states. The MESI protocol ensures that the 604e operates
coherently in systems that contain multiple four-state caches, provided that all bus
participants employ similar snooping and coherency control mechanisms.

Cachelinesin the 604e areloaded in four beats of 64 bits each. The burst load is performed
as critical-double-word-first. The cache that is being loaded allows internal accesses until
the load completes (that is, the 604e supports cache hits under misses). The critical double
word is simultaneously written to the cache and forwarded to the requesting unit, thus
minimizing stalls due to load delays. If consecutive double words are required from the
same cache line following a cache line miss, the LSU stalls until the entire cache line has
been loaded into the cache,
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Figure 8-1. Block Diagram
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Cache lines are selected for replacement based on an LRU (least recently used) algorithm.
Each time a cache line is accessed, it is tagged as the most recently used line of the set.
When amissoccurs, if al linesin the set are marked as valid, the least recently used lineis
replaced with the new data. When data to be replaced isin the modified state, the modified
data is written into a write-back buffer while the missed data is being read from memory.
When the load compl etes, the 604e then pushes the replaced line from the write-back buffer
to main memory in a burst write operation if the memory queueisidle, or at alater time if
other transactions are pending.

8.1.2 Operation of the System Interface

Memory accesses can occur in single-beat (1-8 bytes) and four-beat (32 bytes) burst data
transfers. The address and data buses are independent for memory accesses to support
pipelining and split transactions. The 604e can pipeline as many as three transactions and
has limited support for out-of-order split-bus transactions.

Access to the system interface is granted through an external arbitration mechanism that
alows devices to compete for bus mastership. This arbitration mechanism is flexible,
alowing the 604e to be integrated into systems that implement various fairness and bus-
parking procedures to avoid arbitration overhead.

Typicaly, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the buswithout sacrificing coherency of the data. The
604e allowsread operationsto precede store operations (except when a dependency exists).
In addition, the 604e performs snoop push operations ahead of all other bus operations.
Because the processor can dynamically optimize run-time ordering of load/store traffic,
overal performance isimproved.

Note that the Synchronize (sync) or Enforce In-Order Execution of 1/O (eieio) instructions
can be used to enforce strong ordering.

The following sections describe how the 604einterface operates, providing detailed timing
diagrams that illustrate how the signals interact. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 8-2 isalegend of the conventions used in the timing diagrams.

Thisis asynchronous interface—all 604e input signals are sampled and output signals are
driven on the rising edge of the bus clock cycle (see the 604e hardware specifications for
exact timing information).
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Bar over signal name indicates active low
ap0 604e input (while 604e is a bus master)
BR 604e output (while 604e is a bus master)
ADDR+ 604e output (grouped: here, address plus attributes)

qual BG 604e internal signal (inaccessible to the user, but used in
diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

604e three-state output or input

604e nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

ap {10

\ / Timing for a signal had it been asserted (it is not
- actually asserted)

Figure 8-2. Timing Diagram Legend

8.1.3 Direct-Store Accesses
Memory and direct-store accesses use the 604e signals differently.

The 604e defines separate memory and /O address spaces, or segments, distinguished by
the segment register T bit in the addresstrandlation logic of the 604e. If the T bit is cleared,
the memory reference is a normal memory access and uses the paged virtual memory
management mechanism of the 604e. If the T bit is set, the memory reference is a direct-
store access.

The function and timing of some address transfer and attribute signals (such as TT[0-3],
TBST, and TSIZ[0-2]) are changed for direct-store accesses. Additional controls are
required to facilitate transfers between the 604e and the specific I/O devices that use this
interface. Direct-store and memory transfers are distinguished from one another by their
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address transfer start signals—TS indicates that a memory transfer is starting and XATS
indicates that a direct-store transaction is starting.

Direct-store accesses are strongly ordered—each access occursin strict program order and
completes before another access can begin. For this reason, direct-store accesses are less
efficient than memory accesses. The direct-store extensions also alow for additional bus
pacing and multipletransaction operationsfor variably-sized datatransfers (1 to 128 bytes),
and they support atagged, split request/response protocol. The direct-store access protocol
a so requires the slave device to function as a bus master.

8.2 Memory Access Protocol

Memory accesses are divided into address and data tenures. Each tenure has three phases—
bus arbitration, transfer, and termination. The 604e also supports address-only transactions.
Note that address and data tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another and that
both consist of three phases—arbitration, transfer, and termination. Address and data
tenures are independent (indicated in Figure 8-3 by the fact that the data tenure begins
before the address tenure ends), which allows split-bus transactions to be implemented at
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists
of asingle-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache
lines require data transfer termination signals for each beat of data.

ADDRESS TENURE

A
/s I

ARBITRATION |TRANSFER TERMINATION

INDEPENDENT ADDRESS AND DATA

\ DATA TENURE
A

— —
| ARBITRATION | SINGLE-BEAT TRANSFER | TERMINATION

Figure 8-3. Overlapping Tenures on the Bus for a Single-Beat Transfer
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The basic functions of the address and data tenures are as follows;
e Addresstenure

— Arbitration; During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

— Transfer: After the 604e is the address bus master, it transfers the address on the
address bus. The address signals and the transfer attribute signals control the
address transfer. The address parity and address parity error signals ensure the
integrity of the address transfer.

— Termination: After the addresstransfer, the system signal sthat the addresstenure
is complete or that it must be repeated.

e Datatenure

— Arbitration: To begin the data tenure, the 604e arbitrates for mastership of the
data bus.

— Transfer: After the 604e is the data bus master, it samples the data bus for read
operations or drives the data bus for write operations. The data parity and data
parity error signals ensure the integrity of the data transfer.

— Termination: Datatermination signals are required after each data beat in adata
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

The 604e generates an address-only bus transfer during the execution of dcbz, sync, eieio,
tibie, tibsync, and lwar x instructions, which use only the address bus with no data transfer
involved. Additionally, the 604€’s retry capability provides an efficient snooping protocol
for systems with multiple memory systems (including caches) that must remain coherent.

8.2.1 Arbitration Signals

Arbitration for both address and data bus mastership is performed by a central, external
arbiter and, minimally, by the arbitration signals shown in Section 8.3.1, “Address Bus
Arbitration.” Most arbiter implementations require additional signals to coordinate bus
master/slave/snooping activities. Note that address bus busy (ABB) and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the 604e has mastership of
one or both of the respective buses; they must be connected high through pull-up resistors
so that they remain negated when no devices have control of the buses.
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The following list describes the address arbitration signals:

BR (bus request)—Assertion indicates that the 604e is requesting mastership of the
address bus.

BG (bus grant)—A ssertion indicates that the 604e may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant occurs
when BG isasserted, ABB isnegated, and ARTRY is negated during the current and
previous bus cycle.

If the 604e is parked, BR need not be asserted for the qualified bus grant.

ABB (address bus busy)— Assertion by the 604e indicates that the 604eis the
address bus master.

The following list describes the data arbitration signals:

DBG (data bus grant)—Indicates that the 604e may, with the proper qualification,
assume mastership of the data bus. A qualified data bus grant occurs when DBG is
asserted while DBB, DRTRY, and ARTRY are negated (although ARTRY may
actually be asserted at the time DBG is asserted due to the snoop of alater address
tenure).

The DBB signal isdriven by the current bus master, DRTRY isonly driven from the
bus, and ARTRY isfrom the bus, but only for the address bus tenure associated with
the current data bus tenure (that is, not from another address tenure).

DBWO (data bus write only)—Assertion indicates that the 604e may perform the
data bus tenure for an outstanding write address even if aread addressiis pipelined
before the write address. If DBWO is asserted, the 604e will assume data bus
mastership for apending data bus write operation; the 604e will take the databusfor
apending read operation if thisinput is asserted along with DBG and no write is
pending. Care must be taken with DBWO to ensure the desired write is queued (for
example, a cache-line snoop push-out operation).

DBB (data bus busy)—Assertion by the 604e indicates that the 604e is the data bus
master. The 604e always assumes data bus mastership if it needs the databusandis
given aqualified data bus grant (see DBG).

For more detailed information on the arbitration signals, refer to Section 8.3.1,
“Address Bus Arbitration,” and Section 8.4.1, “Data BusArbitration.”

Note that while operating in fast-L 2/data streaming mode, DBB becomes a 604e output-
only signal and is driven in the same manner as before. If systems using the 604e in fast-
L 2/data streaming mode also implement data streaming across multiple masters, the DBB
signal must not be common among processors to avoid contention problems when one
processor is negating DBB while another is asserting DBB. Table 8-1 describes the bus
arbitration signals provided by the 604e.
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Table 8-1. Bus Arbitration Signals

Signal Name Mnemonic Signal Type Signal Connection Requirements
Bus request BR Output One per processor
Bus grant BG Input One per processor
Address bus busy ABB Input/output Common among processors
Data bus grant DBG Input One per processor
Data bus busy DBB Input/output Common among processors

(One per processor if in data streaming
mode, and data streaming across multiple
processors is implemented.)

8.2.2 Address Pipelining and Split-Bus Transactions

The 604e protocol provides independent address and data bus capability to support
pipelined and split-bus transaction system organizations. Address pipelining allows the
address tenure of a new bus transaction to begin before the data tenure of the current
transaction has finished. Split-bus transaction capability allows other bus activity to occur
(either from the same master or from different masters) between the address and data
tenures of a transaction.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bustransactions can greatly improve effective bus'/memory throughput.
For this reason, these techniques are most effective in shared-memory multiprocessor
implementations where bus bandwidth is an important measurement of system
performance.

External arbitration isrequired in systems in which multiple devices must compete for the
system bus. Thedesign of the external arbiter affects pipelining by regulating the BG, DBG,
and AACK signals. For example, aone-level pipelineis enabled by asserting AACK to the
current address bus master and granting mastership of the address busto the next requesting
master before the current data bus tenure has completed. Three address tenures can occur
before the current data bus tenure completes.

The 604e can pipeline its own transactions to a depth of two levels (intraprocessor
pipelining); however, the 604e bus protocol does not constrain the maximum number of
levels of pipelining that can occur on the bus between multiple masters (interprocessor
pipelining). The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respect to
address tenures. However, external hardware can further decouple the address and data
buses, allowing the data tenures to occur out of order with respect to the address tenures.
This requires some form of system tag to associate the out-of-order data transaction with
the proper originating address transaction (not defined for the 604e interface). Individual
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bus requests and data bus grants from each processor can be used by the system to
implement tags to support interprocessor, out-of-order transactions.

The 604e supports alimited intraprocessor out-of-order, split-transaction capability viathe
DBWO signal. For more information about using DBWO, see Section 8.11, “Using Data
BusWrite Only.”

8.3 Address Bus Tenure

This section describes the three phases of the address tenure—address bus arbitration,
address transfer, and address termination.

8.3.1 Address Bus Arbitration

When the 604e needs access to the external bus and does not have a qualified bus grant, it
asserts busrequest (BR) until it isgranted mastership of the bus and the busis available (see
Figure 8-4). The externa arbiter must grant master-elect status to the potential master by
asserting the bus grant (BG) signal. The 604e requesting the bus determines that the busis
available when the ABB input is negated. When the address bus is not busy (ABB input is
negated), BG is asserted and the addressretry (ARTRY)) input is negated, and was negated
the previous cycle, the 604e has what is referred to as a qualified bus grant. The 604e
assumes address bus mastership by asserting ABB when it receives a qualified bus grant.

I -1 I 0 I 1 I

Logical Bus Clock | | I I I I_I
meed bus | \ ' 7 I

Figure 8-4. Address Bus Arbitration
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External arbiters must allow only one device at a time to be the address bus master.
Implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the address bus to the 604e.

If the 604e asserts BR before the externa arbiter asserts BG, the 604e is considered to be
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where aqualified bus
grant exists on the clock edge following aneed_bus condition. Notice that the two bus clock
cycles required for arbitration are eliminated if the 604e is parked, reducing overal
memory latency for atransaction. The 604e always negates ABB for at least one bus clock
cycle after AACK isasserted, even if it is parked and has another transaction pending.

Typicaly, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to correctly predict the next device requesting bus
mastership.

I -1 I 0 I 1 I

M I 1
need_bus : <'_7—:
BR /I/ |
AN
abb ;7 ) I
N

|
|
|
| |

| @R
Figure 8-5. Address Bus Arbitration Showing Bus Parking

When the 604e receives a qualified bus grant, it assumes address bus mastership by
asserting ABB and negating the BR output signal. Meanwhile, the 604e drives the address
for the requested access onto the address bus and asserts TS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 604e may assert BR without
using the bus after it receives the qualified bus grant. For example, in a system using bus
snooping, if the 604e asserts BR to perform a queued read-with-intent-to-modify-atomic
(RWITMA), and the 604e snoops an access which cancels the reservation associated with
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the RWITMA. Once the 604e is granted the bus, it no longer needs to perform the
RWITMA; therefore, the 604e does not assert ABB and does not use the bus for the read
operation. Note that the 604e asserts BR for at least one clock cycle in these instances.

8.3.2 Address Transfer

During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.3,
“Address Transfer Termination.”

The signals used in the address transfer include the following signal groups:
» Addresstransfer start signal: Transfer start (TS)

Note that extended address transfer start (XATS) signal is used for direct-store
operations and has no function for memory-mapped accesses; see Section 8.6,
“Direct-Store Operation.”

» Addresstransfer signals: Address bus (A[0-31]), address parity (AP[0-3]), and
address parity error (APE)

* Addresstransfer attributesignals: Transfer type (TT[0-4]), transfer code (TC[0-2]),
transfer size (TSIZ[0-2)), transfer burst (TBST), cache inhibit (CI), write-through
(WT), global (GBL), and cache set element (CSE[0-1])

Figure 8-6 showsthat thetiming for all of these signals, except TSand APE isidentical. All
of the address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 8-6. The TS signal indicates that the 604e has begun an address transfer
and that the address and transfer attributes are valid (within the context of a synchronous
bus). The 604e always asserts TS (or XATS for direct-store operations) coincident with
ABB. Asaninput, TS need not coincide with the assertion of ABB on the bus (that is, either
TSor XATS can be asserted with, or on asubsequent clock cycle after ABB is asserted; the
604e tracks this transaction correctly).
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Figure 8-6. Address Bus Transfer

In Figure 8-6, the addresstransfer occurs during bus clock cycles 1 and 2 (arbitration occurs
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diagram,
the address bustermination input, AACK, isasserted to the 604e on the bus clock following
assertion of TS (as shown by the dependency line). This is the minimum duration of the
address transfer for the 604e; the duration can be extended by delaying the assertion of
AACK for one or more bus clocks.

8.3.2.1 Address Bus Parity

The 604e always generates one hit of correct odd-byte parity for each of the four bytes of
address when avalid address is on the bus. The calculated values are placed on the AP[0—
3] outputs when the 604e is the address bus master. If the 604e is not the master, TS and
GBL are asserted together, and the transaction type is one that the 604e snoops (qualified
condition for snooping memory operations), the calculated values are compared with the
AP[0-3] inputs. If there is an error, the APE output is asserted. If HIDO[2] issetto 1, a
parity error will cause amachine check if the MSR[ME] bit is set, or will cause acheckstop
if the MSR[ME] bit is cleared. If HIDQ[2] is cleared to O, then no action istaken. In either
case, the APE signal will be asserted if even parity is detected. For more information about
checkstop conditions, see Chapter 4, “Exceptions.”

8.3.2.2 Address Transfer Attribute Signals

The transfer attribute signals include several encoded signals such as the transfer type
(TT[OA4]) signals, transfer burst (TBST) signal, transfer size (TSIZ[0-2]) signals, and
transfer code (TC[0-2]) signals. Section 7.2.4, “Address Transfer Attribute Signals’
describesthe encodingsfor the addresstransfer attribute signals. Notethat TT[0-4], TBST,
and TSIZ[0-2] have alternate functions for direct-store operations, see Section 8.6,
“Direct-Store Operation.”
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8.3.2.2.1 Transfer Type (TT[0-4]) Signals

Snooping logic should fully decode the transfer type signalsif the GBL signal is asserted.
Slave devices can sometimes use the individual transfer type signalswithout fully decoding
the group. For acomplete description of the encoding for TT[0-4] signals, refer to Table 7-
1

8.3.2.2.2 Transfer Size (TSI1Z[0-2]) Signals

The transfer size signals (TSIZ[0-2]) indicate the size of the requested data transfer as
shown in Table 8-2. The TSIZ[0-2] signals may be used along with TBST and A[29-31] to
determine which portion of the data bus contains valid data for awrite transaction or which
portion of the bus should contain valid data for a read transaction. Note that for a burst
transaction (as indicated by the assertion of TBST) TSIZ[0-2] are always set to 0b010.
Therefore, if the TBST signal is asserted (except in cases of direct-store operations, or
operations involving the use of eciwx or ecowx instructions), the memory system should
transfer atotal of eight words (32 bytes), regardless of the TSIZ[0-2] encoding.

Table 8-2. Transfer Size Signal Encodings

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size
Asserted 0 1 0 Eight-word burst
Negated 0 0 0 Eight bytes
Negated 0 0 1 One byte
Negated 0 1 0 Two bytes
Negated 0 1 1 Three bytes
Negated 1 0 0 Four bytes
Negated 1 0 1 Five bytes
Negated 1 1 0 Six bytes
Negated 1 1 1 Seven bytes

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache
line). Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the 604e.

8.3.2.3 Burst Ordering During Data Transfers

During burst data transfer operations, 32 bytes of data (one cacheline) are transferred to or
from the cachein order. Burst write transfers are always performed zero-double-word-first,
but since burst reads are performed critical-double-word-first, a burst read transfer may not
start with the first double word of the cache line, and the cache line fill may wrap around
the end of the cache line. Table 8-3 describes the various burst orderings for the 604e.
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Table 8-3. Burst Ordering

Data Transfer

For Starting Address:

A[27-28] = 00 A[27-28] =01 A[27-28] = 10 A[27-28] = 11
First data beat DWO DwW1 DW2 DW3
Second data beat Dw1 DwW2 DW3 DWO
Third data beat DW2 DwW3 DWO Dw1
Fourth data beat DW3 DWO Dw1 DwW2

Note: A[29-31] are always 0b00O for burst transfers by the 604e.

8.3.2.4 Effect of Alignment in Data Transfers
Table 8-4 lists the aligned transfers that can occur on the 604e bus. These are transfersin
which the datais aligned to an addressthat is an integer multiple of the size of the data. For
example, Table 8-4 shows that one-byte data is always aligned; however, for a four-byte
word to be aigned, it must be oriented on an address that is a multiple of four.

Table 8-4. Aligned Data Transfers

Data Bus Byte Lane(s)
Transfer Size | TSIZO | TSIZ1 | TSIZ2 | A[29-31]
0 2 3 4 5 6 7
Byte 0 0 1 000 v — — — — — —
0 0 1 001 — — — — — — —
0 0 1 010 — v — — — — —
0 0 1 011 — — v — — — —
0 0 1 100 — — | = v N D
0 0 1 101 — — | = = v _ | =
0 0 1 110 — — =1 =1=1v | =
0 0 1 111 — — - =] =<1V
Half word 0 1 0 000 v — — — — — —
0 1 0 010 — v v — — — —
0 1 0 100 — — | = v v _ | =
0 1 0 110 — — = = =1V v
Word 1 0 0 000 v v v — — — —_
1 0 0 100 — — — v v v v
Double word 0 0 0 000 v v v v v v v
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The 604e supports misaligned memory operations, athough their use may substantially
degrade performance. Misaligned memory transfers address memory that is not aligned to
the size of the databeing transferred (such as, aword read of an odd byte address). Although
most of these operations hit in the primary cache (or generate burst memory operations if
they miss), the 604e interface supports misaligned transfers within aword (32-bit aligned)
boundary, as shown in Table 8-5. Note that the four-byte transfer in Table 8-5 is only one
example of misalignment. As long as the attempted transfer does not cross a word
boundary, the 604e can transfer the data on the misaligned address (for example, a half-
word read from an odd byte-aligned address). An attempt to address data that crosses a
word boundary requires two bus transfers to access the data.

Due to the performance degradations associated with misaligned memory operations, they
are best avoided. In addition to the double-word straddle boundary condition, the address
trangation logic can generate substantial exception overhead when the load/store multiple
and load/store string instructions access misaligned data. It is strongly recommended that
software attempt to align code and data where possible.

Table 8-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size Data Bus Byte Lanes
(Four Bytes) TSIZ(0-2) | A[29-31]
0 1 2 3 4 5] 6 7
Aligned 100 000 AlAalalal—|—-]=]=
Misaligned—first access 011 001 A A A I I R B
second access 001 100 -l =]lal=]=1=
Misaligned—first access 010 010 — | = A Al—|—|—1|—
second access 010 100 = lalal=]=
Misaligned—first access 001 011 — | =1 — Al—|—=|—=-1|—=
second access 011 100 _ |l _]l=lalalal=
Aligned 100 100 — =l =1=1a
Misaligned—first access 011 101 — | -] =] =l =1A]A
second access 001 000 Al—l—=]=]=|=|=1]=
Misaligned—first access 010 110 — |l -]l — ] =l =1=1]1A1]A
second access 010 000 Alal—|—=—]==]=1|~=
Misaligned—first access 001 111 — - -] - =]—]—=1A
second access 011 000 Alalal|l—|—=-|=|—-|-

A: Byte lane used
—. Byte lane not used
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Table 8-6 shows the signal configuration for three-word accesses.

Table 8-6. Misaligned Data Transfer—Three-Byte Examples

Data Bus Byte Lane(s)
Transfer Size TSIZO | TSIZ1 | TSIZ2 | A[29-31]

0 1 2 3 4 5 6 7
Three Bytes 0 1 1 000 A A A el e e e
0 1 1 001 — A A A — | =1 =1 —
0 1 1 010 —l=flAalAa]laAal=|=]—=
0 1 1 011 — | — | — A A — | —
0 1 1 100 — |l = =]=1A Al —

0 1 1 101 — | =1=1=1-= A

First transfer—two bytes 0 1 0 110 — -] = —=|=]1—=1A
Second transfer—one byte 0 0 1 000 A NN [ [ S —
First transfer—one byte 0 0 1 111 — -] ==]1=1|-1A
Second transfer—two bytes | 0 1 0 000 A Al—|—|—-—|—1—1|—

8.3.2.4.1 Alignment of External Control Instructions

Thesize of the datatransfer associated with the eciwx and ecowx instructionsis alwaysfour
bytes. However, if the eciwx or ecowx instruction is misaligned and crosses any word
boundary, the 604e will generate two bus operations, each with a size of fewer than four
bytes. For the first bus operation, bits A[29-31] equals bits 29-31 of the data, which will
be 0b101, 0b110, or Ob111. The size associated with the first bus operation will be 3, 2, or
1 bytes, respectively. For the second bus operation, bitsA[29-31] equal 0b000, and the size
associated with the operation will be 1, 2, or 3 bytes, respectively. For both operations,
TBST and TSIZ[0-2] are redefined to specify the resource ID (RID). The resource ID is
copied from bits 28-31 of the external accessregister (EAR). For eciwx/ecowx operations,
the state of bit 28 of the EAR is presented by the TBST signal without inversion (if
EAR([28] =1, TBST =1). The size of the second bus operation cannot be deduced from the
operation itself; the system must determine how many bytes were transferred on the first
bus operation to determine the size of the second operation.

Furthermore, the two bus operations associated with such a misaligned external control
instruction are not atomic. That is, the 604e may initiate other types of memory operations
between the two transfers. Also, the two bus operations associated with amisaligned ecowx
may beinterrupted by an eciwx bus operation, and vice versa. The 604e does guarantee that
the two operations associated with a misaligned ecowx will not be interrupted by another
ecowx operation; and likewise for eciwx.
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Because a misaligned external control address is considered a programming error, the
system may choose some means to cause an exception, typically by asserting TEA to cause
a machine check exception or INT to cause an externa interrupt, when a misaligned
external control bus operation occurs.

8.3.2.5 Transfer Code (TC[0-2]) Signals

The TC[0-2] signals provide supplemental information about the corresponding address.
Note that the TCx signals can be used with the WT, TT[0-4] and TBST signalsto further
define the current transaction. When asserted, the transfer codes have the following
meanings:

« TCO

— Read cycle: indicates code fetch
— Write cycle: de-allocation from L1 cache

- TC1
— Write cycle: indicates new cache state is shared
- TC2

— Read and write cycle: indicates alocation cycle utilized a copy-back buffer
Table 8-7 shows the supplemental information provided by the TC[0-2] and WT signals.
Table 8-7. Transfer Code Encoding

TT Type Code WT TCO TC1 TC2 Operation
Write with kill 1 1 0 0 Cache copyback
Write with kill 0 1 0 0 Block invalidate
(dcbf)
Write with kill 0 0 0 0 Block clean
(dcbst)
Write with kill 0 0 1 0 Snoop push
(read operation)
Write with kill 0 1 0 0 Snoop push
(read-with-intent-to-modify)
Write with kill 0 0 0 0 Snoop push
(clean operation)
Write with kill 0 1 0 0 Snoop push
(flush operation)
Kill block X 1 0 0 Kill block de-allocate
(dcbi)
Kill block 1 0 0 0 Kill block and allocate, no cast

out required (dcbz)

Kill block 1 0 0 1 Kill block and allocate, cast
out required (dcbz)
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Table 8-7. Transfer Code Encoding (Continued)

TT Type Code WT TCO TC1 TC2 Operation

Kill block 1 0 0 0 Kill block, write to shared
block

Read?! w3 0 X 0 Data read, cast out required
Read w3 0 X 1 Data read, cast out required
Read ws 1 X 0 Instruction read
Instruction cache X 1 0 0 Kill block de-allocate
block invalidate (ichi)?

Note: 1. Read encompasses all of the read or read-with-intent-to-modify operations, both normal and atomic.
2.The icbi instruction is distinguished from kill block by assertion of the TT4 bit.
3. Value determined by write-through bit from translation.

8.3.3 Address Transfer Termination

The address tenure of a bus operation is terminated when completed with the assertion of
AACK, or retried with the assertion of ARTRY. The SHD signal may also be asserted either
coincident with the ARTRY signal, or alone to indicate that a copy of the requested data
existsin one of the devices on the bus, and that the requesting device should mark the data
as shared in its cache. The 604e does not terminate the address transfer until the AACK
(address acknowledge) input is asserted; therefore, the system can extend the address
transfer phase by delaying the assertion of AACK to the 604e. AACK can be asserted as
early as the bus clock cycle following TS (see Figure 8-7), which alows a minimum
address tenure of two bus cycles. As shown in Figure 8-7, these signals are asserted for one
bus clock cycle, three-stated for half of the next bus clock cycle, driven high till the
following buscycle, and finally three-stated. Note that AACK must be asserted for only one
bus clock cycle.

The address transfer can be terminated with the requirement to retry if ARTRY is asserted
anytime during the address tenure and through the cycle following AACK. The assertion
causes the entire transaction (address and data tenure) to be rerun. As a snooping device,
the 604e asserts ARTRY for a snooped transaction that hits modified datain the data cache
that must be written back to memory, or if the snooped transaction could not be serviced.
As a bus master, the 604e responds to an assertion of ARTRY by aborting the bus
transaction and re-requesting the bus. Note that after recognizing an assertion of ARTRY
and aborting the transaction in progress, the 604e is not guaranteed to run the same
transaction the next timeit is granted the bus.

If an address retry is required, the ARTRY response will be asserted by a bus snooping
device as early as the second cycle after the assertion of TS. Once asserted, ARTRY must
remain asserted through the cycle after the assertion of AACK. The assertion of ARTRY
during the cycle after the assertion of AACK isreferred to asaqualified ARTRY. An earlier
assertion of ARTRY during the address tenure is referred to as an early ARTRY.
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As a bus master, the 604e recognizes either an early or qualified ARTRY and prevents the
data tenure associated with the retried address tenure. If the data tenure has already begun,
the 604e aborts and terminates the data tenure immediately even if the burst data has been
received. If the assertion of ARTRY isreceived up to or on the bus cycle following the first
(or only) assertion of TA for the data tenure, the 604e ignores the first data beat, and if it is
aload operation, does not forward datainternally to the cache and execution units.

If the 604e is in fast-L2/data streaming mode, TA should not be asserted prior to the
qualified ARTRY cycle. If ARTRY is asserted after the first (or only) assertion of TA,
improper operation of the businterface may result.

During the clock of aqualified ARTRY, the 604e also determinesif it should negate BR and
ignore BG on the following cycle. On the following cycle, only the snooping master that
asserted ARTRY and needsto perform asnoop copy-back operationisallowed to assert BR.
This guarantees the snooping master an opportunity to request and be granted the bus
before the just-retried master can restart its transaction.

5

| |
| | |
| | |
| | |
I I I
Figure 8-7. Snooped Address Cycle with ARTRY

8.4 Data Bus Tenure

This section describes the data bus arbitration, transfer, and termination phases defined by
the 604e memory access protocol. The phases of the datatenure areidentical to those of the
address tenure, underscoring the symmetry in the control of the two buses.
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8.4.1 Data Bus Arbitration

Data bus arbitration uses the data arbitration signa group—DBG, DBWO, and DBB.
Additionally, the combination of TS or XATS and TT[0-4] providesinformation about the
data bus request to external logic.

TheTSsignal isan implied data bus request from the 604e; the arbiter must qualify TSwith
the transfer type (TT) encodings to determine if the current address transfer is an address-
only operation, which does not require a data bus transfer (see Figure 8-7). If the data bus
is needed, the arbiter grants data bus mastership by asserting the DBG input to the 604e. As
with the address-bus arbitration phase, the 604e must qualify the DBG input with a number
of input signals before assuming bus mastership, as shown in Figure 8-8.

qual DBG

Figure 8-8. Data Bus Arbitration

A quadlified data bus grant can be expressed as the following:

QDBG =DBG asserted while DBB, DRTRY, and ARTRY (associated withthe data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualified ARTRY
assertion coincident with a data bus grant signal does not result in data bus mastership
(DBB is not asserted). Otherwise, the 604e always asserts DBB on the bus clock cycle after
recognition of a qualified data bus grant. Since the 604e can pipeline transactions, there
may be an outstanding data bus transaction when a new address transaction is retried. In
this case, the 604e becomes the data bus master to compl ete the previous transaction.
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8.4.1.1 Effect of ARTRY Assertion on Data Transfer and Arbitration

The system designer must define the qualified snoop response window, and ensure that data
is not transferred prior to one cycle before the end of that window in non-fast-L2/data
streaming mode, or prior to the same cycle as the end of that window in fast-L2/data
streaming mode. The 604e supports a snoop response window as early as two cycles after
assertion of TS. Operation of the 604e in fast-L 2/data streaming mode requires that data be
transferred no earlier than the first cycle of the ARTRY window, not the cycle earlier. The
system may assert TA for a data transaction prior to the termination of an address tenure;
in this case note that the snoop response window is closed either on the clock that TA is
asserted (if in fast-L2/data streaming mode), or the clock after the assertion of TA (if in
non—fast-L 2/data streaming mode).

An asserted ARTRY can invalidate a previous or current data transfer and terminate the
datacycle, invalidate aqualified databus grant, or cancel afuture datatransfer. The possible
scenarios are described below:

« If dataistransferred (viaassertion of TA) two or more cycles before the beginning
of the snoop window in non—fast-L 2/data streaming mode, or one or more cycles
before the beginning of the snoop window in fast-L 2/data streaming, then datais
transferred too early to be cancelled by ARTRY . Therefore, systemsin which
ARTRY can be asserted must not attempt data transfers (assert TA) prior to this
cycle.

« If dataistransferred in the cycle before the beginning of the snoop response window,
assertion of ARTRY invalidates the datatransfer, in a similar fashion to assertion of
DRTRY, except that the data tenure is aborted, not extended. If the fast-L 2/data
streaming mode is active, data may not be transferred in this cycle.

+ If dataistransferred in thefirst cycle of the snoop response window, assertion of
ARTRY invalidates the data transfer. Thisis similar to deasserting TA except that
the data tenure is aborted, instead of continued.

 |f DBG has been asserted, the system must not attempt to transfer datain cycles
following the assertion of ARTRY . The 604e negates DBB the cycle following
ARTRY, and expects no more data to be transferred. However, note that the data
related to a previous address tenure must not be affected, and that the system must
distinguish this case.

» |If aDBG hasnot been asserted, an ARTRY assertion effectively negatestheimplied
data bus request that was associated with the address transfer, and the 604e will not

expect atransfer. The system must not assert DBG for thistransfer if any other 604e
data transfers are pending.

« If ARTRY assertion occurs while a datatransfer isin progress, the 604e will
terminate data transfers following the first cycle of ARTRY assertion. This means
that a burst transfer may be cut short.

« If an ARTRY assertion occurs the same cycle as its corresponding DBG, the
ARTRY will disqualify the data bus grant in that cycle and the 604e will not initiate
any data transaction on the following cycle regardless of whether any other data
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transactions are queued. However, on the following cycle (the cycle after the
ARTRY assertion) the 604e processor will respond to aqualified databus grant if it
has previously queued datatransactions. Figure 8-9 shows an examplewhereawrite
address tenure receives an ARTRY snoop response in the same cycle the system
asserts DBWO and DBG (cycle 6) to grant the write datatenure before a previously
requested read data tenure. Following the ARTRY assertion, the qualified DBG
assertion to the 604e in cycle 7 will be accepted for the read data tenure.

System Clock

| Master1 | Master 1 |
S I\ READ /| WRITE | | | |
| | | | | |
_ | |
AACK |

ARTRY

Master 1 DBG

DBWO /
ARTRY, kills |
Qualified DBG QDBG for WRITEI

BB

|

|

|

I

|

|

|

|

\ |
l

|

\for READ |

N
I

| |
| | |

Internal Data | f f f
Bus Request / | | |
| | | |

| | | |

| | | |

I I I I

Figure 8-9. Qualified DBG Generation Following ARTRY

8.4.1.2 Using the DBB Signal

The DBB signa should be connected between masters if data tenure scheduling is left to
the masters. Optionally, the memory system can control data tenure scheduling directly
with DBG. However, it is possible to ignore the DBB signal in the system if the DBB input
is not used as the fina data bus alocation control between data bus masters, and if the
memory system can track the start and end of the data tenure. In non-fast-L2/data
streaming mode, if DBB is not used to signal the end of a datatenure, DBG isonly asserted
to the next bus master the cycle before the cycle that the next bus master may actually begin
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its data tenure, rather than asserting it earlier (usually during another master’s data tenure)
and alowing the negation of DBB to be thefinal gating signal for aqualified databus grant.
If the 604e isin fast-L 2/data streaming mode, the DBB signal is an output only, and is not
sampled by the 604e. Even if DBB isignored in the system, the 604e always recognizesits
own assertion of DBB (except when in fast-L 2/data streaming mode), and requires one
cycle after data tenure completion to negate its own DBB before recognizing a qualified
data bus grant for another data tenure. If the DBB signal is not used by the system, DBB
must still be connected to a pull-up resistor on the 604e to ensure proper operation. If the
604e is in fast-L2/data streaming mode, and data streaming is to be performed across
multiple processors, the DBB signal for each processor should be connected directly to the
memory arbiter.

8.4.2 Data Bus Write Only

As aresult of address pipelining, the 604e may have up to three data tenures queued to
perform when it receives aqualified DBG. Generally, the data tenures should be performed
in strict order (the same order) astheir address tenures were performed. The 604e, however,
also supports alimited out-of-order capability with the data bus write only (DBWO) input.
The DBWO capahility exists to alleviate deadlock conditions that are possible in certain
system topologies. When recognized on the clock of aqualified DBG, DBWO may direct
the 604e to perform the next pending datawrite tenure even if a pending read tenure would
have normally been performed first. For moreinformation on the operation of DBWO, refer
to Section 8.11, “Using Data Bus Write Only.”

If the 604e has any data tenures to perform, it always accepts data bus mastership to
perform a data tenure when it recognizes a qualified DBG. If DBWO is asserted with a
qualified DBG and no write tenure is queued to run, the 604e till takes mastership of the
data bus to perform the next pending read data tenure. If the 604e has multiple queued
writes, the assertion of DBWO causes the reordering of the write operation whose address
was sent first.

Generaly, DBWO should only be used to allow a copy-back operation (burst write) to
occur before a pending read operation. If DBWO is used for single-beat write operations,
it may negate the effect of the eieio instruction by allowing a write operation to precede a
program-scheduled read operation. If DBWO is asserted when the 604e does not have write
data available, bus operations occur asif DBWO had not been asserted.

8.4.3 Data Transfer

The data transfer signals include DH[0-31], DL[0-31], DP[0-7] and DPE. For memory
accesses, the DH and DL signals form a 64-bit data path for read and write operations.

The 604e transfers datain either single- or four-beat burst transfers. Single-beat operations
can transfer from one to eight bytes at a time and can be misaligned; see Section 8.3.2.4,
“Effect of Alignment in Data Transfers.” Burst operations always transfer eight words and
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are aligned on eight-word address boundaries. Burst transfers can achieve significantly
higher bus throughput than single-beat operations.

The type of transaction initiated by the 604e depends on whether the code or data is
cacheable and, for store operations whether the cacheis considered in write-back or write-
through mode, which software controls on either a page or block basis. Burst transfers
support cacheable operations only; that is, memory structures must be marked as cacheable
(and write-back for data store operations) in the respective page or block descriptor to take
advantage of burst transfers.

The 604e output TBST indicates to the system whether the current transaction is a single-
or four-beat transfer (except during eciwx/ecowx transactions, when it signals the state of
EAR[28]). A burst transfer has an assumed address order. For load or store operations that
missed in the cache (and are marked as cacheable and, for stores, write-back in the MM U),
the 604e uses the double-word—aligned address associated with the critical code or datathat
initiated the transaction. This minimizes latency by allowing the critical code or datato be
forwarded to the processor before the rest of the cache line is filled. For al other burst
operations, however, the cache line write operations are transferred beginning with the oct-
word—aligned data, and burst reads begin on double-word boundaries.

The 604e does not directly support dynamic interfacing to subsystems with less than a 64-
bit data path (except for direct-store operations discussed in Section 8.6, “Direct-Store
Operation”).

8.4.4 Data Transfer Termination

Four signals are used to terminate data bus transactions—TA, DRTRY (dataretry), TEA
(transfer error acknowledge), and ARTRY. The TA signal indicates normal termination of
data transactions. It must always be asserted on the bus cycle coincident with the data that
it isqualifying. It may be withheld by the slave for any number of clocks until valid datais
ready to be supplied or accepted. DRTRY indicates invalid read data in the previous bus
clock cycle. DRTRY extendsthe current data beat and does not terminateit. If it isasserted
after the last (or only) data beat, the 604e negates DBB but still considers the data beat
active and waits for another assertion of TA. DRTRY isignored on write operations. TEA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination
condition, the 604e always negates DBB for one cycle, except when data streaming in fast-
L 2/data streaming mode.

If DRTRY isasserted by the memory system to extend the last (or only) data beat past the
negation of DBB, the memory system should three-state the data bus on the clock after the
final assertion of TA, even though it will negate DRTRY on that clock. Thisisto prevent a
potential momentary data bus conflict if awrite access begins on the following cycle.

The TEA signal is used to signal a nonrecoverable error during the data transaction. The
TEA signal will be recognized anytime during the assertion of DBB or when a valid
DRTRY could be sampled. The assertion of TEA terminates the data tenure immediately
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evenif inthe middle of aburst; however, it does not prevent incorrect datathat has just been
acknowledged with TA from being written into the 604€’s cache or GPRs. The assertion of
TEA initiates either a machine check exception or a checkstop condition based on the
setting of the MSR.

An assertion of ARTRY causesthe datatenure to be terminated immediately if the ARTRY
is for the address tenure associated with the data tenure in operation (the data tenure may
not be terminated due to address pipelining). If ARTRY is connected for the 604e, the
earliest allowable assertion of TA to the 604e is directly dependent on the earliest possible
assertion of ARTRY to the 604e; see Section 8.3.3, “Address Transfer Termination.”

8.4.4.1 Normal Single-Beat Termination

Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave. The TEA and DRTRY signals must remain negated during the transfer
(see Figure 8-10).

| 0 | 1 | 2 | 3 | 4

| | | | | | | | | |
g | | |
S | |
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data ~X N\ (O&—

Figure 8-10. Normal Single-Beat Read Termination
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The DRTRY signal is not sampled during data writes, as shown in Figure 8-11.
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Figure 8-11. Normal Single-Beat Write Termination

Normal termination of aburst transfer occurswhen TA is asserted for four bus clock cycles,
as shown in Figure 8-12. The bus clock cycles in which TA is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate
successfully, TEA and DRTRY must remain negated during the transfer. For write bursts,
TEA must remain negated for a successful transfer. DRTRY isignored during data writes.
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Figure 8-12. Normal Burst Transaction
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For read bursts, DRTRY may be asserted one bus clock cycle after TA is asserted to signal
that the data presented with TA isinvalid and that the processor must wait for the negation
of DRTRY before forwarding data to the processor (see Figure 8-13). Thus, adata beat can
be speculatively terminated with TA and then one bus clock cycle later confirmed with the
negation of DRTRY. The DRTRY signal is valid only for read transactions. TA must be
asserted on the bus clock cycle before the first bus clock cycle of the assertion of DRTRY
otherwise the results are undefined.

The DRTRY signal extends data bus mastership such that other processors cannot use the
data bus until DRTRY is negated. Therefore, in the example in Figure 8-13, DBB cannot
be asserted until bus clock cycle 5. This is true for both read and write operations even
though DRTRY does not extend bus mastership for write operations.

4

| | |
e
| | |
| |

5

Figure 8-13. Termination with DRTRY

Figure 8-14 shows the effect of using DRTRY during a burst read. It also shows the effect
of using TA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-14,
TA is negated for the second data beat. The 604e data pipeline does not proceed until bus
clock cycle 4 when the TA is reasserted.

Notethat DRTRY isuseful for systemsthat implement speculative forwarding of data such
as those with direct-mapped, second-level caches where hit/miss is determined on the
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note that DRTRY may not be implemented on other PowerPC processors.
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8.4.4.2 Data Transfer Termination Due to a Bus Error

The TEA signal indicates that a bus error occurred. It may be asserted while DBB is
asserted or when avalid DRTRY could be recognized by the 604e. Asserting TEA to the
604e terminates the transaction; that is, further assertions of TA and DRTRY are ignored
and DBB is negated. If the system asserts TEA for a data transaction on the same cycle or
before ARTRY is asserted for the corresponding address transaction, the 604e will ignore
the effects of ARTRY on the address transaction and will consider it successfully
completed.

Note that from a bus standpoint, the assertion of TEA causes nothing worse than the early
termination of the data tenure in progress. All the system logic involved in processing the
data transfer prior to the TEA must return to the normal nonbusy state following the TEA
so that the bus operations associated with a machine check exception can proceed. Due to
bus pipelining in the 604e, al outstanding bus operations, including all queued requests, are
completed in the normal fashion following the TEA. The machine check exception can be
taken while these transactions are in progress.

If the TEA signal is asserted during a direct-store access, the action of the TEA is delayed
until all datatransfersfrom the direct store access have been completed. The device causing
assertion of the TEA signal is responsible for maintaining assertion of the TEA signal until
the last direct-store data tenure is complete. The direct store reply, in cases of TEA
assertion, is not required, and will be ignored by the 604e. The 604e will recognize the
assertion of the TEA signal at the completion of the last direct-store data tenure, and not
before.

5
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Figure 8-14. Read Burst with TA Wait States and DRTRY

Chapter 8. System Interface Operation 8-29



Assertion of the TEA signal causes a machine check exception (and possibly a checkstop
condition within the 604€). For more information, see Section 4.5.2, “Machine Check
Exception (0x00200).” Note also that the 604e does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer does not
point to the memory operation that caused the assertion of TEA, but to the instruction about
to be executed (perhaps several instructions later). However, assertion of TEA does not
invalidate data entering the GPR or the cache. Additionally, the corresponding address of
the access that caused TEA to be asserted is not latched by the 604e. To recover, the
exception handler must determine and remedy the cause of the TEA, or the 604e must be
reset; therefore, this function should only be used to flag fatal system conditions to the
processor (such as parity or uncorrectable ECC errors).

After the 604e has committed to run a transaction, that transaction must eventually
complete. Address retry causes the transaction to be restarted; TA wait states and DRTRY
assertion for reads delay termination of individual data beats. Eventually, however, the
system must either terminate the transaction or assert the TEA signal (and vector the 604e
into a machine check exception.) For this reason, care must be taken to check for the end
of physical memory and the location of certain system facilities to avoid memory accesses
that result in the generation of machine check exceptions.

Note that TEA generates a machine check exception depending on the ME bit in the MSR.
Clearing the machine check exception enable control bit leadsto atrue checkstop condition
(instruction execution halted and processor clock stopped); a machine check exception
occursif the ME hit is set.

8.4.5 Memory Coherency—MESI Protocol

The 604e provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the four-state, MESI cache-coherency
protocol (see Figure 8-15). In addition to the hardware required to monitor bus traffic for
coherency, the 604e has a cache port dedicated to snooping so that comparing cache entries
to address traffic on the bus does not tie up the 604€'s on-chip data cache.

The global (GBL) signal output, indicates whether the current transaction must be snooped
by other snooping devices on the bus. Address bus masters assert GBL to indicate that the
current transaction isaglobal access (that is, an access to memory shared by more than one
processor/cache). If GBL is not asserted for the transaction, that transaction is not snooped.
When other devices detect the GBL input asserted, they must respond by snooping the
broadcast address.

Normally, GBL reflects the M-hit value specified for the memory reference in the
corresponding translation descriptor(s). Note that care must be taken to minimize the
number of pages marked as global, because the retry protocol discussed in the previous
section is used to enforce coherency and can require significant bus bandwidth.
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When the 604e is not the address bus master, GBL is an input. The 604e snoops a
transaction if TS and GBL are asserted together in the same bus clock cycle (this is a
qualified snooping condition). No snoop update to the 604e cache occurs if the snooped
transaction is not marked global. Thisincludes invalidation cycles.

When the 604e detects a qualified snoop condition, the address associated with the TS is
compared against the data cache tags through a dedicated cache tag port. Snooping
completes if no hit is detected. If, however, the address hits in the cache, the 604e reacts
according to the MESI protocol shown in Figure 8-15, assuming the WIM bits are set to
write-back mode, caching allowed, and coherency enforced (WIM = 001).

Note that write hitsto clean lines of nonglobal pages do not generate invalidate broadcasts.
There are several types of bus transactions that involve the movement of data that can no
longer accessthe TLB M-bit (for example, replacement cache block copy-back, or asnoop
push). In these cases, the hardware cannot determine whether the cache block was
originally marked global; therefore, the 604e marks these transactions as nonglobal to avoid
retry deadlocks.

The 604€'s on-chip data cache is implemented as a four-way set-associative cache. To
facilitate external monitoring of the internal cache tags, the cache set element (CSE[0-1])
signals indicate which sector of the cache set is being replaced on read operations
(including RWITM). Notethat these signalsare valid only for 604e burst operations; for all
other bus operations, the CSE[0-1] signals should be ignored.
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BUS TRANSACTIONS

RH = Read Hit
RMS = Read Miss, Shared
RME = Read Miss, Exclusive
WH = Write Hit
WM = Write Miss
SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or

Read-with-Intent-to-Modify

@z Snoop Push

®: Invalidate Transaction
@z Read-with-Intent-to-Modify
@: Cache Block Fill

Figure 8-15. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 8-8 shows the CSE[0-1] encodings.

Table 8-8. CSE[0-1] Signals

CSE[0-1] Cache Set Element
00 Set 0
01 Setl
10 Set 2
11 Set3
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8.5 Timing Examples

This section showstiming diagramsfor various scenarios. Figure 8-16 illustrates the fastest
single-beat reads possible for the 604e604e. This figure shows both minimal latency and
maximum single-beat throughput. By delaying the data bus tenure, the latency increases,
but, because of split-transaction pipelining, the overall throughput is not affected unlessthe
data bus latency causes the fourth address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

|1 | 21 3| 4 |5 | 6] 7| 8] 9 |10 11 |12 |

| | | | |
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Figure 8-16. Fastest Single-Beat Reads
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Figure 8-17 illustrates the fastest single-beat writes supported by the 604e. Note that all
bidirectional signals are three-stated between bus tenures. The TT[1-4] signals are binary
encoded 0bx0010, and TTO can be either 0 or 1.
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Figure 8-17. Fastest Single-Beat Writes

8-34 PowerPC 604e RISC Microprocessor User's Manual



Figure 8-18 shows three ways to delay single-beat reads showing data-delay controls:

» TheTA signal can remain negated to insert wait statesin clock cycles 3 and 4.
» For the second access, DBG could have been asserted in clock cycle 6.
» Inthethird access, DRTRY isasserted in clock cycle 11 to flush the previous data.

Note that all bidirectional signals are three-stated between bus tenures.
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Figure 8-18. Single-Beat Reads Showing Data-Delay Controls
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Figure 8-19 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the
following ways.

» TheTA signal is held negated to insert wait statesin clocks 3 and 4.
« Inclock 6, DBG is held negated, delaying the start of the data tenure.

Thelast accessis not delayed (DRTRY isvalid only for read operations).
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Figure 8-19. Single-Beat Writes Showing Data Delay Controls
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Figure 8-20 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are three-stated between bus tenures. Note the following:
» Thefirst data beat of bursted read data (clock 3) isthe critical quad word.
« Thewrite burst shows the use of TA signal negation to delay the third data beat.
 Thefinal read burst shows the use of DRTRY on the third data beat.
e Theaddress for the third transfer is delayed until the first transfer completes.
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Figure 8-20. Burst Transfers with Data Delay Controls
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Figure 8-21 shows the use of the TEA signal. Note that all bidirectional signals are three-
stated between bus tenures. Note the following:

» Thefirst data beat of the read burst (in clock 0) isthe critical quad word.
» TheTEA signal truncates the burst write transfer on the third data beat.
» The 604e604e eventually causes an exception to be taken on the TEA event.
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Figure 8-21. Use of Transfer Error Acknowledge (TEA)
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8.6 Direct-Store Operation

The 604e defines separate memory-mapped and /O address spaces, or segments,
distinguished by the corresponding segment register T bit in the address translation logi ¢ of
the 604e. If the T bit is cleared, the memory reference is a normal memory-mapped access
and can use the virtual memory management hardware of the 604e. If the T hit is set, the
memory reference is a direct-store access.

The following points should be considered for direct-store accesses:

e Theuse of direct-store segment (referred to as direct-store segmentsin the
architecture specification) accesses may have a significant impact on the
performance of the 604e. The provision of direct-store segment access capability by
the 604e is to provide compatibility with earlier hardware I/O controllers and may
not be provided in future derivatives of the 604e family.

 Direct-store accesses must be strongly ordered; for exampl e, these accessesmust run
on the bus strictly in order with respect to the instruction stream.

 Direct-store accesses must provide synchronous error reporting. Chapter 3, “ Cache
and Bus Interface Unit Operation,” describes architectural aspects of direct-store
segments, as well as an overview of the segmented address space management of
PowerPC processors.

The 604e has a single bus interface to support both memory accesses and direct-store
segment accesses.

The direct-store protocol for the 604e allows for the transfer of 1 to 128 bytes of data
between the 604e and the bus unit controller (BUC) for each single load or store request
issued by the program. The block of dataiis transferred by the 604e as multiple single-beat
bus transactions (individual address and data tenure for each transaction) until completion.
The program waits for the sequence of bus transactions to be completed so that a final
completion status (error or no error) can be reported precisely with respect to the program
flow. The completion status is snooped by the 604e from a bus transaction run by the BUC.

The system recognizes the assertion of the TS signal as the start of a memory-mapped
access. The assertion of XATSindicatesadirect-store access. Thisalows memory-mapped
devices to ignore direct-store transactions. If XATS is asserted, the access is to a direct-
store space and the following extensions to the memory access protocol apply:

« A new set of busoperationsare defined. Thetransfer type, transfer burst, and transfer
size signals are redefined for direct-store operations; they convey the opcode for the
I/O transaction (see Table 8-9).

» Therearetwo beats of addressfor each direct-storetransfer. Thefirst beat (packet 0)
provides basic address information such as the segment register and the sender tag
and several control bits; the second beat (packet 1) provides additional addressing
bits from the segment register and the logical address.
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e TheTT[0-3], TBST, and TSIZ[0-2] signals are remapped to form an 8-hit extended
transfer code (XATC) which specifies a command and transfer size for the
transaction. The XATC field is driven and snooped by the 604e during direct-store
transactions.

e Only thedatasignals such asDH[0-31] and DP[0-3] are used. Thelower half of the
data bus and parity isignored.

« The sender that initiated the transaction must wait for areply from the receiver bus
unit controller (BUC) before starting a new operation.

* The 604e does not burst direct-store transactions. All direct-store transactions
generated by the 604e are single-beat transactions of four bytes or less (single data
beat tenure per address tenure).

Direct-store transactions use separate arbitration for the split address and data buses and
define address-only and single-beat transactions. The address-retry vehicle is identical,
although there is no hardware coherency support for direct-store transactions. The ARTRY
signal is useful, however, for pacing 604e transactions, effectively indicating to the 604e
that the BUC isin aqueue-full condition and cannot accept new data.

In addition to the extensions noted above, there are fundamental differences between
memory-mapped and direct-store operations. For example, only half of the 64-bit data path
is available for 604e direct-store transactions. This lowers the pin count for 1/O interfaces
but generaly results in substantially less bandwidth than memory-mapped accesses.
Additionally, load/store instructions that address direct-store segments cannot complete
successfully without an error-free reply from the addressed BUC. Because normal direct-
store accesses involve multiple 1/0 transactions (streaming), they are likely to be very long
latency instructions; therefore, direct-store operations usually stall 604e instruction issue.

Figure 8-22 shows a direct-store tenure. Note that the 1/0O device response is an address-
only bus transaction.

It should be noted that in the best case, the use of the 604e direct-store protocol degrades
performance and requires the addressed controllers to implement 604e bus master
capability to generate the reply transactions.
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Figure 8-22. Direct-Store Tenures

8.6.1 Direct-Store Transactions

The 604e defines seven direct-store transaction operations, as shown in Table 8-9. These
operations permit communication between the 604e and BUCs. A single 604e store or load
instruction (that trandates to a direct-store access) generates one or more direct-store
operations (two or more direct-store operations for loads) from the 604e and one reply
operation from the addressed BUC.

Table 8-9. Direct-Store Bus Operations

Operation Address Only Direction XATC Encoding
Load start (request) Yes 604e 00 10 0100 0000
Load immediate No 604e O 10 0101 0000
Load last No 604e O 10 0111 0000
Store immediate No 604e O 10 0001 0000
Store last No 604e O 10 0011 0000
Load reply Yes 10 0 604e 1100 0000
Store reply Yes 10 0 604e 1000 0000

For the first beat of the address bus, the extended address transfer code (XATC), contains
the I/O opcode as shown in Table 8-9; the opcode is formed by concatenating the transfer
type, transfer burst, and transfer size signals defined as follows:

XATC = TT[0-3]|[TBST|[TSIZ[0-2]
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8.6.1.1 Store Operations
There are three operations defined for direct-store store operations from the 604e to the
BUC, defined as follows:

1. Storeimmediate operations transfer up to 32 bits of data each from the 604e to the
BUC.

2. Storelast operations transfer up to 32 bits of data each from the 604e to the BUC.

3. Storereply from the BUC reveal sthe success/failure of that direct-store accessto the
604e.

A direct-store store access consists of one or more data transfer operations followed by the
1/O store reply operation from the BUC. If the data can be transferred in one 32-bit data
transaction, it is marked as a store last operation followed by the store reply operation; no
store immediate operation isinvolved in the transfer, as shown in the following sequence:

STORE LAST (from 604€)

STORE REPLY (from BUC)

However, if more dataisinvolved in the direct-store access, there will be one or more store
immediate operations. The BUC can detect when the last data is being transferred by
looking for the store last opcode, as shown in the following sequence:

STORE IMMEDIATE(S)
STORE LAST

STORE REPLY

8.6.1.2 Load Operations

Direct-store load accesses are similar to store operations, except that the 604e |atches data
from the addressed BUC rather than supplying the data to the BUC. As with memory
accesses, the 604e isthe master on both load and store operations; the external system must
provide the data bus grant to the 604e when the BUC isready to supply the datato the 604e.
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The load request direct-store operation has no analogous store operation; it informs the
addressed BUC of the total number of bytes of datathat the BUC must provide to the 604e
on the subsequent load immediate/load last operations. For direct-store |oad accesses, the
simplest, 32-hit (or fewer) datatransfer sequence is as follows:

LOAD REQUEST

LOAD LAST

LOAD REPLY (from BUC)
However, if more dataisinvolved in the direct-store access, there will be one or more load
immediate operations. The BUC can detect when the last data is being transferred by
looking for the load last opcode, as seen in the following sequence:

LOAD REQUEST

LOAD IMM(s)

LOAD LAST

LOAD REPLY

Note that three of the seven defined operations are address-only transactions and do not use
the data bus. However, unlike the memory transfer protocol, these transactions are not
broadcast from one master to al snooping devices. The direct-store address-only
transaction protocol strictly controls communication between the 604e and the BUC.

8.6.2 Direct-Store Transaction Protocol Details

As mentioned previously, there are two address-bus beats corresponding to two packets of
information about the address. The two packets contain the sender and receiver tags, the
address and extended address bits, and extra control and status bits. The two beats of the
address bus (plus attributes) are shown at the top of Figure 8-23 as two packets. The first
packet, packet 0, is then expanded to depict the XATC and address bus information in
detail.
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8.6.2.1 Packet 0
Figure 8-23 shows the organization of the first packet in a direct-store transaction.

The XATC contains the I/O opcode, as discussed earlier and as shown in Table 8-9. The
address bus contains the following:

Key bit || segment register || sender tag

A (0-31) + Attributes

[ Address Bus (A[0-31]) ‘
y
N
0

—
7 0 123 1112 27 28 31

XATC + [ 1] | | |

1/0 Opcode
BUID
N ) PID
\
From Segment Register
Key Bit
Reserved

Figure 8-23. Direct-Store Operation—Packet 0

Thisinformation is organized as follows:

Bits 0 and 1 of the address bus are reserved—the 604e always drives these bits to
zero.

Key bit—Bit 2 isthe key hit from the segment register (either SR[Kp] or SR[Kg]).
Kp indicates user-level access and Ksindicate supervisor-level access. The 604e
multiplexes the correct key bit into this position according to the current operating
context (user or supervisor). (Note that user- and supervisor-level refer to problem
and privileged state, respectively, in the architecture specification.)

Segment register—Address bits 3-27 correspond to bits 3-27 of the selected
segment register. Note that address bits 3—11 form the 9-bit receiver tag. Software
must initialize these bits in the segment register to the ID of the BUC to be
addressed; they are referred to as the BUID (bus unit ID) bits.

PID (sender tag)—Address bits 28-31 form the 4-bit sender tag. The 604e PID
(processor D) comes from bits 28-31 of the 604€’s processor |D register. The 4-bit
PID tag alows amaximum of 16 processor |Ds to be defined for a given system. If
more bits are needed for a very large multiprocessor system, for example, it is
envisioned that the second-level cache (or equivalent logic) can append alarger
processor tag as needed. The BUC addressed by the receiver tag should latch the
sender address required by the subsequent 1/O reply operation.

8-44
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8.6.2.2 Packet 1

The second address beat, packet 1, transfers byte counts and the physical address for the
transaction, as shown in Figure 8-24.

A\
r N
0 7 0 34 31
XATC + [SR(28-31) Bus Address |
Byte Count Address Bus (A[0-31])

Figure 8-24. Direct-Store Operation—Packet 1

For packet 1, the XATC is defined as follows:

» Loadrequest operations—XATC containsthetotal number of bytesto betransferred
(128 bytes maximum for 604e).

» Immediate/last (load or store) operations—XATC contains the current transfer byte
count (1 to 4 bytes).

Address hits 0-31 contain the physical address of the transaction. The physical addressis
generated by concatenating segment register bits 28-31 with bits 4-31 of the effective
address, as follows:

Segment register (bits 28-31) || effective address (bits 4-31)

While the 604e provides the address of the transaction to the BUC, the BUC must maintain
avalid address pointer for the reply.

8.6.3 1/O Reply Operations

BUCs must respond to 604e direct-store transactions with an 1/0 reply operation, as shown
in Figure 8-25. The purpose of this reply operation is to inform the 604e of the success or
failure of the attempted direct-store access. This requires the system direct-store to have
604e bus mastership capability—a substantially more complex design task than bus slave
implementations that use memory-mapped 1/0 access.

Reply operations from the BUC to the 604e are address-only transactions. As with packet
0 of the address bus on 604e direct-store operations, the XATC contains the opcode for the
operation (see Table 8-9). Additionally, the 1/O reply operation transfersthe sender/receiver
tagsin thefirst beat.
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Figure 8-25. I/0 Reply Operation

The address bits are described in Table 8-10.
Table 8-10. Address Bits for I/O Reply Operations

Address Bits Description

0-1 Reserved. These bits should be cleared for compatibility with future PowerPC microprocessors.

2 Error bit. It is set if the BUC records an error in the access.

3-11 BUID. Sender tag of a reply operation. Corresponds with bits 3—11 of one of the 604e segment
registers.

12-27 Address bits 12—-27 are BUC-specific and are ignored by the 604e.

28-31 PID (receiver tag). The 604e effectively snoops operations on the bus and, on reply operations,
compares this field to bits 28—31 of the PID register to determine if it should recognize this 1/0 reply.

The second beat of the address bus is reserved; the XATC and address buses should be
driven to zero to preserve compatibility with future protocol enhancements.

The following sequence occurs when the 604e detects an error bit set on an /O reply
operation:
1. The 604e completes the instruction that initiated the access.
2. If theinstruction is aload, the data is forwarded onto the register file(s)/sequencer.
3. A direct-store error exception is generated, which transfers 604e control to the
direct-store error exception handler to recover from the error.

If the error bit is not set, the 604e instruction that initiated the access completes and
instruction execution resumes.
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System designers should note the following:

» “Misplaced” reply operations (that match the processor tag and arrive unexpectedly)
are ignored by the 604e.

» External logic must assert AACK for the 604e, even though it is the receiver of the
reply operation. AACK is an input-only signal to the 604e.

» The 604e monitors address parity when enabled by software and XATS and reply
operations (load or store).

8.6.4 Direct-Store Operation Timing

The following timing diagrams show the sequence of events in a typical 604e direct-store
load access (Figure 8-26) and a typical 604e direct-store store access (Figure 8-27). All
arbitration signals except for ABB and DBB have been omitted for clarity, although they
are still required as described earlier in this chapter. Note that, for either case, the number
of immediate operations depends on the amount and the alignment of datato be transferred.
If no more than 4 bytes are being transferred, and the data is double-word—aligned (that is,
does not straddle an 8-byte address boundary), there will be no immediate operation as
shown in the figures.

The 604e can transfer as many as 128 bytes of data in one load or store instruction
(requiring more than 33 immediate operations in the case of misaligned operands).

In Figure 8-26, XATS is asserted with the same timing relationship as TS in a memory
access. Notice, however, that the address bus (and XATC) transition on the next bus clock
cycle. Thefirst of the two beats on the address bus is valid for one bus clock cycle window
only, and that window is defined by the assertion of XATS. The second address bus beat,
however, can be extended by delaying the assertion of AACK until the system has latched
the address.

The load request and load reply operations, shown in Figure 8-26, are address-only
transactions as denoted by the negated TT3 signal during their respective address tenures.
Note that other types of bus operations can occur between the individual direct-store
operations on the bus. The 604e involved in this transaction, however, does not initiate any
other direct-store load or store operations once the first direct-store operation has begun
address tenure; however, if the I/O operation isretried, other higher-priority operations can
occur.

Notice that, in this example (zero wait states), 13 bus clock cycles are required to transfer
no more than 8 bytes of data.
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Figure 8-26. Direct-Store Interface Load Access Example

Figure 8-27 shows a direct-store store access, comprised of three direct-store operations.
Aswith the examplein Figure 8-26, notice that dataistransferred only on the 32 bits of the
DH bus. Asopposed to Figure 8-26, thereis no request operation since the 604e hasthe data
ready for the BUC.

The assertion of the TEA signal during a direct-store operation indicates that an
unrecoverable error has occurred. If the TEA signal is asserted during a direct-store
operation, the TEA action will be delayed and following direct-store transactions will
continue until all data transfers from direct store segment had been completed. The bus
agent that asserts TEA isresponsibleto assert TEA for every direct-store transaction tenure
including the last one. The direct-store reply, under this case, is not required and will be
ignored by the processor. The processor will take a machine check exception after the last
direct-store data tenure has been terminated by the assertion of TEA, and not before.
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Figure 8-27. Direct-Store Interface Store Access Example

8.7 Optional Bus Configurations
The 604e supports the three following bus modes:
« Normal mode. Default mode, as implemented by the 604.

» Datastreaming mode. For information about the 604e implementation of fast-

L 2/data streaming mode, see Section 8.7.1.3, “Data Bus Arbitration in Data
Streaming Mode.”

*  No-DRTRY mode that improves performance for data read operations. In

no-DRTRY mode the data retry function is not available, and all read datais used
by the processor one bus cycle earlier than in norma mode. (Not implemented on

the 604.) For more information, refer to Section 8.7.2, “No-DRTRY Mode.”

Note that this mode isidentical to the no-DRTRY mode in the 603 except for the
manner in which it is entered during hard reset. Fast-L 2/data streaming is not
allowedin no-DRTRY mode—there always must be at |east one dead cycle between

data tenures.

The operation and selection of the optional bus configuration are described in the following

sections.

8.7.1 Data Streaming Mode

The 604e supports an optional fast-L 2/data streaming mode that disablesthe use of the data
retry function provided through the DRTRY signal. Although this bus interface mode
implies its suitability for use in interfacing to a second-level cache, the fast-L2/data
streaming mode allows the forwarding of data during load operations to the internal CPU
one bus cycle sooner than in the normal bus protocol. The PowerPC bus protocol specifies
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that, during load operations, the memory system normally has the capability to cancel data
that was read by the master on the bus cycle after TA was asserted. In the 604e
implementation, this late cancellation protocol requires the 604e to hold any |oaded data at
the bus interface for one additional bus clock to verify that the data is valid before
forwarding it to the internal CPU. The use of the optional fast-L2/data streaming mode
eliminates the one-cycle stall during al load operations, and allows for the forwarding of
datato theinternal CPU immediately when TA isrecognized, thereby increasing maximum
read bandwidth.

When the 604e is following normal bus protocol, data may be cancelled the bus cycle after
TA by either of two means—Iate cancellation by DRTRY, or late cancellation by ARTRY .
When the fast-L2/data streaming mode is selected, both cancellation cases must be
disallowed in the system design for the bus protocal.

When the fast-L 2/data streaming mode is sel ected for the 604e, the system must ensure that
DRTRY will not be asserted to the 604e. If it is asserted, it may cause improper operation
of the businterface. The system must a so ensure that an assertion of ARTRY by asnooping
device must occur before or coincident with the first assertion of TA to the 604e, but not on
the cycle after the first assertion of TA.

Infast-L2 mode, an external device must never assert ARTRY after the cycle of thefirst TA
assertion. Thus, if ARTRY is aways asserted by an external device, at latest, the second
cycle after TS, TA can be asserted by the system as early asthe second cycle after TS (with
thefirst cycle of ARTRY).

The 604e selectsthe desired DRTRY mode at startup by sampling the state of the DRTRY
signa at the negation of the HRESET signal. If the DRTRY signa is negated at the
negation of HRESET, normal operation is selected. If the DRTRY signal is asserted at the
negation of HRESET, fast-L 2/data streaming mode is selected. To select the fast-L2/data
streaming mode, the system designer may connect the DRTRY signal to the HRESET
signal. This asserts DRTRY during startup for fast-L 2/data streaming mode selection, and
holds the DRTRY signal negated during operation.

When the 604e is in fast-L 2/data streaming mode, the bus protocol is modified to disable
the ability to cancel datathat was read by the master on the bus cycle after TA was asserted.
Also, DBB is an output-only signal, and is not a term in generating a qualified data bus
grant. When in fast-L 2/data streaming mode, the system is not allowed to assert DBG
earlier than one cycle before the datatenure isto commence, to park DBG, or to assert DBG
for multiple consecutive cycles. In al other respects, the bus protocol for the 604e is
identical to that for the basic and extended transfer bus protocols described in this chapter.

It is assumed that systems using data-streaming mode would be running the 604e bus
interface at its upper frequency limits for which the cycle timeis very short and the partial
precharge of ABB and DBB might make it difficult to guarantee that the precharge is
successful enough that other devices would see a valid precharge value at the end of the
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precharge cycle. Thistiming problem can be solved by not connecting or using ABB/DBB
in the system design since this design can be done fairly easily.

8.7.1.1 Data Streaming Mode Design Considerations

It is recommended that use of fast-L 2/data streaming mode be accompanied by two other
system design practices.

Thefirst recommendation is not to use the ABB signal. If the system is designed so that an
address tenure is defined by TS and AACK assertion, (which the 604e is designed to
support), the ABB signal is unnecessary, and should be pulled high at the 604e. Because
the ABB signal has an inherently short “restore high” time, it is desirable that the ABB
signal not be used in systems that try to achieve a short cycletime.

The second recommendation is not to use the DBB signal. This signal is restored high in
the same way as ABB, and therefore has the same problems in a system with short cycle
time. To avoid the use of the DBB signal, the system arbiter must assert t DBG for asingle
cycle, onecycle before the 604eis supposed to begin its datatenure. The DBB signal should
be pulled high. The additional system cost of operating in this manner isthat it must count
the number of data transfers, and assert DBG only on the last cycle in a data tenure.

8.7.1.2 Data Streaming in the Data Streaming Mode

Data streaming is the ability to commence a data tenure after a previous data tenure with
no dead cycles between. The 604e only supports data streaming for consecutive burst read
data transfers. This does include support for data streaming consecutive burst read data
transfers between two separate masters. For instance, in a multi-604e system, data
streaming is allowed on consecutive burst read data transfers from different 604s.

To cause data streaming to take place, the system asserts DBG during the last data transfer
of thefirst datatenure as shown in Figure 8-28. To fully realize the performance gain of data
streaming, the system should be prepared to, but is not required to, supply an uninterrupted
sequence of TA assertions.

Figure 8-28 shows the operation of the DBG signa when data streaming operations are
taking place on the data bus
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Figure 8-28. Data Transfer in Fast-L2/Data Streaming Mode

8.7.1.3 Data Bus Arbitration in Data Streaming Mode

When the 604 operates in fast-L 2/data streaming mode, DBG must be asserted for exactly
one cycle per data bus tenure, in the cycle before the data tenure is to begin. The system
cannot either assert DBG earlier than one cycle before the data tenure is to begin, park
DBG, or assert it for multiple consecutive cycles.

In fast-L2/data streaming mode, the 604e is compatible with the 604's assertion
requirements for DBG, but |ess restrictive regarding successive data tenures mastered by
the 604e. For the 604e, DBG must be asserted no earlier than the cycle before the 604€’s
data tenure is to begin only when another master currently controls the data bus (that is,
when DBB would normally be asserted for a data tenure). If no other masters currently
control the data bus (are asserting DBB), the 604e allows the system to park DBG on the
604e. DBB remains an output-only signal in fast-L 2/data streaming mode (that is, DBB
does not participate in determining a qualified data bus grant), requiring the system to use
DBG to ensure that different masters don’t collide on data tenures.

Like the 604, the 604e requires a dead cycle between successive data tenures for which it
is master, except for back-to-back burst read operationsthat can be streamed without adead
cycle. For back-to-back data tenures that cannot be streamed, the 604e does not accept an
early data bus grant for the second tenure and negates its DBB output signal for one cycle
between the first and second data tenure. The system must not attempt to stream
consecutive TA assertions from the first to second data tenure in this case. Instead, a
minimum of one dead cycle must be placed between the DBBs of two tenures if the two
tenures are not both burst reads.

8.7.1.4 Data Valid Window in the Data Streaming Mode

Standard bus mode operations allow data to be transferred no earlier than the cycle before
the ARTRY window that the system defines. In some cases, an asserted ARTRY signa
invalidates the data that was transferred the previous cycle, in the same way DRTRY
cancels data from the previous cycle.

In fast-L2/data streaming mode, the data buffering that allows late cancellation of a data
transfer does not exist, so late cancellation with ARTRY isaso impossible. Therefore, the
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earliest that data can be transferred in fast-L 2/data streaming mode is the first cycle of the
ARTRY window, not the cycle before that.

8.7.2 No-DRTRY Mode

No-DRTRY mode disables the data retry function provided through the DRTRY signal. In
normal mode, the memory system can cancel a dataread operation by the master on the bus
cycle after TA was asserted. This functionality requires the load data to be held an
additional cycle to validate the data, and if necessary to assert DRTRY to cancel the
operation. Disabling data retry eliminates the need for this cycle and allows data to be
forwarded during load operations one bus cycle sooner—immediately when the assertion
of TA isrecognized. In no-DRTRY mode, the system must ensure that there are no attempts
at late cancellation, which may causeimproper operation by the 604e. The system must also
ensure that a snooping device asserts ARTRY no later than the first assertion of TA to the
604e, but not on the cycle after the first assertion of TA.

To enter no-DRTRY mode, the system must assert DRTRY coincidentally with HRESET.
This can be done by tying DRTRY asserted in hardware. DRTRY must remain asserted.

In no-DRTRY mode, data bus arbitration is unchanged except that DRTRY is no longer
used to determine a qualified DBG. A qualified DBG in no-DRTRY mode is simply the
assertion of DBG and the negation of DBB (plus possibly additional qualifications due to
ARTRY identical to those qualificationsin normal and fast-L 2/data streaming bus modes).

The system must define the beginning of the window in which the snoop responseis valid
and ensure that no dataistransferred before the same cycle as the beginning of that window
in no-DRTRY mode. For example, if the system defines a snoop response window that
begins the second cycle after TS, the earliest TA can be asserted to the 604e is the second
cycle after TS.

This no-DRTRY mode timing constraint on the earliest allowable assertion of TA with
respect to ARTRY isidentical to that constraint in fast-L 2/data streaming mode.

To upgrade a 604-based system to the 604e and use no-DRTRY mode, the following
considerations should be observed:
e The system uses the 604 in normal bus mode, described earlier in this section.
e The DRTRY must be tied negated and never used.
» The system must never assert TA before the first cycle of the system’s snoop
response window.

This system would then see a performance improvement due to the shorter effective latency
seen by the 604e on read operations. This reduction in latency is equal to one bus cycle
(three processor cyclesin 3:1 bus mode).

Chapter 8. System Interface Operation 8-53



8.8 Interrupt, Checkstop, and Reset Signals

This section describes external interrupts, checkstop operations, and hard and soft reset
inputs.

8.8.1 External Interrupts

The external interrupt input signals (INT, SMI and MCP) to the 604e eventually force the
processor to take the externa interrupt vector, the system management interrupt vector, or
the machine check interrupt if enabled by the MSR[ME] bit (and the HIDO[EMCP] bit in
the case of a machine check interrupt).

8.8.2 Checkstops

The 604e has two checkstop input signals—CKSTP_IN and MCP (when MSR[ME] is
cleared, and HIDO[EMCP] is set), and a checkstop output (CKSTP_OUT). If CKSTP_IN
or MCP is asserted, the 604e halts operations by gating off all internal clocks. The 604e
asserts CKSTP_OUT if CKSTP_IN is asserted.

If CKSTP_OUT is asserted by the 604e, it has entered the checkstop state, and processing
has halted internally. The CKSTP_OUT signa can be asserted for various reasons
including receiving a TEA signal and detection of externa parity errors. For more
information about checkstop state, see Section 4.5.2.2, “ Checkstop State (MSR[ME] = 0).”

8.8.3 Reset Inputs
The 604e has two reset inputs, described as follows:

e HRESET (hard reset)—The HRESET signal is used for power-on reset sequences,
or for situations in which the 604e must go through the entire cold-start sequence of
internal hardware initializations.

e SRESET (soft reset)—The soft reset input provides warm reset capability. This
input can be used to avoid forcing the 604e to compl ete the cold start sequence.

When either reset input is negated, the processor attempts to fetch code from the system
reset exception vector. Thevector islocated at offset 0x00100 from the exception prefix (all
zeros or ones, depending on the setting of the exception prefix bit in the machine state
register (MSR[IP]). The IP bit is set for HRESET.

8.8.4 PowerPC 604e Processor Configuration during HRESET

The 604e has three modes that are configurable during a hard reset. Table 8-11 describes
how the 604e is configured during hard reset. Normal mode and data-streaming mode
HRESET configurations are identical to those on the 604e.
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Table 8-11. Processor Modes Configurable during Assertion of HRESET

604e Mode Input Signal Timing Requirements Notes

Normal DRTRY Must be negated throughout the duration of the —
HRESET assertion. After HRESET negation,
DRTRY can be used normally.

Datastreaming | DRTRY Must be asserted and negated with HRESET and Can be done by tying
remain negated during normal operation. DRTRY to HRESET

No-DRTRY DRTRY Must be asserted with HRESET and remain Can be done by statically
asserted during normal operation. tying DRTRY asserted.

8.9 Processor State Signals

This section describes the 604¢€'s support for atomic update and memory through the use of
the lwar x/stwcx. opcode pair.

8.9.1 Support for the Iwarx/stwcx. Instruction Pair

The Load Word and Reserve Indexed (Ilwarx) and the Store Word Conditional Indexed
(stwex.) instructions provide a means for atomic memory updating. Memory can be
updated atomically by setting a reservation on the load and checking that the reservation is
still valid before the store is performed. In the 604e, the reservations are made on behalf of
aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signal is driven synchronously with the bus clock and
reflects the status of the reservation coherency bit in the reservation address register (see
Chapter 3, “Cache and Bus Interface Unit Operation,” for more information). See
Section 7.2.10.3, “Reservation (RSRV)—Output,” for information about timing.

8.10 IEEE 1149.1-Compliant Interface

The 604e boundary-scan interface is afully-compliant implementation of the IEEE 1149.1
standard. This section describes the 604e |EEE 1149.1(JTAG) interface.

8.10.1 IEEE 1149.1 Interface Description

The 604¢e has five dedicated JTAG signals which are described in Table 8-12. The TDI and
TDO scan ports are used to scan instructions as well as data into the various scan registers
for JTAG operations. The scan operation is controlled by the test access port (TAP)
controller which in turn is controlled by the TM S input sequence. The scan datais latched
in at therising edge of TCK.

8-55 PowerPC 604e RISC Microprocessor User's Manual



Table 8-12. IEEE Interface Pin Descriptions

Signal Name Input/Output WS?EVT;EH(;”) IEEE 1149.1 Function
TDI Input Yes Serial scan input pin
TDO Output No Serial scan output pin
T™MS Input Yes TAP controller mode pin
TCK Input Yes Scan clock
TRST Input Yes TAP controller reset

TRST isa JTAG optional signal which is used to reset the TAP controller asynchronously.
The TRST signal assures that the JTAG logic does not interfere with the normal operation
of the chip, and should be held asserted during normal operation. The remaining JTAG
signals are provided with internal pullup resistors, and may be left unconnected.

Boundary scan description language (BSDL) files for the 604e and other PowerPC
microprocessors are available in the RISC support area of the Motorola Freeware Data
Services bulletin board system. The bulletin board system, located in Austin, Texas, can be
reached at (512) 891-3733; the connecting terminal or terminal emulator should be
configured with 8-bit data, no parity, and one start and one stop bit. Asynchronous
transmission rates to 14.4K bits per second are supported.

8.11 Using Data Bus Write Only

The 604e supports split-transaction pipelined transactions. It supports a limited out-of-
order capability for its own pipelined transactions through the data bus write only (DBWO)
signal. When recognized on the clock of a qualified DBG, the assertion of DBWO directs
the 604e to perform the next pending data write tenure (if any), even if a pending read
tenure would have normally been performed because of address pipelining. The DBWO
does not change the order of write tenures with respect to other write tenures from the same
604e. It only allows that a write tenure be performed ahead of a pending read tenure from
the same 604e.

In general, an address tenure on the bus is followed strictly in order by its associated data
tenure. Transactions pipelined by the 604e complete strictly in order. However, the 604e
can run bus transactions out of order only when the external system alows the 604e to
perform a cache line snoop push out operation (or other write transaction, if pending in the
604e write queues) between the address and data tenures of a read operation through the
use of DBWO. This effectively envelopes the write operation within the read operation.
Figure 8-29 shows how the DBWO signa is used to perform an enveloped write
transaction.
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Figure 8-29. Data Bus Write Only Transaction

Note that although the 604e can pipeline any write transaction behind the read transaction,
specia care should be used when using the enveloped write feature. It is envisioned that
most system implementations will not need this capability; for these applications DBWO
should remain negated. In systems where this capability is needed, DBWO should be
asserted under the following scenario:

1

The 604einitiates a read transaction (either single-beat or burst) by completing the
read address tenure with no address retry.

Then, the 604e initiates a write transaction by completing the write address tenure,
with no addressretry.

At this point, if DBWO is asserted with a qualified data bus grant to the 604e, the
604e asserts DBB and drives the write data onto the data bus, out of order with
respect to the address pipeline. The write transaction concludes with the 604e
negating DBB.

The next qualified data bus grant signal's the 604e to complete the outstanding read
transaction by latching the data on the bus. This assertion of DBG should not be
accompanied by an asserted DBWO.

Any number of bustransactions by other bus masters can be attempted between any of these
steps.
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Note the following regarding DBWO:

» TheDBWO signal can be asserted if no databusread is pending, but it has no effect
on write ordering.

* Theordering and presence of databuswritesis determined by thewritesin thewrite
queues at the time BG is asserted for the write address (not DBG). A cache-line
snoop push-out operation has the highest priority, and takes precedence over other
gueued write operations.

» Because more than one write may be in the write queue when DBG is asserted for

the write address, more than one data bus write may be enveloped by apending data
bus read.

The arbiter must monitor bus operations and coordinate the various masters and saves with
respect to the use of the data bus when DBWO is used. Individual DBG signals associated
with each bus device should allow the arbiter to synchronize both pipelined and split-
transaction bus organizations. Individual DBG and DBWO signals provide aprimitiveform
of source-level tagging for the granting of the data bus.

Note that use of the DBWO signal allows some operation-level tagging with respect to the
604e and the use of the data bus.
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Chapter 9
Performance Monitor

The PowerPC 604e microprocessor provides a performance monitor facility to monitor and
count predefined events such as processor clocks, missesin either the instruction cache or
the data cache, instructions dispatched to a particular execution unit, mispredicted
branches, and other occurrences. The count of such events (which may be an
approximation) can be used to trigger the performance monitor exception. The performance
monitor facility is not defined by the PowerPC architecture.

The performance monitor can be used for the following:

» Toincrease system performance with efficient software, especially ina
multi processing system. Memory hierarchy behavior must be monitored and studied
in order to develop algorithms that schedul e tasks (and perhaps partition them) and
that structure and distribute data optimally.

« Toimproveprocessor architecture, the detail ed behavior of the 604€’' s structure must
be known and understood in many software environments. Some environments may
not easily be characterized by abenchmark or trace.

» To help system developers bring up and debug their systems.

The performance monitor uses the following 604e-specific special-purpose registers
(SPRs):
» Performance monitor counters 1-4 (PM C1-PM C4)—T hesefour 32-bit countersare
used to store the number of times a certain event has been detected.
»  Themonitor mode control registers (MMCRO and MM CR1), which establishes the
function of the counters.
e Sampled instruction address and sampled data address registers (SIA and SDA).

Depending on how the performance monitor is configured, these registers point to
thedataor instruction that caused athreshol d-related performance monitor interrupt.

The 604e supports a performance monitor interrupt that is caused by a counter negative
condition or by atime-base flipped bit counter defined in the MM CRO register.

As with other PowerPC interrupts, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (0xO0F00). The priority
of the performance monitor interrupt is below the external interrupt and above the
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decrementer interrupt. The contents of the SIA and SDA are described in Section 9.1.1.2.1,
“Sampled Instruction Address Register (SIA),” and Section 9.1.1.2.2, “Sampled Data
Address Register (SDA),” respectively. The performance monitor counter registers are
described in Section 9.1.1.1, “Performance Monitor Counter Registers (PMC1-PMC4).”

9.1 Performance Monitor Interrupt

The 604e performance monitor is a software-accessible mechanism that provides detailed
information concerning the dispatch, execution, completion, and memory access of
PowerPC instructions. A performance monitor interrupt (PMI) can be triggered by a
negative counter (most significant bit set to one) condition. If the interrupt signal condition
occurs while MSR[EE] is cleared, the interrupt is delayed until the MSR[EE] bit is set. A
PMI may aso occur when certain bits in the time base register change from 0 to 1; this
provides away to generate interrupts based on atime reference.

Depending on the type of event that causes the PMI condition to be signaed, the
performance monitor responds in one of two ways.

« When athreshold event causes a PMI to be signaled, the exact addresses of the
instruction and data that caused the counter to become negative are saved in the
sampled instruction address (SIA) register and the sampled data address (SDA)
register, respectively. For more information, see Section 9.1.2.2, “Threshold
Events.”

» For al other programmable events that cause a PMI, the address of the last
completed instruction during that cycleis saved inthe SIA, which allowsthe user to
determine the part of the code being executed when aPM| was signaled. Likewise,
the effective address of an operand being used is saved in the SDA. Typicaly, the
operands in the SDA and SIA are unrelated. For more information, see
Section 9.1.2.3, “Nonthreshold Events”

When the performance monitor interrupt is signaled, the hardware clears MM CRO[ENINT]
and preventsthe changing of the valuesin the SIA and SDA until ENINT is set by software.
The MMCRO is described in the Section 9.1.1.3, “Monitor Mode Control Register O
(MMCRO).”

The following section describes the SPRs used with the performance monitor.

9.1.1 Special-Purpose Registers Used by Performance Monitor

The performance monitor incorporates the SPRs listed in Table 9-1. The SIA register is
located in the sequencer unit and the SDA register is located in the LSU. All of these
supervisor-level registers are accessed through mtspr and mfspr instructions. The
following table shows more information about all performance monitor SPRs.
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Table 9-1. Performance Monitor SPRs

SPR Number spr[5-9] || spr[0-4] Register Name Access Level
952 0b11101 11000 MMCRO Supervisor
956 0b11101 11100 MMCR1 Supervisor
953 0b11101 11001 PMC1 Supervisor
954 0b11101 11010 PMC2 Supervisor
957 0b11101 11101 PMC3 Supervisor
958 0b11101 11110 PMC4 Supervisor
955 0b11101 11011 SIA Supervisor
959 Ob11101 11111 SDA Supervisor

9.1.1.1 Performance Monitor Counter Registers (PMC1-PMC4)

PMC1-PMC4 are 32-hit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). However,
an interrupt is not signaled unless both MMCRO[PMCINTCONTROL] and
MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing M SR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MM CRO[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMC1 (SPR 953), PMC2 (SPR 954), PMC3 (SPR 957), and PMC4 (SPR 958) can be read
and written to by using the mfspr and mtspr instructions. Software is expected to use the
mtspr instruction to explicitly set the PMC register to non-negative values. If software sets
a negative value, an erroneous interrupt may occur. For example, if both
MMCRO[PMCINTCONTROL] and MMCRO[ENINT] are set and the mtspr instruction is
used to set a negative value, an interrupt signal condition may be generated prior to the
completion of the mtspr and the values of the SIA and SDA may not have any relationship
to the type of instruction being counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO0[19-31]. The number of occurrences of these selected events is counted from the
time the MM CRO was set either until a new value is introduced into the MM CRO register
or until a performance monitor interrupt is generated. Table 9-2 lists the selectable events
with their appropriate MM CRO encodings.
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Table 9-2. Selectable Events—PMC1

MMCRO0[0—4] Description

000 0000 Nothing. Register counter holds current value.

000 0001 Processor cycles 0b1. Count every cycle.

000 0010 Number of instructions completed every cycle

000 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

000 0100 Number of instructions dispatched

000 0101 Instruction cache misses

000 0110 Data TLB misses (in order)

000 0111 Branch misprediction correction from execute stage

000 1000 Number of reservations requested. The lwarx instruction is ready for execution in the LSU.

000 1001 Number of data cache load misses exceeding the threshold value with lateral L2 cache intervention

000 1010 Number of data cache store misses exceeding the threshold value with lateral L2 cache
intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions completed

000 1101 Number of eieio instructions completed

000 1110 Number of integer instructions completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions completed every cycle (no loads or stores)

001 0000 LSU produced result.

001 0001 SCIU1 produced result for an add, subtract, compare, rotate, shift, or logical instruction.

001 0010 FPU produced result.

001 0011 Number of instructions dispatched to the LSU

001 0100 Number of instructions dispatched to the SCIU1

001 0101 Number of instructions dispatched to the FPU

001 0110 Valid snoop requests received from outside the 604e. Does not distinguish hits or misses.

001 0111 Number of data cache load misses exceeding the threshold value without lateral L2 intervention

001 1000 Number of data cache store misses exceeding the threshold value without lateral L2 intervention

001 1001 Number of cycles the branch unit is idle

001 1010 Number of cycles MCIUO is idle

001 1011 Number of cycles the LSU is idle. No new instructions are executing; however, active loads or
stores may be in the queues.

001 1100 Number of times the L2_INT is asserted (regardless of TA state)
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Table 9-2. Selectable Events—PMC1 (Continued)

MMCRO0[0-4] Description
001 1101 Number of unaligned loads
001 1110 Number of entries in the load queue each cycle (maximum of five). Although the load queue has

four entries, a load miss latch may hold a load waiting for data from memory.

001 1111 Number of instruction breakpoint hits

Bits MMCRO0[26—31] are used for selecting events associated with PMC2. These settings
are shown in Table 9-3.

Table 9-3. Selectable Events—PMC2

MMCRO0[26-31] Description

00 0000 Register counter holds current value.

00 0001 Processor cycles 0b1. Count every cycle.

00 0010 Number of instructions completed. Legal values are 000, 001, 010, 011, 100.

00 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).
00 0100 Number of instructions dispatched (0 to 4 instructions per cycle)

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses (in order)

000111 Number of instruction TLB misses

00 1000 Number of branches completed. Indicates the number of branch instructions being completed

every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).

00 1001 Number of reservations successfully obtained (stwcx. operation completed successfully)

00 1010 Number of mfspr instructions dispatched (in order)

00 1011 Number of icbi instructions. It may not hit in the cache.

00 1100 Number of pipeline “flushing” instructions (sc, isync, mtspr (XER), mcrxt, floating-point operation

with divide by 0 or invalid operand and MSR[FEO, FE1] = 00, branch with MSR[BE] = 1, load
string indexed with XER = 0, and SO bit getting set)

00 1101 BPU produced result.

00 1110 SCIUO produced result (of an add, subtract, compare, rotate, shift, or logical instruction).

001111 MCIU produced result (of a multiply/divide or SPR instruction).

01 0000 Number of instructions dispatched to the branch unit.

01 0001 Number of instructions dispatched to the SCIUO.

01 0010 Number of loads completed. These include all cache operations and tlbie, tlbsync, sync, eieio,
and icbi instructions.

01 0011 Number of instructions dispatched to the MCIU

01 0100 Number of snoop hits occurred

010101 Number of cycles during which the MSR[EE] bit is cleared
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Table 9-3. Selectable Events—PMC2 (Continued)

MMCRO[26-31]

Description

010110 Number of cycles the MCIU is idle

010111 Number of cycles SCIU1 is idle

01 1000 Number of cycles the FPU is idle

011001 Number of cycles the L2_INT signal is active (regardless of TA state)
01 1010 Number of times four instructions were dispatched

011011 Number of times three instructions were dispatched

011100 Number of times two instructions were dispatched

011101 Number of times one instruction was dispatched

011110 Number of unaligned stores

011111 Number of entries in the store queue each cycle (maximum of six)

Bits MMCR1[0-4] are used for selecting events associated with PMC3. These settings are
shown in Table 9-4.

Table 9-4. Selectable Events—PMC3

MMCR1[0-4] Comments

0 0000 Register counter holds current value.

0 0001 Count every cycle.

00010 Indicates the number of instructions being completed every cycle

00011 RTCSELECT bit transition. 0 =47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).

00100 Number of instructions dispatched

00101 Number of cycles the LSU stalls due to BIU or cache busy. Counts cycles between when a load or
store request is made and a response was expected. For example, when a store is retried, there
are four cycles before the same instruction is presented to the cache again. Cycles in between are
not counted.

00110 Number of cycles the LSU stalls due to a full store queue

00111 Number of cycles the LSU stalls due to operands not available in the reservation station

0 1000 Number of instructions written into the load queue. Misaligned loads are split into two transactions
with the first part always written into the load queue. If both parts are cache hits, data is returned to
the rename registers and the first part is flushed from the load queue. To count the instructions that
enter the load queue to stay, the misaligned load hits must be subtracted. See event 8 in Table 9-5.

01001 Number of cycles that completion stalls for a store instruction

0 1010 Number of cycles that completion stalls for an unfinished instruction. This event is a superset of
PMC3 event 9 and PMC4 event 10.

01011 Number of system calls

0 1100 Number of cycles the BPU stalled as branch waits for its operand
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Table 9-4. Selectable Events—PMC3 (Continued)

MMCR1[0-4] Comments

01101 Number of fetch corrections made at the dispatch stage. Prioritized behind the execute stage.

01110 Number of cycles the dispatch stalls waiting for instructions

01111 Number of cycles the dispatch stalls due to unavailability of reorder buffer (ROB) entry. No ROB
entry was available for the first nondispatched instruction.

10000 Number of cycles the dispatch unit stalls due to no FPR rename buffer available. First
nondispatched instruction required a floating-point reorder buffer and none was available.

10001 Number of instruction table search operations

10010 Number of data table search operations. Completion could result from a page fault or a PTE match.

10011 Number of cycles the FPU stalled

10100 Number of cycles the SCIU1 stalled

10101 Number of times the BIU forwards noncritical data from the line-fill buffer

10110 Number of data bus transactions completed with pipelining one deep with no additional bus

transactions queued behind it

10111 Number of data bus transactions completed with two data bus transactions queued behind

11000 Counts pairs of back-to-back burst reads streamed without a dead cycle between them in data
streaming mode

11001 Counts non-ARTRYd processor kill transactions caused by a write-hit-on-shared condition

11010 This event counts non-ARTRYd write-with-kill address operations that originate from the three

castout buffers. These include high-priority write-with-kill transactions caused by a snoop hit on
modified data in one of the BIU’s three copy-back buffers. When the cache block on a data cache
miss is modified, it is queued in one of three copy-back buffers. The miss is serviced before the
copy-back buffer is written back to memory as a write-with-kill transaction.

11011 Number of cycles when exactly two castout buffers are occupied

11100 Number of data cache accesses retried due to occupied castout buffers

11101 Number of read transactions from load misses brought into the cache in a shared state
11110 CRU Indicates that a CR logical instruction is being finished.

Bits MMCR1[5-9] are used for selecting events associated with PMC4. These settings are
shown in Table 9-4.

Table 9-5. Selectable Events—PMC4

MMCR1[5-9] Description

00000 Register counter holds current value

00001 Count every cycle

00010 Number of instructions being completed

00011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower register).
00100 Number of instructions dispatched
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Table 9-5. Selectable Events—PMC4 (Continued)

MMCR1[5-9] Description

00101 Number of cycles the LSU stalls due to busy MMU

00110 Number of cycles the LSU stalls due to the load queue full

00111 Number of cycles the LSU stalls due to address collision

0 1000 Number of misaligned loads that are cache hits for both the first and second accesses. Related to
event 8 in PMC3.

01001 Number of instructions written into the store queue

01010 Number of cycles that completion stalls for a load instruction

01011 Number of hits in the BTAC. Warning—if decode buffers cannot accept new instructions, the
processor refetches the same address multiple times.

01100 Number of times the four basic blocks in the completion buffer from which instructions can be
retired were used

01101 Number of fetch corrections made at decode stage

01110 Number of cycles the dispatch unit stalls due to no unit available. First nondispatched instruction
requires an execution unit that is either full or a previous instruction is being dispatched to that unit.

01111 Number of cycles the dispatch unit stalls due to unavailability of GPR rename buffer. First
nondispatched instruction requires a GPR reorder buffer and none are available.

1 0000 Number of cycles the dispatch unit stalls due to no CR rename buffer available. First
nondispatched instruction requires a CR rename buffer and none is available.

10001 Number of cycles the dispatch unit stalls due to CTR/LR interlock. First nondispatched instruction
could not dispatch due to CTR/LR/mtcrf interlock.

10010 Number of cycles spent doing instruction table search operations

10011 Number of cycles spent doing data table search operations

10100 Number of cycles SCIUO was stalled

10101 Number of cycles MCIU was stalled

10110 Number of bus cycles after an internal bus request without a qualified bus grant

10111 Number of data bus transactions completed with one data bus transaction queued behind

11000 Number of write data transactions that have been reordered before a previous read data
transaction using the DBWO feature

11001 Number of ARTRYd processor address bus transactions

11010 Number of high-priority snoop pushes. Snoop transactions, except for write-with-kill, that hit
modified data in the data cache cause a high-priority write (snoop push) of that modified cache
block to memory.This operation has a transaction type of write-with-kill. This event counts the
number of non-ARTRYd processor write-with-kill transactions that were caused by a snoop hit on
modified data in the data cache. It does not count high-priority write-with-kill transactions caused
by snoop hits on modified data in one of the BIU’s three copy-back buffers.
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Table 9-5. Selectable Events—PMC4 (Continued)

MMCR1[5-9] Description

11011 Number of cycles for which exactly one castout buffer is occupied

11100 Number of cycles for which exactly three castout buffers are occupied

11101 Number of read transactions from load misses brought into the cache in an exclusive (E) state
11110 Number of undispatched instructions beyond branch

9.1.1.2 SIA and SDA Registers

The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”

9.1.1.2.1 Sampled Instruction Address Register (SIA)

The SIA containsthe effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by athreshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction inthe SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 955).

9.1.1.2.2 Sampled Data Address Register (SDA)

The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than athreshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 959).
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9.1.1.2.3 Updating SIA and SDA

The values of the SIA and SDA registers depend on the type of event being monitored.
These registers have predicted values after a PMI is signaled. A PMI may be signaled, but
not serviced because the exception is masked by the MSR(EE) bit. Programmers must
make sure that this bit is set active in order to take the PMI.

9.1.1.3 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRO can be written to or read only in supervisor mode. The MMCRO includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 9-6.

Table 9-6. MMCRO Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0  The values of the PMCn counters can be changed by hardware.
1  The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode

0  The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters
are not changed by hardware.

2 DU Disable counting while in user mode

0  The PMCn counters can be changed by hardware.

1  If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

3 DMS Disable counting while MSR[PM] is set
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.
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Table 9-6. MMCRO Bit Settings (Continued)

Bit

Name

Description

DISCOUNT

Disable counting of PMC1-PMC4 when a performance monitor interrupt is
signalled or the occurrence of an enabled time base transition with
((INTONBITTRANS =1) & (ENINT = 1)).

0 Signalling a performance monitoring interrupt does not affect the counting
status of PMC1-PMC4.

1  The signalling of a performance monitoring interrupt prevents the changing
of the PMC1 counter. The PMC2-PMC4 counters does not change if
PMCTRIGGER = 0.

Because, a time base signal could have occurred along with an enabled counter

negative condition, software should always reset INTONBITTRANS to zero, if the

value in INTONBITTRANS was a one.

RTCSELECT

64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11  Pick bit 47 to count

INTONBITTRANS

Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on

0 Do not allow interrupt signal if chosen bit transitions.

1  Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

10-15

THRESHOLD

Threshold value. All 6 bits are supported by the 604e. The threshold value is
multiplied by 4, allowing threshold values from 0 to 252 in increments of 4. The
intent of the THRESHOLD support is to be able to characterize L1 data cache
misses.

16

PMC1INTCONTROL

Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative
1  Enable PMC1 Interrupt signaling due to PMC1 counter negative

17

PMCINTCONTROL

Enable interrupt signalling due to any PMCn (n>1) counter negative.

0 Disable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter
negative.

1  Enable PMCn (n>1) interrupt signalling due to PMCn (n>1) counter negative.

18

PMCTRIGGER

PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative or after a performance monitoring interrupt is signalled.

0  Enable PMCn (n>1) counting

1 Disable PMCn (n>1) counting until PMC1 bit 0 is “on” or until a performance
monitor interrupt is signalled.

PMCTRIGGER may be used to trigger counting of PMCn (n>1) after PMC1 has

become negative. This provides a triggering mechanism to allow counting after a

certain condition occurs or after enough time has occurred. It can be used to

support getting the count associated with a specific event.

19-25

PMCI1SELECT

PMC1 input selector, 128 events selectable; 25 defined. See Table 9-2.

26-31

PMC2SELECT

PMC2 input selector, 64 events selectable; 21 defined. See Table 9-3.
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9.1.1.3.1 Monitor Mode Control Register 1—MMCR1

The 604e defines an additional monitor mode control register (MMCR1), which functions
as an event selector for the two 604e-specific performance monitor counter registers
(PMC3 and PMC4). MMCR1 is SPR 956. The MMCRL register is shown in Figure 9-1.

|:| Reserved

|PmcaseLECT|PMcasELECT | 0000000000000000000000000000 |
0 45 910 31

Figure 9-1. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCRL are shown in Table 9-7. The corresponding events are described
in the Section 9.1.1.1, “Performance Monitor Counter Registers (PMC1-PMC4).”

Table 9-7. MMCRL1 Bit Settings

Bits Name Description
0-4 PMC3SELECT PMC3 event selector
5-9 PMCA4SELECT PMC4 event selector
10-31 — Reserved

9.1.2 Event Counting

Counting can be enabled if conditions in the processor state match a software-specified
condition. Because a software task scheduler may switch a processor’s execution among
multiple processes and because statistics on only a particular process may be of interest, a
facility is provided to mark aprocess. The performance monitor (PM) bit, MSR[29] isused
for this purpose. System software may set this bit when a marked process is running. This
enabl es stati stics to be gathered only during the execution of the marked process. The states
of MSR[PR] and MSR[PM] together define a state that the processor (supervisor or
program) and the process (marked or unmarked) may bein at any time. If this state matches
a state specified by the MMCR, the state for which monitoring is enabled, counting is
enabled.

The following are states that can be monitored:
e (Supervisor) only
e (User) only
¢ (Marked and user) only
¢ (Not marked and user) only
* (Marked and supervisor) only
e (Not marked and supervisor) only
¢ (Marked) only
e (Not marked) only
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In addition, one of two unconditional counting modes may be specified:

» Counting is unconditionally enabled regardless of the states of MSR[PM] and
MSR[PR]. This can be accomplished by clearing MM CRO[0-4].

e Counting is unconditionally disabled regardless of the states of MSR[PM] and
MSR[PR]. Thisis done by setting MMCRO[(].

The performance monitor counters track how often a selected event occurs and are used to
generate performance monitor exceptions when an overflow (most significant bit is a 1)
situation occurs. The 604e performance monitor contains two counters. This register is
cleared at startup and can be updated through an mtspr instruction.

The 32-bit registers can count up to Ox7FFFFFFF (2,147,483,648 in decimal) before
becoming negative. The most significant bit (bit 0) of both registersis used to determine if
an interrupt condition exists.

9.1.2.1 Event Selection

Event selection is handled through PMC1-PMC4, described in Table 9-2 to Table 9-5,
respectively. Event selection is described as follows:

» Theevent select fields are located in MM CRO and MMCRL. There are 7 bits
associated with PMC1, 6 bits associated with PMC2, 5 bits associated with PMC3,
and 5 bits associated with PM C4. Only the low order bits are used for selection. The
higher order bits are reserved for future applications.

» |Inthetables, acorrelation is established between each counter, the events to be
traced, and the pattern required for the desired selection.

» Thefirst five events are common to both counters. These are considered to be
reference events.

» Some events can have multiple occurrences per cycle, and therefore need two or
three bits to represent them. These events are number 2, 4, 14, 15 for PMC1 and
2,4, 8,18 for PMC2.

9.1.2.2 Threshold Events

These PMC1 events are numbers 9, 10, 23, and 24. These events monitor load and store
misses (with and without lateral L2 intervention). Only “marked” loads and stores (loads
and stores at queue position 0) are monitored. See Section 9.1.2.2.1, “Threshold
Conditions,” for more information.

When amarked operation is detected, the SDA is updated with the effective address. When
the marked instruction finishes executing, the SIA will be updated with the address of that
instruction. Thus, when aPM| issignaled (asaresult of athreshold event) the SIA and SDA
contains the exact SIA and SDA belonging to the instruction that caused PMCL1 to become
negative; see Section 9.1.2.2.3, “Warnings,” for further information.
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9.1.2.2.1 Threshold Conditions

The ability to generate a PMI based on a threshold condition makes it possible to
characterize L1 data cache misses. Specifically, the programmer should be able to identify
(through repeated runs and sampling) the time distribution required to satisfy L1 cache
misses. For example, if PMCL1 is counting load misses and the threshold is set to two
(cycles), only load misses taking more than two cycles are counted. Repeated runs with
different threshold values would allow construction of aload-miss distribution chart.

When a load (or store) miss arrives in the load/store queue, the threshold control logic
begins decrementing. For each cycle that passes, the threshold value in a shadow register
(obtained from MMCRO0[10-15]) is decremented. The threshold is exceeded when this
value reaches 0, at which point the PMC1 count is updated.

While servicing the load/store misses, the SIA and SDA registers are updated to the exact
instruction and data addresses at the time an interrupt condition occurs. Thus, at the end of
each threshold load or store operation, the SIA contains the address of the instruction that
was last monitored, and the SDA contains the address of the data of the same instruction.

9.1.2.2.2 Lateral L2 Cache Intervention

A load or store operation that missesin the L 1 cache can receiveits datafrom one of severa
memory devices. In auniprocessor system, the datawould likely comean L2 cache, or from
main memory if no L2 cacheis present. In a multiprocessor system, the data can originate
from the L2 cache connected to another 604e (that is, alateral L2 cache), in which case, the
L2 controller asserts an intervention signal (L2_INT) used by the performance monitor.
This signa is useful when tracking memory latencies in a SMP system. For information
about the L2 intervention signal, see Section7.2.10.4, “L2 Intervention
(L2_INT)—Input.”

9.1.2.2.3 Warnings
The following warnings should be noted:

» Notal load and store operations are monitored when athreshold event isselected in
PMC1. Only those in queue position O of their respective load/store queues are
monitored.

« The 604e cannot accurately track threshold events with respect to the following
types of loads and stores:

— Unaligned load and store operations that cross aword boundary
— Load and store multiple operations
— Load and store string operations

e Thelateral L2 cacheintervention signa is controlled by the L2 cache controller
being used. If the L2 cache controller does not provide this functionality, the events
that use this signal (PMC1 events 9 and 10) become obsol ete.

e |f L2_INT isnot connected to any source (negated or to an L2 controller) the results
obtained from the threshold events 9, 10, 23, and 24 of PMC1 are undefined.
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9.1.2.3 Nonthreshold Events

Nonthreshold events are all events except for PMCL1 events 9, 10, 23, or 24. Any PMI
signaled from nonthreshol d events operate the same way. Thereisno distinction (inthe SIA
and SDA registers) between an interrupt generated by atime-base register bit transition or
from PMC2 or PM C1 becoming negative. In these casesthe SIA containsthe address of the
last instruction completed during the cycle the PMI was signaled. The SDA contains an
effective address of some instruction currently being processed.

Under these events the SIA and SDA does hot contain information belonging to the same
instruction.
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Appendix A
PowerPC Instruction Set Listings

This appendix lists the PowerPC 604e microprocessor instruction set as well as PowerPC
instructions not implemented in the 604e. Instructions are sorted by mnemonic, opcode,
function, and form. Also included in this appendix is a quick reference table that contains
genera information, such as the architecture level, privilege level, and form, and indicates
if the instruction is 64-bit and optional.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

A.1l Instructions Sorted by Mnemonic

TableA-1 lists the instructions implemented in the 604e in aphabetica order by
mnemonic.

Key:
I:l Reserved bits I:l Instruction not implemented in the 604e

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addx 31 D A B OE| 266 Rc
addcx 31 D A B OE| 10 Rc
addex 31 D A B OF| 138 Rc
addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM
addmex 31 D A 00000 (OF 234 Rc
addzex 31 D A 00000 (OF 202 Rc
andx 31 S A B 28 Rc

Appendix A. PowerPC Instruction Set Listings A-1



Name

andcx
andi.
andis.
bx
bcx
beetrx
belrx
cmp
cmpi
cmpl

cmpli

cntlzwx
crand
crandc
creqv
crnand
crnor
cror
crorc
crxor
dcbf
dcbi
dcbst
dcbt
dcbtst

dcbz

0

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

31 s A B 60 Rc
28 s A UIMM

29 s A UIMM

18 Li AAlLK
16 BO BI BD AAlLK
19 BO Bl 00000 528 LK
19 BO BI 00000 16 LK
31 ofd |o]|L A B 0 0
11 ofd |ofL A SIMM

31 ofd |o|L A B | 32 | 0
10 ofd |o]|L A UIMM

31 S A 00000 26 Rc
19 crbD crbA crbB 257 0
19 crbD crbA crbB 129 0
19 crbD crbA crbB 289 0
19 crbD crbA crbB 225 0
19 crbD crbA crbB 33 0
19 crbD crbA crbB 449 0
19 crbD crbA crbB 417 0
19 crbD crbA crbB 193 0
31 00000 A B 86 0
31 00000 A B 470 0
31 00000 A B 54 0
31 00000 A B 278 0
31 00000 A B 246 0
31 00000 A B 1014 0

divwx 31 D A B OF| 491 Rc
divwux 31 D A B OF| 459 Rc
eciwx 31 D A B 310 0
ecowx 31 S A B 438 0
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Name
eieio
eqvx

extsbx

extshx

fabsx

faddx

faddsx

fcmpo

fcmpu

0

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

31 00000 00000 00000 854 0
31 S A B 284 Rc
31 S A 00000 954 Rc
31 S A 00000 922 Rc

63 D 00000 B 264 Rc
63 A B 00000 21 Rc
59 A B 00000 21 Rc

63

crfD

00

32

63

crfD

00

fetiwx 63 D 00000 B 14 Rc
fetiwzx 63 D 00000 B 15 Rc
fdivx 63 D A B 00000 18 Rc
fdivsx 59 D A B 00000 18 Rc
fmaddx 63 D A B C 29 Rc
fmaddsx 59 D A B C 29 Rc
fmrx 63 D 00000 B 72 Rc
fmsubx 63 D A B C 28 Rc
fmsubsx 59 D A B C 28 Rc
fmulx 63 D A 00000 C 25 Rc
fmulsx 59 D A 00000 C 25 Rc
fnabsx 63 D 00000 B 136 Rc
fnegx 63 D 00000 B 40 Rc
fnmaddx 63 D A B C 31 Rc
fnmaddsx 59 D A B C 31 Rc
fnmsubx 63 D A B C 30 Rc
fnmsubsx 59 D A B C 30 Rc
fresx® 59 D 00000 B 00000 24 Rc
frspx 63 D 00000 B 12 Rc
frsqrtex® 63 D 00000 B 00000 26 Rc
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Name 0

fselx®

63

23

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fsubx 63 D A B 00000 20 Rc
fsubsx 59 D A B 00000 20 Rc
icbi 31 00000 A B 982 0
isync 19 00000 00000 00000 150 0
Ibz 34 D A d
lbzu 35 D A d
Ibzux 31 D A B 119 0
Ibzx 31 D A B 87 0

Ifd 50 D A d
Ifdu 51 D A d
Ifdux 31 D A B 631 0
Ifdx 31 D A B 599 0
Ifs 48 D A d
Ifsu 49 D A d
Ifsux 31 D A B 567 0
Ifsx 31 D A B 535 0
lha 42 D A d
lhau 43 D A d
Ihaux 31 D A B 375 0
lhax 31 D A B 343 0
lhbrx 31 D A B 790 0
lhz 40 D A d
lhzu 41 D A d
lhzux 31 D A B 311 0
lhzx 31 D A B 279 0

A4
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Name
Imw
Iswi 3

Iswx 3

0

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

46 D A
31 D A NB 597 0
31 D A B 533 0

lwz

lwzu
lwzux
lwzx
mcrf
mcrfs
mcerxr
mfcr
mffsx
mfmsr 1
mfspr 2
mfsr 1
mfsrin
mftb
mtcrf
mtfsb0x
mtfsblx
mtfsfx
mtfsfix
mtmsr 1
mtspr 2

mtsr 1

mtsrin 1

D A
32 D A

33 D A

31 D A B 55 0
31 D A B 23 0
19 ofd | 00| cfs | 00| 00000 0 0
63 ofd | 00| cfs [ 00| 00000 64 0
31 ofd [ 00| 00000 00000 512 0
31 D 00000 00000 19 0
63 D 00000 00000 583 Rc
31 D 00000 00000 83 0
31 D spr 339 0
31 D o| SR 00000 595 0
31 D 00000 B 659 0
31 D thr 371 0
31 s o| CRM 0 144 0
63 crbD 00000 00000 70 Rc
63 crbD 00000 00000 38 Rc
63 o| M |o B 711 Rc
63 crfD | 00| 00000 MM |0 134 Rc
31 s 00000 00000 146 0
31 S spr 467 0
31 s o| SR 00000 210 0
31 s 00000 B 242 0

Appendix A. PowerPC Instruction Set Listings

A-5



Name 0

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mulhwx 31 D A B 0 75 Rc
mulhwux 31 D A B 0 11 Rc
L R I N R IR
mulli 7 D A SIMM
mullwx 31 D A B OEI 235 Rc
nandx 31 S A B 476 Rc
negx 31 D A 00000 OEI 104 Rc
norx 31 S A B 124 Rc
orx 31 S A B 444 Rc
orcx 31 S A B 412 Rc
ori 24 S A UIMM
oris 25 S A UMM
rfi 1 19 00000 00000 00000 50 0

rlwimix 20 S A SH MB ME Rc
rlwinmx 21 S A SH MB ME Rc
rlwnmx 23 S A B MB ME Rc

sc 17 00000 00000 0000000000000O0 0
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Name
stb
stbu

stbux

stbx

0

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

38 S d
39 S A d
31 S A B 247 0
31 S A B 215 0

stfd 54 S A d
stfdu 55 S A d
stfdux 31 S A B 759 0
stfdx 31 S A B 727 0
stfiwx 31 S A B 983 0
stfs 52 S A d
stfsu 53 S A d
stfsux 31 S A B 695 0
stfsx 31 S A B 663 0
sth 44 S A d
sthbrx 31 S A B 918 0
sthu 45 S A d
sthux 31 S A B 439 0
sthx 31 S A B 407 0
stmw 3 47 S A d
stswi 3 31 S A NB 725 0
stswx 3 31 S A B 661 0
stw 36 S A d
stwbrx 31 S A B 662 0
stwcex. 31 S A B 150 1
stwu 37 S A d
stwux 31 S A B 183 0
stwx 31 S A B 151 0
subfx 31 D A B OEI 40 Rc
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Name

subfcx
subfex
subfic
subfmex
subfzex

sync

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 D A B OF| 8 Rc
31 D A B OE| 136 Rc
08 D A SIMM
31 D A 00000 (OF 232 Rc
31 D A 00000 [OF 200 Rc
31 00000 00000 00000 598 0

tibie 1®

tibsyncl®
tw

twi

XOrx

xori

xoris

31 00000 00000 B 306 0
31 00000 00000 00000 566 0
31 TO A B 4 0
03 TO A SIMM
31 S A B 316 Rc
26 S A UIMM
27 S A UIMM

1 supervisor-level instruction

2 Supervisor- and user-level instruction

3 Load and store string or multiple instruction

4 64-bit instruction
5 Optional instruction

A-8

PowerPC 604e RISC Microprocessor User’s Manual



A.2 Instructions Sorted by Opcode

Table A-2 lists the 604e instruction set sorted in numeric order by opcode, including those

PowerPC instructions not implemented by the 604e.

Key:

I:I Reserved bits

Table A-2. Complete Instruction List Sorted by Opcode

I:I Instruction not implemented in the 604e

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
tdi“| 000010 TO A SIMM
twi 000011 TO A SIMM
mulli 000111 D A SIMM
subfic 001000 D A SIMM
cmpli 001010 crfD oL A UIMM
cmpi 001011 crfD oL A SIMM
addic 001100 D A SIMM
addic. 001101 D A SIMM
addi 001110 D A SIMM
addis 001111 D A SIMM
bex 010000 BO Bl BD AA|LK
sc 010001 00000 00000 00000000000000OO 1/0
bx 010010 LI IAA|LK
mcrf 010011 crfD 00 crfS 00 00000 0000000000 0
belrx 010011 BO Bl 00000 0000010000 LK
crnor 010011 crbD crbA crbB 0000100001 0
rfi 010011 00000 00000 00000 0000110010 0
crandc 010011 crbD crbA crbB 0010000001 0
isync 010011 00000 00000 00000 0010010110 0
crxor 010011 crbD crbA crbB 0011000001 0
crnand 010011 crbD crbA crbB 0011100001 0
crand 010011 crbD crbA crbB 0100000001 0
creqv 010011 crbD crbA crbB 0100100001 0
crorc 010011 crbD crbA crbB 0110100001 0
cror 010011 crbD crbA crbB 0111000001 0
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Name
beetrx
rlwimix
riwinmx
rlwnmx
ori
oris
xori
xoris

andi.

andis.

0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

010011 BO Bl 00000 1000010000 LK
010100 S A SH MB ME Rc
010101 S A SH MB ME Rc
010111 S A B MB ME Rc
011000 S A UMM
011001 S A UIMM
011010 S A UIMM
011011 S A UMM
011100 S A UIMM
011101 S A UIMM

cmp
tw

subfcx

addcx

mulhwux
mfcr

lwarx

lwzx
slwx

cntlzwx

011111 cfD |O0|L A B 0000000000 0
011111 TO B 0000000100 0
011111 D A B O 0000001000 Rc
011111 D A B OF| 0000001010 Rc
011111 D A B 0 0000001011 Rc
011111 D 00000 00000 0000010011 0
011111 D A B 0000010100 0

011111 D A B 0000010111 0
011111 S A B 0000011000 Rc
011111 S A 00000 0000011010 Rc

andx 011111 S A B 0000011100 Rc
cmpl| 011111 crfD |o||_ A B 0000100000 0
subfx 011111 D A B OEI 0000101000 Rc
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Name 0

011111

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0000110110

mulhwx

011111

011111

0000110111

0001001011

mfmsr

011111

0001010011

dcbf 011111 00000 A B 0001010110 0
Ibzx 011111 D A B 0001010111 0
negx 011111 D A 00000 OEI 0001101000 Rc
Ibzux 011111 D A B 0001110111 0
norx 011111 S A B 0001111100 Rc
subfex 011111 D A B OF| 0010001000 Rc
addex 011111 D A B OE| 0010001010 Rc
mtcrf 011111 S 0 CRM 0010010000 0
mtmsr 011111 S 00000 00000 0010010010 0

stwcex.

011111

0010010110

stwx

A
A

011111

0010010111

stwux 011111 S B 0010110111 0
subfzex 011111 D 00000 (OF 0011001000 Rc
addzex 011111 D 00000 (OF 0011001010 Rc

mtsr 011111 S 0 SR 00000 0011010010 0

stbx

011111

0011010111

subfmex

011111

00000

0011101000

addmex

011111

00000

0011101010

Rc
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Name

mullwx
mtsrin
dcbtst
stbux
addx
dcbt
lhzx
eqvx
tibie 1
eciwx
lhzux
Xorx

mfspr 2

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
011111 D A B oq 0011101011  |Re
011111 s 00000 B 0011110010 0
011111 00000 A B 0011110110 0
011111 s A B 0011110111 0
011111 D A B oq 0100001010  |Rc
011111 00000 A B 0100010110 0
011111 D A B 0100010111 0
011111 s A B 0100011100 Rc
011111 00000 00000 B 0100110010 0
011111 D A B 0100110110 0
011111 D A B 0100110111 0
011111 s A B 0100111100 Rc
011111 D spr 0101010011 0

o | o | A | 5 | oo o

i | o | w | onon o

lhaux
sthx

orcx

ecowx

sthux

divwux

mtspr2
dcbi

nandx

A

011111 D B 0101110111 0
011111 S B 0110010111 0
011111 S B 0110011100 Rc

011111 S B 0110110110 0
011111 S B 0110110111 0
011111 S B 0110111100 Rc

011111 D A B O 0111001011 Rc
011111 S spr 0111010011 0
011111 00000 B 0111010110 0

011111

0111011100

Rc
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
divwx| 011111 D A B OE| 0111101011 Rc
slbia 145 011111 00000 00000 00000 0111110010 0
merxr 011111 cfD | 00 00000 00000 1000000000 0
Iswx 3 011111 D A B 1000010101 0
Iwbrx 011111 D A B 1000010110 0
Ifsx 011111 D A B 1000010111 0
srwx| 011111 s A B 1000011000 Rc
srdx* 011111 S A B 1000011011 Rc
tlbsync 1-° 011111 00000 00000 00000 1000110110 0
Ifsux 011111 D A B 1000110111 0
mfsr 011111 D 0 SR 00000 1001010011 0
Iswi 3 011111 D A NB 1001010101 0
sync 011111 00000 00000 00000 1001010110 0
Ifdx 011111 D A B 1001010111 0
Ifdux 011111 D A B 1001110111 0
mfsrin 1 011111 D 00000 B 1010010011 0
stswx 3 011111 s A B 1010010101 0
stwbrx 0