
Safety-Critical Systems 4:
Engineering of Embedded Software Systems
WiSe 2002/03

due: Nov. 14, 2002

Jan Bredereke

Solution for Assignment 3

Bicycle Odometer – Software Requirements Specification

This software requirements specification implements the example system requirements speci-
fication by Jan Bredereke for Assignment 2.

Recommendation: if you would like to understand how I designed this specification, compare
it to the system requirements specification and find out which parts of the system requirements
specification appear in which places here. One major task of design is to assign the parts of
the system requirements specification to the components of the system, i.e., IN, SOF, and
OUT in our case.

Environmental Quantities

This specification takes the environmental quantities specification by Jan Bredereke for As-
signment 1 as a base, which is not repeated here. But we make one update to this specification:
the value set of the controlled quantity cnumber is extended by the value C invalid. This value
is an abstraction for all kinds of display that are not valid numbers.

Input and Output Quantities

In our particular application, there is no input or output variable that carries a unit. We
therefore omit the corresponding column in the following two tables.

Input Quantities

Variable Description Value Set N
o
te

s

iinByte bit field indicating rotation
sensor and button position

{0b00000000, . . . 0b11111111} 1

Notes

1. The variable iinByte has 8 bits with the following meaning: the least significant bit
(at position 0) reflects the rotation sensor. It is 1 if the resistance was < 10 Ω at
measurement time, and 0 otherwise. The next bit (at position 1) reflects the multi-
function button position. It is 1 if the button was down at measurement time, and 0
otherwise. The other six bits are always 0.

Output Quantities

Variable Description Value Set N
o
te

s

onumberOut number displayed ×4
i=0{0, . . . 255} 1

omodeOut mode indicator displayed {0b00000000, . . . 0b11111111} 2

Notes

1. The variable onumberOut[] is an array of five 8-bit variables. The array ranges from
index 0 to index 4. Each of the variables determines the visible value of one digit on
the odometer’s display. onumberOut[0] is the most significant digit and onumberOut[4]
is the least significant digit. Indices between these behave accordingly. A value of 0
displays the digit “0”, a value of 9 displays the digit “9”. Values between 0 and 9 behave
accordingly. A value of 15 leaves the digit blank. The behaviour for other values is not
defined.

2. The variable omodeOut has 8 bits with the following meaning: the bits 0, 1, and 2 reflect
the indicators for “km/h”, “km total”, and “km trip”, respectively. If a bit is 1, the
corresponding indicator is visible, if the bit is 0, the indicator is not visible. When at
least one of the bits 1 and 2 is set, the decimal point of the number display is visible,
otherwise it is invisible. The remaining 5 bits must always be 0.

Input/Output Quantities

We assume that the basic operating system does not allow any concurrent execution. There-
fore, at most one user routine will be running at any point of time.

Variable Description Value Set N
o
te

s

iortmainRunning user routine rtmain() is currently running B

iortinitRunning user routine rtinit() is currently running B

Issues Related to the Entire System

Accuracy

The accuracy of long time intervals (≥ 1 s), i.e., the clock drift, shall be ±10−3 of the true
value. This shall hold for any sub-interval of time.

In the following, all expressions referring to time must be interpreted not with respect to the
true time t, but with respect to a drifted time reference td(t).

2

Mode Class

Clcontrol : MdosInBoot,MdrtinitInControl,MdosAfterBoot,MdrtmainInControl,MdosInControl

initial mode: MdosInBoot

Mode Event Class New Mode

MdosInBoot @T(t = CbootDrtn) MdrtinitInControl
MdrtinitInControl @F(iortinitRunning) MdosAfterBoot
MdosAfterBoot @T(t = First(@F(iortinitRunning)) +

CafterBootDrtn)

MdrtmainInControl

MdrtmainInControl @F(iortmainRunning) MdosInControl
MdosInControl t− Last(@T(iortmainRunning)) = 1 ms MdrtmainInControl

Event Class

name event class

etick @T(inmode(MdrtmainInControl))

Auxiliary Functions

The relation from an speed output value to the speed display controlled value:

fspeedOut(ov) = ov[2] · 100 + ov[3] · 10 + ov[4]

Note: no decimal point is displayed, and the number is displayed flush right. If the speed is
zero, a single 0 is displayed. Leading zeroes are not displayed.

The relation from a distance output value to a distance display controlled value:

fdistOut(ov) = ov[0] · 1000 + ov[1] · 100 + ov[2] · 10 + ov[3] + ov[4] · 0.1
Note: a decimal point is always displayed. The two digits immediately left and right of the
decimal point are always displayed, even if they are 0. Otherwise, leading or trailing zeroes
are not displayed. The number is displayed flush right.

Editing note: the type of the controlled variable cnumber should really be adapted to match
the type of the output variable onumberOut better.

The Input Device Requirements Specification IN

Conditions

name condition

psensorClosed msensor < 10 Ω

Event Classes

name event class

ertFuncLeave @F(inmode(MdrtmainInControl)) ∨ @F(inmode(MdrtinitInControl))

3

Accuracy

The accuracy of the measurement of electrical resistance for msensor shall be ±3 Ω.

Auxiliary Functions

Note: in the following, there is non-determinism due to the uncertainty about the point in
time when polling for the input values takes place.

The set of possible polled values for the rotation sensor:

fsensorClosedPolled(t) =

pT : H1, rT : G, Normal
etick {sc | ∃tp . sc = psensorClosed(tp) ∧

Last(ertFuncLeave) < tp < t}
¬etick ∗

The set of possible polled values for the button position:

fbuttonPolled(t) =

pT : H1, rT : G, Normal
etick {sc | ∃tp . sc = (mbutton(tp) = Cdown) ∧

Last(ertFuncLeave) < tp < t}
¬etick ∗

The set of possible values for the polled input byte:

f inBytePolled(t) = {n | n = 0b1 · ns + 0b10 · nb ∧
ns ∈ BoolSetToNums(fsensorClosedPolled(t)) ∧ nb ∈ BoolSetToNums(fbuttonPolled(t))}

Input Variables

iinByte(t) ∈
pT : H1, rT : G, Normal

etick f inBytePolled(t)

t(inmode(MdrtmainInControl)) { iinByte (Last(@T(inmode(MdrtmainInControl)))) }
F(inmode(MdrtmainInControl)) ∗

Input/Output Variables

@T(inmode(MdrtinitInControl)) =⇒ @T(iortinitRunning)

@T(inmode(MdrtmainInControl)) =⇒ @T(iortmainRunning)

4

The Output Device Requirements Specification OUT

Controlled Variables

cmodeInd =

pT : H1, rT : G, Normal
omodeOut & 0b1 “km/h”
omodeOut & 0b100 “km trip”
omodeOut & 0b10 “km total”

cnumber =

pT : H1, rT : G, Normal

inmode(Mdspeed) fspeedOut (oNumberOut)

inmode(MddayTrip) fdistOut (oNumberOut)

inmode(Mdtotal) fdistOut (oNumberOut)

Tolerance

The update delay for cmodeInd and cnumber must be less than 0.099 s, including the delay
by the optical LCD component.

The Software Requirements Specification SOF

Event Classes

name event class

eroundComplete etick WHEN(∀e ∈ Prev10th(etick) . (iinByte(e.t)&0b1) = 1)

WHEN(#(etick) ≥ 11)

WHEN(∀e ∈ Prev9(etick) . (iinByte(e.t)&0b1) = 0)
ebuttonPressed etick WHEN(∀e ∈ Prev9(etick) . (iinByte(e.t)&0b10) = 1)
ebuttonPressedLong etick WHEN(∀e ∈ Prev1999(etick) . (iinByte(e.t)&0b10) = 1)

Mode Class

ClbtnDrtn : MdbtnUp,MdbtnShort,MdbtnLong

initial mode: MdbtnUp

Mode Event Class New Mode

MdbtnUp ebuttonPressed MdbtnShort
MdbtnShort etick ∧ ¬ebuttonPressed MdbtnUp

etick ∧ ebuttonPressedLong MdbtnLong
MdbtnLong etick ∧ ¬ebuttonPressed MdbtnUp

5

Event Classes

name event class

eswitchMode @F(MdbtnShort) ∧ @T(MdbtnUp)
ereset @T(MdbtnLong)

Mode Class

Cldisplay : Mdspeed,Mdtotal,MddayTrip

initial mode: Mdspeed

Mode Event Class New Mode

Mdspeed eswitchMode ∨ ereset MddayTrip
MddayTrip eswitchMode Mdtotal
Mdtotal eswitchMode Mdspeed

ereset MddayTrip

maximum delay: any change happening at an event etick shall become visible before the event
@F(inmode(MdrtmainInControl)).

Auxiliary Functions

f totalPulses = #(eroundComplete)

f totalDist = Round1(f totalPulses · Ccircumference) mod CnumberLimit

fdayTripPulses = #(eroundComplete)−#(Prev(eroundComplete,Last(ereset)))

fdayTripDist = Round1(fdayTripPulses · Ccircumference) mod CnumberLimit

fpulsePeriod =

pT : H1, rT : G, Normal

#(eroundComplete) ≥ 2 Last(eroundComplete)− SecondButLast(eroundComplete)

#(eroundComplete) < 2 CveryLongPulse

The resolution of time measurement for fpulsePeriod shall be 1 ms.

fspeedRaw = Round(3.6 km/h
m/s

Ccircumference
fpulsePeriod

)

fspeedDisp =

pT : H1, rT : G, Normal
fpulsePeriod < 3.6 km/h

m/s

Ccircumference
1 km/h

fspeedRaw
fpulsePeriod ≥ 3.6 km/h

m/s

Ccircumference
1 km/h

0 km/h

Note: the above cut-off at 1 km/h avoids the problem of a display not always returning to
zero during stand-still of the bicycle, which is annoying.

6

Output Variables

omodeOut =

pT : H1, rT : G, Normal

inmode(Mdspeed) 0b00000001

inmode(MddayTrip) 0b00000100

inmode(Mdtotal) 0b00000010

onumberOut =

pT : H1, rT : G, Normal

inmode(Mdspeed) fspeedOut−1(fspeedDisp)

inmode(MddayTrip) fspeedOut−1(fdayTripDist)

inmode(Mdtotal) fspeedOut−1(f totalDist)

Input/Output Variables

Processing of user routines is “fast”:

∃tr . 0 ms < tr � 1 ms ∧ @T(iortinitRunning(t)) =⇒ @F(iortinitRunning(t+ tr))

∃tr . 0 ms < tr � 1 ms ∧ @T(iortmainRunning(t)) =⇒ @F(iortmainRunning(t+ tr))

Dictionary

Constants

name value description

CbootDrtn ∈ [0 s . . . 1 s] duration of OS boot.
CafterBootDrtn ∈ [0 s . . . 1 ms] delay between end of rtinit() and first call to

rtmain().
Ccircumference 0.711 m Circumference of the wheel.
CnumberLimit 10000.0 Smallest number which is too large to display.
CveryLongPulse 1000 s This inter-pulse time means “very long” and will

result in a speed display of 0 km/h.

Mathematic Functions

SecondButLast(e) = Last(e,Last(e))

Round : R+
0 7→ N, ∀x ∈ R . − 0.5 ≤ x− Round(x) < 0.5

Round1 : R+
0 7→ R

+
0 , ∀x ∈ R . Round1(x) = Round(10 x)/10

BoolSetToNums : P({false, true}) 7→ P({0, 1})
BoolSetToNums = {(bs, is) | (false ∈ bs⇔ 0 ∈ is) ∧ (true ∈ bs⇔ 1 ∈ is)}
Prev9 : Event Classes, R 7→ Event Classes
Prev9(e, t) delivers the set of the nine events of event class e that occur prior to time t. If
there are less such events, the resulting set is accordingly smaller.
As usual, Prev9(e) = Prev9(e, tf)

7

Prev1999 : Event Classes, R 7→ Event Classes
Prev1999(e, t) delivers the set of the 1999 events of event class e that occur prior to time t. If
there are less such events, the resulting set is accordingly smaller.
As usual, Prev1999(e) = Prev1999(e, tf)

Prev10th : Event Classes, R 7→ Event Classes
Prev10th(e, t) delivers the set containing the tenth last event of event class e that occurs prior
to time t. If there are less such events, the resulting set is accordingly empty.
As usual, Prev10th(e) = Prev10th(e, tf)

The other mathematic functions are standard and are interpreted as in the lecture.

8

