
Safety-Critical Systems 4:
Engineering of

Embedded Software Systems

c© Jan Bredereke

University of Bremen

WS 2002/03

0. Introduction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Topic of This Lecture 2

Topic of This Lecture

intersection of:

• engineering

• embedded systems

• software systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Engineering 3

Engineering

• the disciplined use of science, mathematics and technology

to build useful artefacts

• engineers design by means of documentation
◦ key step: design validation

◦ maintenance requires good documentation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Embedded Systems 4

Embedded Systems

• definition: an embedded computer system is considered a

module in some larger system

• some distinguishing characteristics:
◦ designer not free to define interface

◦ interface constraints may be strict and arbitrary, but we can’t ignore

them

◦ interfaces will change during development

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Examples of Embedded Systems 5

Examples of Embedded Systems

• computer in autonomous wheelchair
constraints: devices

sensor data

physics of wheelchair

• telephone switching system
constraints: other company’s switches

own older switches

international standards

telephone number rules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Safety-Critical Systems Lecture Series 6

The Safety-Critical Systems
Lecture Series

SCS1: Basic concepts - problems - methods - techniques

(SoSe02)

SCS2: Management aspects - standards - V-Models - TQM

- assessment - process improvement (SoSe01, SoSe03)

SCS3: Formal methods and tools - model checking - testing

- partial verification - inspection techniques - case studies

(WiSe01/02)

SCS4: Engineering of Embedded Software Systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of SCS4 7

Overview of SCS4

1. rigorous description of requirements
1.1 system requirements

1.2 software requirements

2. what information should be provided in computer system

documentation?

3. decomposition into modules
3.1 the criteria to be used in decomposing systems into modules

3.2 time and space decomposition of complex structures

3.3 designing software for ease of extension and contraction

4. design of the module interfaces

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of SCS4 8

5. families of systems
5.1 motivation: maintenance problems in telephone switching

5.2 families of programs

5.3 families of requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Style of This Course 9

Style of This Course

• lecture 2 SWS (Vorlesung)
◦ “This is obvious, isn’t it?”

• seminar 2 SWS (Übung)
◦ “Oops, applying it here is difficult!”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Web Page of Lecture 10

Web Page of Lecture

www.tzi.de/agbs/lehre/ws0203/scs4

available for download:

• slides

• assignments

• announcements

• links

• . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

http://www.tzi.de/agbs/lehre/ws0203/scs4

Text for Reading 11

Text for Reading

• lecture based on a number of research papers

• references will be given during course
◦ mostly, not online :-(

◦ important ones available for copying from secretary

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Mark / “Schein” 12

Mark (“Schein”)

• n assignments during term, 7 ≤ n ≤ 14
• assignments can be solved in groups of two

• n− 1 assignments must be handed in

• average of n− 1 best marks must be ≥ 60%
• oral exam (“Fachgespräch”) at end of term
◦ 15-20 min

◦ in the groups of two

◦ individual marks

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1. Rigorous Description
of Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 1 14

Text for Chapter 1

[PaMa95] Parnas, D. L. and Madey, J. Functional

documents for computer systems. Sci. Comput.

Programming 25(1), 41–61 (Oct. 1995).

Four-variable model, structure of requirements

documentation and software documentation.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 1 15

[Pet00] Peters, D. K. Deriving Real-Time Monitors from

System Requirements Documentation. PhD thesis,

McMaster Univ., Hamilton, Canada (Jan. 2000).

Most current version of four-variable model and tabular

notation. (Is also on testing).

Relevant: Chapters 1.1, 5, Appendix A

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 1 16

Additional Background for Chapter 1

[vSPM93] van Schouwen, A. J., Parnas, D. L., and Madey,

J. Documentation of requirements for computer systems.

In “IEEE Int’l. Symposium on Requirements Engineering –

RE’93”, pp. 198–207, San Diego, Calif., USA (4–6 Jan.

1993). IEEE Comp. Soc. Press.

Example for the four-variable approach (water level

monitoring system).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 1 17

[LaRö01] Lankenau, A. and Röfer, T. The Bremen

Autonomous Wheelchair – a versatile and safe mobility

assistant. IEEE Robotics and Automation Magazine,

“Reinventing the Wheelchair” 7(1), 29–37 (Mar. 2001).

General description of the Bremen autonomous wheelchair

“Rolland”.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Role of Documentation in Computer System Design 18

The Role of Documentation
in Computer System Design

• professional engineer:
◦ makes plan on paper

◦ analyses plan thoroughly

◦ then builds system, using plan

• engineer revising the system:
◦ understands system through old plan

◦ changes plan

◦ analyses plan thoroughly

◦ then builds system, using plan

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Role of Documentation in Computer System Design 19

• Computer hardware is made this way.

• Computer software usually is not.

• But standard engineering practice can be applied, too.

• Documentation
◦ as a design medium

◦ input to analysis

◦ input to testing

◦ facilitates revision or replacement

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Education of Engineers Can’t Start Too Early... 20

Education of Engineers
Can’t Start Too Early. . .

from a text book on engineering:

title page

good example

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1.1 System Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How Can We Document System Requirements? 22

How Can We Document
System Requirements?

• identify the relevant environmental quantities
◦ physical properties

� temperatures

� pressures

◦ positions of switches

◦ readings of user-visible displays

◦ wishes of a human user

• represent them by mathematical variables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How Can We Document System Requirements? 23

• define carefully the association

of env. quantities and math. variables

• specify a relation on the math. variables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Functions of Time 24

Functions of Time

• env. quantities qi described by functions of time

• types of values of env. quantities: qi ∈ Qi

• environmental state function:

S : R→ Q1 ×Q2 × . . .×Qn

• set of possible env. states:

St =df Q1 ×Q2 × . . .×Qn

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Electronic Thermometer 25

Example: Electronic Thermometer

→ blackboard. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Monitored vs. Controlled Quantities 26

Monitored vs. Controlled Quantities

• controlled quantities:

their value may be required to be changed by the system

• monitored quantities:

shall affect the system behaviour

• some quantities are both

• time: is a monitored quantity

(in real-time systems)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Monitored vs. Controlled Quantities 27

• monitored state function:

m˜ t : R→ Q1 ×Q2 × . . .×Qi, 1 ≤ i ≤ n
• controlled state function:

c˜t : R→ Qj ×Qj+1 × . . .×Qn, 1 ≤ j ≤ n
• j ≤ i+ 1
• environmental state function: (m˜ t, c˜t)• set of all m˜ t: M
• set of all c˜t: C
• “behaviour”: an S for a single execution

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation NAT 28

The Relation NAT

• constraints on the environmental quantities

• constraints by nature, by previously installed systems

• is part of the requirements document

• validity is responsibility of customer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation NAT 29

• NAT ⊆ M× C
• domain(NAT) = {m˜ t | m˜ t allowed by env. constraints}
◦ if m˜ t 6∈ domain(NAT) then designer may assume that these values

never occur

• range(NAT) = {c˜t | c˜t allowed by env. constraints}
◦ if c˜t 6∈ range(NAT) then system cannot make these values happen

• (m˜ t, c˜t) ∈ NAT iff environmental constraints allow that

c˜t are controlled quantities if m˜ t are monitored quantities

• NAT usually not a function
◦ the system should have some choice

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation REQ 30

The Relation REQ

• further constraints on the environmental quantities

• constraints by system

• is part of the requirements document

• validity is responsibility of system designer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation REQ 31

• REQ ⊆ M× C
• domain(REQ) ⊇ domain(NAT)

= {m˜ t | m˜ t allowed by env. constraints}
• range(REQ) = {c˜t | c˜t allowed by correct system}
• (m˜ t, c˜t) ∈ REQ iff system should permit that

c˜t are controlled quantities if m˜ t are monitored quantities

• REQ usually not a function
◦ one can tolerate “small” errors in the values of controlled quantities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Contract 32

Contract

• REQ states what the system designer must provide

• NAT states what the customer must provide

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Black-Box View 33

Black-Box View

• the requirements document is entirely in terms of

environmental quantities

• no reference to internal quantities

• no reference to internal state,

only to the history of env. quantities

• ⇒ no restriction on system designer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Specifying Behaviour 34

Specifying Behaviour

what’s next?

• modes and mode classes

• conditions, events

• four-variable approach for system design and software

requirements

• tabular notation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modes and Mode Classes, Informally 35

Modes and Mode Classes, Informally

Definition 1 (Mode, informally)

An (environmental) mode is a set of (environmental)
states.
Definition 2 (Mode Class, informally)

A mode class is a partitioning of the state space.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Discussion of Modes etc. 36

Discussion of Modes etc.

• there may be several mode classes

• system is always in one mode of every mode class

• mode class and its modes may be defined by a transition

table

• one state change may imply two mode changes
◦ no “simultaneous events”

• if time is monitored, the system never returns into the
same state
◦ modes are handy for equivalence classes of states

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Lift Controller 37

Example: Lift Controller

Floor 2

Floor 1

Floor 3

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Relevant Environmental Quantities 38

Lift Controller:
Relevant Environmental Quantities

• height of lift

• elevation motor command

• position of doors

• door motor command

• (buttons left out for simplicity here)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Environment Variables 39

Lift Controller: Environment Variables

Variable m
o

n
.

ct
rl

.

Description Value Set Unit N
o

te
s

mheight • height of lift R m 1
celevMotorCommand • elevation motor command {Cup, Coff, Cdown} —
mdoorPos • position of doors R m 2
celevMotorCommand • door motor command {Copen, Coff, Cclose} —

Notes
1. The height is relative to the lowest position physically possible, upward is positive.

2. This is how far the doors are opened. 0 m means entirely closed, positive means open.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: the Relation NAT 40

Lift Controller: the Relation NAT

what to state rigorously (not done here):

• height is ≥ 0 m and ≤ max. height

• the acceleration and deceleration of the lift is bounded

(→ use differential equations)

• door position is ≥ 0 m and ≤ max. width

• . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conditions 41

Conditions

Definition 3 (Condition)

A condition is a function R→ B,
defined in terms of the env. state function.
It is finitely variable on all intervals of system operation.
Definition 4 (Cnd)

Cnd is the tuple of all conditions.
We assume an order on the conditions.
We assume Cnd to be finite.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Conditions 42

Lift Controller: Conditions

Name Condition

pdoorClosed mdoorPos = 0 m
pat1stFloor |mheight− 0.5 m| ≤ 1 cm
pat2ndFloor |mheight− 4.5 m| ≤ 1 cm
pat3rdFloor |mheight− 8.5 m| ≤ 1 cm

Cnd = (pdoorClosed, pat1stFloor, pat2ndFloor, pat3rdFloor)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Events 43

Events

Definition 5 (Event)

An event e, is a pair, (t, c), where
e.t ∈ R is a time at which one or more conditions change
value and
e.c ∈ {T, F,@T,@F}n indicates the status of all
conditions at e.t, as follows: e.c[i] pi

T 8pi(e.t) ∧ pi′(e.t)
F ¬8pi(e.t) ∧ ¬pi′(e.t)

@T ¬8pi(e.t) ∧ pi′(e.t)
@F 8pi(e.t) ∧ ¬pi′(e.t)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Event Space 44

Event Space

Definition 6 (Event Space)

The event space is the set of all possible events:
EvSp =df R× {T, F,@T,@F}n

• any particular finite duration behaviour defines a finite set

of events Ev ⊂ EvSp

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Events 45

Lift Controller: Events

• (5 s, (F,@T,F,F))
• (7 s, (@T,T,F,F))
• (20 s, (@F,T,F,F))
• (22 s, (F,@F,F,F))
• (29 s, (F,F,@T,F))
• . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

History 46

History

• we are often interested in the values of the conditions for a

specific interval of time

• a history is
◦ the set of initial values for the conditions and

◦ the sequence of events in the time interval

• (formal definition omitted here)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modes and Mode Classes 47

Modes and Mode Classes

Definition 7 (Mode Class)

A (environmental) mode class is an equivalence relation
on possible histories, such that:
if MC(H1,H2) and
if Ĥ1 and Ĥ2 are the extensions of H1 and H2

by the same event,
then MC(Ĥ1, Ĥ2).
Definition 8 (Mode)

An (environmental) mode is one such equivalence class.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Mode Classes 48

Lift Controller: Mode Classes

• some useful mode classes:
◦ Cldoor: MddoorClosed, MddoorOpen

◦ Clfloor: Mdin1stFloor, Mdin2ndFloor, Mdin3rdFloor

◦ ClatFloor: MdatAFloor, MdbetweenFloors

• definition of mode classes:
◦ through conditions

◦ by transition tables

(see later)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Tabular Notation 49

Tabular Notation

• tabular notations often useful to represent functions in

computer system documentation

• extensive work on different table formats exists

• precise semantics has been defined for these table formats

• one format specifically for mode transition tables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: the Relation REQ 50

Lift Controller: the Relation REQ

• conditions defined in terms of (monitored) variables

• event classes defined in terms of conditions

• mode classes defined in terms of event classes

• controlled variables defined in terms of mode classes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: the Relation REQ 51

Clfloor:
Mode Event Class New mode

Mdin1stFloor @T(pat2ndFloor) Mdin2ndFloor
Mdin2ndFloor @T(pat1stFloor) Mdin1stFloor

@T(pat3rdFloor) Mdin3rdFloor
Mdin3rdFloor @T(pat2ndFloor) Mdin2ndFloor

• the mode remains the same when between floors

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

“Simultaneous” Events 52

“Simultaneous” Events

• modes of a mode class must be disjoint

• → event classes for one mode must be disjoint

• event expressions can comprise more than one event

• assume that causally independent changes of conditions

never occur at exactly the same time (t ∈ R)

• watch out for condition changes that are causally related!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Piecewise Continuous Behaviour 53

Piecewise Continuous Behaviour

• often, environmental quantities have piecewise continuous
behaviour over time
◦ height of lift

◦ position of lift door

• each continuous piece can be described well by a

differential equation

• switching from piece to piece can be described well by

mode changes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Piecewise Continuous Behaviour 54

Lift Controller:
Piecewise Continuous Behaviour

one of the constraints by NAT:
d
dt
mheight =

inmode(Mdup) CliftSpeed

inmode(MdstandStill) 0 cm/s

inmode(Mddown) −CliftSpeed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1.2 Software Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

System Design 56

System Design

• decisions on what to do in hardware/software

• results in:
◦ hardware requirements

◦ software requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Four-Variable Approach for System Design and Software Requirements 57

The Four-Variable Approach
for System Design and Software Requirements

input
devices

IN SOF

software
output
devices

OUT

i(t) o(t)m(t) c(t)

target system

REQ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Input and Output Quantities 58

Input and Output Quantities

• input state function:

i˜t : R→ I1 × I2 × . . .× In
• output state function:

o˜t : R→ O1 ×O2 × . . .×Om

• set of all i˜t: I
• set of all o˜t: O
• behaviour required of
◦ the input devices: IN ⊆ M× I

◦ the output devices: OUT ⊆ O× C

◦ the software: SOF ⊆ I×O

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Software Acceptability 59

Software Acceptability

• the software requirements SOFREQ are
determined completely by REQ, NAT, IN, and OUT
◦ ((IN · SOFREQ ·OUT) ∩NAT) = REQ

◦ SOFREQ usually difficult to calculate precisely

• a software SOF is acceptable if

SOF with IN and OUT and NAT imply REQ:
((IN · SOF ·OUT) ∩NAT) ⊆ REQ
◦ some design decisions make life easier

� remove some non-determinism

� SOF ⊆ SOFREQ

◦ SOF must still be acceptable

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

First Application of Four-Variable Method 60

First Application of Four-Variable Method

• software cost reduction project (SCR)
◦ developed the method

◦ US Naval Research Laboratory (NRL)

• specification of the complete software requirements for the
A-7 aircraft’s TC-2 on-board computer
◦ reverse-engineering of existing system

◦ with help from domain experts (pilots, . . .)

• maintained over lifetime of system
◦ first release: Nov. 1978

◦ end of project: Dec. 1988

• 473 pages

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Autonomous Wheelchair “Rolland” 61

Example: Autonomous Wheelchair “Rolland”

• Univ. of Bremen, AG B. Krieg-Brückner

(Thomas Röfer, Axel Lankenau, . . .)

• joystick-to-motor line wiretapped

• ring of sonar sensors

• safety module

• driving assistant
◦ turning on the spot skill

◦ obstacle avoidance skill

◦ . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Specification of Safety-Relevant Behaviour 62

Rolland: Specification of
Safety-Relevant Behaviour

• very recent research work on “mode confusion” problems

• requirements documented by A. Lankenau, J. Bredereke

• reverse-engineering work

• language: CSP
◦ different formalism

◦ model-checking tool available

◦ CSP starts out with events, not variables

◦ otherwise same software engineering approach used

• slides: presentation ignores CSP

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Relevant Environmental Quantities 63

Rolland: Relevant Environmental Quantities

• the joystick command

• the wheelchair motors command

• the actual wheelchair motors status

• location of the obstacles near the wheelchair

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Environment Variables 64

Rolland: Environment Variables

Variable m
o

n
.

ct
rl

.

Description Type N
o

te
s

mt • current time R

mjoystickCommand • the user intended motion as

indicated with the joystick

tJoystickCommandVector

cmotorsCommand • command for the wheelchair

motors

tMotorsCommandVector

mmotorsActual • the actual motors status of the

wheelchair

tMotorsCommandVector

mobsLoc • location of relevant obstacles tobstacleLocs
morientation • the current orientation of the

wheelchair

torientationRange 1

Notes
1. The orientation is relative to the world (inertial system). At program start, the orientation is 0◦.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Environment Variable Types 65

Rolland: Environment Variable Types

Type Description Values Unit

tJoystickCommandVector a joystick command vector (i,d).

i: fraction of max. joystick

inclination,

d: direction of the joystick

inclination

tinclinationRange ×
torientationRange

(%, ◦)

tinclinationRange fraction of max. joystick

inclination

{x ∈ R |
0 ≤ x ≤ 100}

%

torientationRange a direction.

0: straight ahead

90: left

180: straight back

-90: right

{x ∈ R |
− 180 < x ≤ 180}

◦

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Environment Variable Types 66

Type Description Values Unit

tMotorsCommandVector A command vector (s,a) sent to

the motors as target value.

s: speed value, restricted by

physical limitations of the

wheelchair,

a: angle of the wheelchair’s

steering wheels

tspeedRange ×
tsteeringAngleRange

(cm/s,
◦)

tspeedRange physical wheelchair speed range

(167 cm/s is 6 km/h)

{x ∈ R |
− 167 ≤ x ≤ 167}

cm/s

tsteeringAngleRange angle of steering wheels of

wheelchair.

-60: right

0: straight

60: left

{x ∈ R |
− 60 ≤ x ≤ 60}

◦

tobstacleLocs

(the rather complex type tobstacleLocs is omitted in the slides)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Observations 67

Rolland: Observations

• precise link between environmental quantities and
mathematical variables
◦ definitions in rigorous prose

◦ explicit units

◦ explicit meaning of individual values of a range

• tabular format suitable

• duplication of description avoided

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Conditions and Events 68

Rolland: Conditions and Events

• simple for Rolland

• not specified separately

• specified in-place in the relations (see later)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation NAT 69

Rolland: the Relation NAT

complete description would comprise:
• the wheelchair obeys to commands after a delay
◦ acceleration/deceleration

◦ steering

• obstacles don’t move by themselves

• obstacles are always visible for the sonar sensors

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation NAT 70

• simplified specification for case study:

∃td ∈ (0 . . . CmaxDelMot] .
mmotorsActual = cmotorsCommand(mt− td)

• restrictions of value ranges already specified by types

• convention: if omitted, mt is parameter implicitly

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation REQ 71

Rolland: the Relation REQ
• was specified in case study only implicitly
◦ because of reverse-engineering approach

• explicitly: IN, SOF, OUT, and NAT
• we can assume SOFREQ = SOF and then derive

REQ = ((IN · SOFREQ ·OUT) ∩NAT)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Input Variables 72

Rolland: Input Variables

Input Variable Description Type N
o

te
s

ijoystickUnitCommand the user intended motion as

indicated with the joystick

tJoystickUnitCommandVector

imotorsUnitActual the actual motors status of the

wheelchair

tMotorsUnitCommandVector

iobsLoc location of relevant obstacles tobstacleLocsMap 1
iorientation the current orientation of the

wheelchair

todoOrientationRange 2

Notes
1. This does not include obstacles that cannot be detected by the wheelchair’s sonar sensors, because of

their known technical limitations (surface structure dependance, objects visible only at sensor level,

etc.)

2. The orientation is relative to the world (inertial system). At program start, the orientation is 0◦. This

information is only reliable over short distances due to odometry drift.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Input and Output Variable Types 73

Rolland: Input and Output Variable Types

Type Description Values Unit

tMotorsUnitCommandVector A command vector (s,r)

interpreted by the motors unit.

s: speed value, restricted by

safety and comfort limitations

of the wheelchair,

r: curve radius of the

wheelchair’s steering wheels

tSpeedCommandRange

× tRadiusRange

(cm/s,

cm)

tJoystickUnitCommandVector a command vector (s,r)

containing the interpreted

joystick command,

interpretation as above

tMotorsUnitCommand-

Vector

(cm/s,

cm)

tSpeedCommandRange speed range used for target

commands (coming from the

joystick and sent to the

motor) (84 cm/s is 3 km/h)

{x ∈ N |
−42 ≤ x ≤ 84}

cm/s

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Input and Output Variable Types 74

Type Description Values Unit

tRadiusRange curve radius range

< 0: right curve

> 0: left curve

0: straight
other values between −50

and +50 are physically

impossible and are interpreted

as −50 and +50, respectively

N cm

todoOrientationRange a direction, as computed by

odometry.

{x ∈ N |
− 180 < x ≤ 180}

◦

tobstacleLocsMap

(the rather complex type tobstacleLocsMap is omitted in the slides)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Output Variables 75

Rolland: Output Variables

Output Variable Description Type N
o

te
s

omotorsUnitCommand the command for the

wheelchair motor unit

tMotorsUnitCommandVector

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation IN 76

Rolland: the Relation IN
ijoystickUnitCommand =
mjoystickCommand.d > 90 ∨
mjoystickCommand.d < −90

(round(mjoystickCommand.i/100 · −42),

calcRadius(calcSteeringAngle(mjoystickCommand.d)))

¬(mjoystickCommand.d > 90 ∨
mjoystickCommand.d < −90)

(round(mjoystickCommand.i/100 · 84),

calcRadius(calcSteeringAngle(mjoystickCommand.d)))

Note: round, calcSteeringAngle, and calcRadius are functions defined in the Dictionary and omitted in the

slides.

imotorsUnitActual =
mmotorsActual.s ≥ −42 ∧
mmotorsActual.s ≤ 84

(round(mmotorsActual.s), calcRadius(mmotorsActual.a))

mmotorsActual.s < −42 (−42, calcRadius(mmotorsActual.a))
mmotorsActual.s > 84 (84, calcRadius(mmotorsActual.a))

iorientation = round(morientation)

iobsLoc = . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation OUT 77

Rolland: the Relation OUT
cmotorsCommand = (omotorsUnitCommand.s, calcMotorSteeringAngle(omotorsUnitCommand.r))

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation SOF 78

Rolland: the Relation SOF

• complex behaviour, see specification in CSP editor

• specify output variables in terms of input variables

• use mode classes as appropriate

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

	0. Introduction
	Topic of This Lecture
	Engineering
	Embedded Systems
	Examples of Embedded Systems
	The Safety-Critical Systems Lecture Series
	Overview of SCS4
	Style of This Course
	Web Page of Lecture
	Text for Reading
	Mark / ``Schein''

	1. Rigorous Description of Requirements
	Text for Chapter 1
	Additional Background for Chapter 1
	The Role of Documentation in Computer System Design
	Education of Engineers Can't Start Too Early...

	1.1 System Requirements
	How Can We Document System Requirements?
	Functions of Time
	Example: Electronic Thermometer
	Monitored vs. Controlled Quantities
	The Relation NAT
	The Relation REQ
	Contract
	Black-Box View
	Specifying Behaviour
	Modes and Mode Classes, Informally
	Discussion of Modes etc.
	Example: Lift Controller
	Lift Controller: Relevant Environmental Quantities
	Lift Controller: Environment Variables
	Lift Controller: the Relation NAT
	Conditions
	Lift Controller: Conditions
	Events
	Event Space
	Lift Controller: Events
	History
	Modes and Mode Classes
	Lift Controller: Mode Classes
	Tabular Notation
	Lift Controller: the Relation REQ
	``Simultaneous'' Events
	Piecewise Continuous Behaviour
	Lift Controller: Piecewise Continuous Behaviour

	1.2 Software Requirements
	System Design
	The Four-Variable Approach for System Design and Software Requirements
	Input and Output Quantities
	Software Acceptability
	First Application of Four-Variable Method
	Example: Autonomous Wheelchair ``Rolland''
	Rolland: Specification of Safety-Relevant Behaviour
	Rolland: Relevant Environmental Quantities
	Rolland: Environment Variables
	Rolland: Environment Variable Types
	Rolland: Observations
	Rolland: Conditions and Events
	Rolland: the Relation NAT
	Rolland: the Relation REQ
	Rolland: Input Variables
	Rolland: Input and Output Variable Types
	Rolland: Output Variables
	Rolland: the Relation IN
	Rolland: the Relation OUT
	Rolland: the Relation SOF

