1.3 Further Issues

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

System Modes vs. Environmental Modes

• environmental mode

- equivalence class of histories
- change depends on occurrence of events
- \circ initial env. mode depends on history before system turned on

• system mode

- $\circ\,$ equivalence class of system states
- change depends on *detection* of events
- \circ initial system mode is fixed
- *ideally*, system and env. modes should be equivalent

"Ideal" Behaviour is Impossible

- *accuracy* of measurement of analogue monitored quantities
- *tolerance* of analogue controlled quantities
- important analogue monitored quantity: time
 - $\circ\,$ detection of events needs time
 - $\circ\,$ reaction to events needs time

A Useful Heuristics for "Real" Behaviour

- specify "ideal" behaviour relation
- specify separately accuracy and tolerance relations and concatenate these relations
 o do not forget this!
- may not work for more complex timing
 then need explicit "transition" modes

Example: Logic Probe

• device giving a short pulse of 100 ms when button pressed

C^{l} probe =		
Mode	Event Class	New Mode
^{Md} test	$QT(^mPulse = {}^CDown)$	^{Md} pulse
^{Md} pulse	$@T(Since(@T(^{Md}pulse)) > 100 ms))$	Md test

Maximum Delay: 2 ms

Claraba

Logic Probe With Delay, Expanded

- same behaviour, but without delay specification
- implicit transition modes made explicit for demonstration

probe –		
Mode	Event Class	New Mode
^{Md} test	$QT(^mPulse = {}^CDown)$	^{Md} test–pulse
Md test-pulse	$ extsf{@T}(^{c} extsf{Requiv} \leq 320 \ \Omega)$	<i>Md</i> pulse
	$@T(Since(@T(^{Md}test-pulse)) \ge 2 ms)$	
\widehat{Md} pulse	$@T(Since(@T(^{Md}pulse)) > 100 ms)$	Md pulse-test
^{Md} pulse-test	<code>@T(cRequiv \geq 500 kΩ)</code>	^{Md} test
	$\[\] \[\] \[\] \[\] \[\] \] \[\] \] \[\] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \] \[\] \[\] \[\] \] \[\] \] \[\] \[\] \[\] \] \[\] \] \[\] \[\] \[\] \] \$	

 ^cRequiv: a controlled variable reflecting the mode (needed!)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Using Discrete Clocks

- many embedded software systems:
 cycle read→process→write→...
- read and write at discrete points of time
 system requirements should permit such implementations
- concise requirements by specifying the required *resolution* of time
 - \circ resolution = smallest significant increment of time

Implications for System when Specifying a Resolution of Time δ

• system clock frequency $\geq \frac{1}{\delta}$

 \circ sufficient to sample monitored quantities at rate of $\frac{1}{\delta}$

Implications for Requirements when Specifying a Resolution of Time δ

- \bullet changes in environment that occur within δ may be considered simultanteous
- \bullet system can only be required to detect conditions that have held for at least δ
- max. measurement accuracy for instants: +0 / $-\delta$
- \bullet max. measurement accuracy for time intervals: $\pm\delta$
- \bullet min. delay tolerance for response to any event: δ

Useful Standard Functions For Time

• implicitly interpreted w.r.t. a particular behaviour on the interval of the system's operation $[t_i, t_f]$

 $\mathsf{Prev}(e,t)$ the set of events of event class e $\mathsf{Last}(e,t)$ that occur prior to t $\mathsf{Last}(e,t)$ the time of the latest eventof event class e before t $\mathsf{First}(e,t)$ the time of the earliest eventof event class e before t

 $\mathsf{Drtn}(p_i, t)$ total $\mathsf{Drtn}(p_i, t_1, t_2)$ Since(e, t) the duration that condition p_i has been continuously true up to time t

- the total amount of time that condition p_i has been true between times t_1 and t_2 the time since the latest event of event class e before t
- if time argument t is current time t_f , it will be omitted by convention
- precise definitions in [Pet00, pp. 49]

Repetition: Events

An event e, is a pair, (t, c), where

 $e.t \in \mathbb{R}$ is a time at which one or more conditions change value and

 $e.c \in \{T, F, @T, @F\}^n$ indicates the status of all conditions at e.t, as follows: e.c[i] p_i

$$\begin{array}{c|c} e.c[i] & p_i \\ \hline T & {}^{\prime}p_i(e.t) \wedge p_i'(e.t) \\ \hline F & \neg p_i(e.t) \wedge \neg p_i'(e.t) \\ \hline @T & \neg p_i(e.t) \wedge p_i'(e.t) \\ \hline @F & {}^{\prime}p_i(e.t) \wedge \neg p_i'(e.t) \end{array}$$

Some Useful Event Class Notation

Notation	e.c[i]
*	true
\bigcirc	false
_	$F \lor T$
t	$T \lor @F$
f	$F \lor @T$
t′	$T \lor @T$
f′	$F \lor @F$

- $t(p_i) = p_i(e.t) \wedge true$
- $t'(p_i) = true \wedge p_i'(e.t)$

Example: Telephone Connection

- table describes the connection mode between any two users u and v
- from a large requirements specification (Bredereke)

current mode	conditions		S	next mode
	m connectReq (u,v)	$inmode(^{Md}connection$ -ResourceAvail $(u,v))$	m connectRsp (v)	
${}^{Md}Idle(u,v)$	@T	ť	_	$M^{d}Setup(u,v)$
	@T	f′	-	$^{\mathit{Md}}OTeardown(u,v)$
${}^{Md}Setup(u,v)$	-	Т	@T	Md Established (u,v)
	@F	*	-	Md ldle (u,v)
	_	@F	*	${}^{Md}OTeardown(u,v)$
$^{Md}Established(u,v)$	—	*	@F	${}^{Md}OTeardown(u,v)$
	@F	*	—	$^{Md}TTeardown(u,v)$
	-	@F	-	${}^{Md}BTeardown(u,v)$
${}^{Md}OTeardown(u,v)$	@F	*	-	${}^{Md}Idle(u,v)$
$\boxed{ \ \ ^{Md}TTeardown(u,v) }$	_	*	@F	M^{d} ldle (u,v)
${}^{Md}BTeardown(u,v)$	-	*	@F	M^{d} OTeardown (u, v)
	@F	*	-	${}^{Md}TTeardown(u,v)$

Tabular vs. Scalar Notation for Event Classes

tabular	scalar	
p_i		
Т	WHILE (p_i)	
F	WHILE $(\neg p_i)$	
@T	$\mathbf{QT}(p_i)$	
@F	$OF(p_i)$	
*	(not useful)	
	$CONT(p_i)$	
\bigcirc	(not useful)	

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

tabular	scalar	
p_i		
t	$WHEN(p_i)$	
f	$WHEN(\neg p_i)$	
t'	(no notation defined)	
f'	(no notation defined)	

Example: Tabular Expressions

^{Cl}floor:

current mode	conditions			next mode
	<pre>pat1stFloor</pre>	<pre>pat2ndFloor</pre>	$p_{at3rdFloor}$	
M^{d} in1stFloor	_	@T	—	Mdin2ndFloor
^{Md} in2ndFloor	@T	_	_	M^{d} in1stFloor
	_		@T	Mdin3rdFloor
^{Md} in3rdFloor	_	@T	_	Mdin2ndFloor

Example: Scalar Expressions

^{Cl}floor:

Mode	Event Class	New mode
M^{d} in1stFloor	$QT(^{p}at2ndFloor)$	Mdin2ndFloor
^{Md} in2ndFloor	@ T(<i>^p</i> at1stFloor)	M^{d} in1stFloor
	$QT(^{p}at3rdFloor)$	^{Md} in3rdFloor
^{Md} in3rdFloor	$QT(^{p}at2ndFloor)$	Mdin2ndFloor

Requirements Feasibility

 \rightarrow blackboard. . .

Fail-Soft Behaviour in the Four-Variable Approach

- repetition: acceptability of a software SOF: $((IN \cdot SOF \cdot OUT) \cap NAT) \subseteq REQ$
- if devices are broken, software is not constrained at all
- \bullet specify weaker versions of $\rm IN,~OUT,~and~SOF$ that hold if some devices are broken
- software must satisfy the conjunction of all requirements specified this way

Merit Functions

- although all behaviours in REQ are acceptable, some are preferable over others
- examples:

processing speed: quicker responses preferred soft real-time constraints: failure to respond within specified time not catastrophic, but undesirable safety margins: controlled values may approach certain thresholds, but the larger the safety margin the better stability: large oscillations in controlled values are undesirable

Definition 3 (Merit function)

A merit function is a function of a behaviour that indicates which behaviours are preferred over which others – the higher the merit function value the more preferred the behaviour.

 related to "objective function" in control systems and optimization

Limitations of the Approach

necessary:

- 1. env. quantities can be expressed as functions of time that are either
 - $\circ\,$ piecewise-continuous (for real-valued quantities), or
 - finitely variable (for discrete-valued quantities)
- 2. the acceptable behaviour can be characterized by a relation on the env. quantities

Environmental Quantities Not Expressible

- if cannot be expressed effectively
 - example: compiler
 - o source code = array of characters???
- if not usefully viewed as functions of time
 - example: compiler
 - only two instants of time relevant (start, termination)

 approach unsuitable for "information processing" systems in particular

Requirements Relation Not Expressible

- non-behavioural properties
 - maintainability
 - code size
- internal properties
 - number of times an instruction is invoked (if not externally observable)
- requirements not preserved under sub-setting of behaviours

Requirements Not Preserved Under Sub-Setting of Behaviours

- average response time over all behaviours
 - o different from average over a single behaviour (which can be expressed)
 - usually, such statistical properties can be approximated reasonably well and specified with reference to a lengthy execution

- possibilistic properties
 - \circ important for security
 - \circ "if behaviour A is possible, then behaviour B must also be possible"
 - \circ this is not the same as

 $A \in \operatorname{REQ} \Rightarrow B \in \operatorname{REQ}$

- what is acceptable in an implementation is different from what is possible
- $\circ\,$ usually, REQ is non-deterministic, but the implementation is not
- $\circ\,$ intruders must not be able to infer information from the possibility of A and the impossibility of B