
1.3 Further Issues

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



System Modes vs. Environmental Modes 80

System Modes vs. Environmental Modes

• environmental mode
◦ equivalence class of histories

◦ change depends on occurrence of events

◦ initial env. mode depends on history before system turned on

• system mode
◦ equivalence class of system states

◦ change depends on detection of events

◦ initial system mode is fixed

• ideally, system and env. modes should be equivalent

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



“Ideal” Behaviour is Impossible 81

“Ideal” Behaviour is Impossible

• accuracy of measurement of analogue monitored quantities

• tolerance of analogue controlled quantities

• important analogue monitored quantity: time
◦ detection of events needs time

◦ reaction to events needs time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



A Useful Heuristics for “Real” Behaviour 82

A Useful Heuristics for “Real” Behaviour

• specify “ideal” behaviour relation

• specify separately accuracy and tolerance relations
and concatenate these relations
◦ do not forget this!

• may not work for more complex timing
◦ then need explicit “transition” modes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: Logic Probe 83

Example: Logic Probe

• device giving a short pulse of 100 ms when button pressed

Clprobe =

Mode Event Class New Mode

Mdtest @T(mPulse = CDown) Mdpulse
Mdpulse @T(Since(@T(Mdpulse)) > 100 ms) Mdtest

Maximum Delay: 2 ms

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Logic Probe With Delay, Expanded 84

Logic Probe With Delay, Expanded

• same behaviour, but without delay specification

• implicit transition modes made explicit for demonstration

Clprobe =

Mode Event Class New Mode

Mdt̂est @T(mPulse = CDown) Mdtest–pulse
Mdtest–pulse @T(cRequiv ≤ 320 Ω) Mdp̂ulse

@T(Since(@T(Mdtest–pulse)) ≥ 2 ms)
Mdp̂ulse @T(Since(@T(Mdpulse)) > 100 ms) Mdpulse–test

Mdpulse–test @T(cRequiv ≥ 500 kΩ) Mdt̂est

@T(Since(@T(Mdpulse–test)) ≥ 2 ms)

• cRequiv: a controlled variable reflecting the mode

(needed!)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Using Discrete Clocks 85

Using Discrete Clocks

• many embedded software systems:

cycle read→process→write→. . .

• read and write at discrete points of time
◦ system requirements should permit such implementations

• concise requirements by specifying the required
resolution of time
◦ resolution = smallest significant increment of time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Implications for System when Specifying a Resolution of Time 86

Implications for System when Specifying
a Resolution of Time δ

• system clock frequency ≥ 1
δ

◦ sufficient to sample monitored quantities at rate of 1
δ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Implications for Requirements when Specifying a Resolution of Time 87

Implications for Requirements when
Specifying a Resolution of Time δ

• changes in environment that occur within δ

may be considered simultanteous

• system can only be required to detect conditions

that have held for at least δ

• max. measurement accuracy for instants: +0 / −δ
• max. measurement accuracy for time intervals: ±δ
• min. delay tolerance for response to any event: δ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: Time Resolution 88

Example: Time Resolution

δ

d fg i ja

f

t
Cond1

c e hb

f

t
Cond2

time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Useful Standard Functions For Time 89

Useful Standard Functions For Time

• implicitly interpreted w.r.t. a particular behaviour on the

interval of the system’s operation [ti, tf ]

Prev(e, t) the set of events of event class e

that occur prior to t

Last(e, t) the time of the latest event

of event class e before t

First(e, t) the time of the earliest event

of event class e before t

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Useful Standard Functions For Time 90

Drtn(pi, t) the duration that condition pi has been

continuously true up to time t

totalDrtn(pi, t1, t2) the total amount of time that condition

pi has been true between times t1 and t2

Since(e, t) the time since the latest event of

event class e before t

• if time argument t is current time tf , it will be omitted by

convention

• precise definitions in [Pet00, pp. 49]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Repetition: Events 91

Repetition: Events

An event e, is a pair, (t, c), where

e.t ∈ R is a time at which one or more conditions change

value and

e.c ∈ {T, F,@T,@F}n indicates the status of all conditions

at e.t, as follows: e.c[i] pi

T 8pi(e.t) ∧ pi′(e.t)
F ¬8pi(e.t) ∧ ¬pi′(e.t)

@T ¬8pi(e.t) ∧ pi′(e.t)
@F 8pi(e.t) ∧ ¬pi′(e.t)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Some Useful Event Class Notation 92

Some Useful Event Class Notation

Notation e.c[i]
∗ true

� false

– F ∨ T

t T ∨ @F

f F ∨ @T

t′ T ∨ @T

f′ F ∨ @F

• t(pi) = 8pi(e.t) ∧ true

• t′(pi) = true ∧ pi′(e.t)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: Telephone Connection 93

Example: Telephone Connection

• table describes the connection mode

between any two users u and v

• from a large requirements specification (Bredereke)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: Telephone Connection 94

current mode conditions next mode

m
co

n
n

ec
tR

eq
(u
,
v
)

in
m

o
d

e(
M

d
co

n
n

ec
ti

on
-

R
es

ou
rc

eA
va

il(
u
,
v
))

m
co

n
n

ec
tR

sp
(v

)

Md Idle(u, v) @T t′ – MdSetup(u, v)

@T f ′ – MdOTeardown(u, v)
MdSetup(u, v) – T @T MdEstablished(u, v)

@F ∗ – Md Idle(u, v)

– @F ∗ MdOTeardown(u, v)
MdEstablished(u, v) – ∗ @F MdOTeardown(u, v)

@F ∗ – MdTTeardown(u, v)

– @F – MdBTeardown(u, v)
MdOTeardown(u, v) @F ∗ – Md Idle(u, v)
MdTTeardown(u, v) – ∗ @F Md Idle(u, v)
MdBTeardown(u, v) – ∗ @F MdOTeardown(u, v)

@F ∗ – MdTTeardown(u, v)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Tabular vs. Scalar Notation for Event Classes 95

Tabular vs. Scalar Notation for Event Classes

tabular scalar

pi
T WHILE(pi)
F WHILE(¬pi)

@T @T(pi)
@F @F(pi)
∗ (not useful)

– CONT(pi)
� (not useful)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Tabular vs. Scalar Notation for Event Classes 96

tabular scalar

pi
t WHEN(pi)
f WHEN(¬pi)
t’ (no notation defined)

f’ (no notation defined)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: Tabular Expressions 97

Example: Tabular Expressions
Clfloor:
current mode conditions next mode

p
at

1s
tF

lo
or

p
at

2n
d

F
lo

or

p
at

3r
d

F
lo

or

Mdin1stFloor – @T – Mdin2ndFloor
Mdin2ndFloor @T – – Mdin1stFloor

– – @T Mdin3rdFloor
Mdin3rdFloor – @T – Mdin2ndFloor

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: Scalar Expressions 98

Example: Scalar Expressions
Clfloor:

Mode Event Class New mode
Mdin1stFloor @T(pat2ndFloor) Mdin2ndFloor
Mdin2ndFloor @T(pat1stFloor) Mdin1stFloor

@T(pat3rdFloor) Mdin3rdFloor
Mdin3rdFloor @T(pat2ndFloor) Mdin2ndFloor

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Requirements Feasibility 99

Requirements Feasibility

→ blackboard. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Fail-Soft Behaviour in the Four-Variable Approach 100

Fail-Soft Behaviour
in the Four-Variable Approach

• repetition: acceptability of a software SOF:

((IN · SOF ·OUT) ∩NAT) ⊆ REQ
• if devices are broken, software is not constrained at all

• specify weaker versions of IN, OUT, and SOF
that hold if some devices are broken

• software must satisfy the conjunction of of all

requirements specified this way

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Merit Functions 101

Merit Functions

• although all behaviours in REQ are acceptable,

some are preferable over others

• examples:

processing speed: quicker responses preferred

soft real-time constraints: failure to respond within

specified time not catastrophic, but undesirable

safety margins: controlled values may approach certain

thresholds, but the larger the safety margin the better

stability: large oscillations in controlled values are

undesirable

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Merit Functions 102

Definition 3 (Merit function)

A merit function is a function of a behaviour that
indicates which behaviours are preferred over which others
– the higher the merit function value the more preferred
the behaviour.

• related to “objective function” in control systems and

optimization

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Limitations of the Approach 103

Limitations of the Approach

necessary:
1. env. quantities can be expressed as functions of time that

are either
◦ piecewise-continuous (for real-valued quantities), or

◦ finitely variable (for discrete-valued quantities)

2. the acceptable behaviour can be characterized by a

relation on the env. quantities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Environmental Quantities Not Expressible 104

Environmental Quantities Not Expressible

• if cannot be expressed effectively
◦ example: compiler

◦ source code = array of characters???

• if not usefully viewed as functions of time
◦ example: compiler

◦ only two instants of time relevant (start, termination)

• approach unsuitable for “information processing” systems

in particular

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Requirements Relation Not Expressible 105

Requirements Relation Not Expressible

• non-behavioural properties
◦ maintainability

◦ code size

• internal properties
◦ number of times an instruction is invoked

(if not externally observable)

• requirements not preserved under sub-setting of behaviours

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Requirements Not Preserved Under Sub-Setting of Behaviours 106

Requirements Not Preserved Under
Sub-Setting of Behaviours

• average response time over all behaviours
◦ different from average over a single behaviour

(which can be expressed)

◦ usually, such statistical properties can be approximated reasonably

well and specified with reference to a lengthy execution

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Requirements Not Preserved Under Sub-Setting of Behaviours 107

• possibilistic properties
◦ important for security

◦ “if behaviour A is possible, then behaviour B must also be possible”

◦ this is not the same as

A ∈ REQ⇒ B ∈ REQ

◦ what is acceptable in an implementation

is different from what is possible

◦ usually, REQ is non-deterministic, but the implementation is not

◦ intruders must not be able to infer information

from the possibility of A and the impossibility of B

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	1.3 Further Issues
	System Modes vs. Environmental Modes
	``Ideal'' Behaviour is Impossible
	A Useful Heuristics for ``Real'' Behaviour
	Example: Logic Probe
	Logic Probe With Delay, Expanded
	Using Discrete Clocks
	Implications for System when Specifying a Resolution of Time
	Implications for Requirements when Specifying a Resolution of Time
	Example: Time Resolution
	Useful Standard Functions For Time
	Repetition: Events
	Some Useful Event Class Notation
	Example: Telephone Connection
	Tabular vs. Scalar Notation for Event Classes
	Example: Tabular Expressions
	Example: Scalar Expressions
	Requirements Feasibility
	Fail-Soft Behaviour in the Four-Variable Approach
	Merit Functions
	Limitations of the Approach
	Environmental Quantities Not Expressible
	Requirements Relation Not Expressible
	Requirements Not Preserved Under Sub-Setting of Behaviours


