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[PaMa95] Parnas, D. L. and Madey, J. Functional

documents for computer systems. Sci. Comput.

Programming 25(1), 41–61 (Oct. 1995).

Structure of the requirements documentation and software

documentation.
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[PaCl86] Parnas, D. L. and Clements, P. C. A rational design

process: how and why to fake it. IEEE Trans. Softw. Eng.

12(2), 251–257 (Feb. 1986).

Structure of the documentation vs. structure of the

development process.
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Overview of Documents

• system requirements document

• system design document

• software requirements document

• software behaviour specification

• software module guide

• module interface specification

• uses-relation document

• module internal design document
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• communication: service specification document

• communication: protocol design document
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Specification Form vs. Specification Content

• this overview: concerned with content only

• formalism must be adapted to situation

• choice of some formalism alone does not guarantee
completeness of content!
◦ “formal” vs. “rigorous”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The System Requirements Document 118

The System Requirements Document

description of:

• environmental quantities of concern

• association of env. quantities to math. variables

• relationships between values of these

due to environmental constraints (NAT)

• relationships between values of these

due to new system (REQ)

• descriptions are black-box

• details: see Chapter 1.1
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Structure of the
System Requirements Document

required sections:

• environmental quantities

• environmental constraints

• system behaviour

• dictionary
◦ definitions of:

� math. functions and relations

� words that are not common natural language

� words that have special meaning in application domain
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optional sections:
• system overview
◦ informal

◦ possibly including non-behavioural requirements

• notational conventions
◦ if non-standard notation used

◦ variable naming

◦ special variable mark-up

◦ . . .

• anticipated changes
◦ important to reduce effort for later changes

◦ see also Chapter 5
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The System Design Document

• introduces input and output variables

description of:

• relationships between monitored and input variables (IN)

• relationships between output and controlled vars. (OUT)

• relationships between input and output variables (SOF)
(software requirements)
◦ in separate document, see below

• details: see Chapter 1.2
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The Software Requirements Document

• software requirements (SOFREQ) implicitly determined by
◦ system requirements document

}
= software requirements doc.

◦ system design document

(NAT, REQ, IN, OUT)

• usually design step:

explicit, more deterministic

software behaviour specification (SOF)

• details: see Chapter 1.2

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Software Behaviour Specification 123

The Software Behaviour Specification

• SOF

• details: see Chapter 1.2

• particularly important for
multi-processor / multi-computer / network systems
◦ allocation of tasks to individual computers

◦ hierarchy of software behaviour specifications
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Software Modules

Definition 12 (Module)

A module is a programming work assignment.

• (see other definitions of “module” later in lecture)

• assume information hiding principle was used (see below)

• black-box description of module’s behaviour
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The Software Module Guide

• division of of software into modules

• states responsibilities of each module

• informal “guide”
◦ rigorous module interface specification necessary

to start implementation

• details: see Chapter 3.2 later in lecture
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The Module Interface Specification

• each module implements one or more
finite state machines (FSMs)
◦ FSMs also called objects or variables

• description of module interface is
black-box description of these objects
◦ every “program” (= method/function/. . . )

belongs to exactly one module

◦ programs use objects created by other modules

as components of their data structure
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Writing Module Interface Specifications

• similar to documenting software requirements

• simplifications possible
◦ many software modules are entirely internal

� no environmental quantities

� all communication through

external invocation of the module’s programs

◦ state set finite

◦ state transitions can be treated as discrete events

◦ often: real-time can be neglected,

only the sequence of events matters

� replace time-functions by traces
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• details: see Chapter 4 later in lecture
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Formalisms for
Module Interface Specifications

• “Trace Assertion Method” proposed by Parnas et.al.
was never used much

• many other formalisms known and in use:
◦ CSP

}
see lecture Safety-Critical Systems 3

◦ Z (/ Object-Z)

◦ SDL

◦ StateCharts

◦ . . .

advantages/disadvantages depend on application domain
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The Uses-Relation Document

• range and domain of “uses” relation:
subsets of set of access-programs of the modules
◦ (P, Q) in relation if program P uses program Q

• document often is a binary matrix

• constrains work of programmers

• determines viable subsets of the software

• for details, see Chapter 3.4 later in lecture
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The Module Internal Design Document

• for each module

• describe module’s data structure

• state intended interpretation of data structure

(in terms of external interface)

• specify effect of each access-program on data structure

• “clear-box description”

• sufficiently precise to verify the workability of the design

(together with module interface specification)
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Information in the
Module Internal Design Document

1. complete description of data structure

(may include objects implemented by other modules)

2. abstraction function

from values of objects

to descriptions in terms of external program calls

3. program function:

an LD relation specifying each program as a

mapping from states before to states after execution
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Abstraction Function

for deterministic programs; using CSP:

program function
for event e

for event e
CSP process transformation

P2

abstraction
function

ds2

P1

abstraction
function

ds1

• if design correct, then diagram commutes for all events

• if program non-deterministic, program funct. is LD relation
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Programs

Definition 13 (Program)

A program is a text describing a set of state sequences in
a digital (finite state) machine.

• Each state sequence is called an execution of the program.
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Documenting the Effect of
Individual Programs

• execution
◦ starting state

◦ final state (if finite)

◦ or infinite sequence

• intermediate states often not interesting, only:
◦ termination possible?

 LD relation◦ termination guaranteed?

◦ if termination possible, then in which final states?

• if with parameters, then

functions from parameters to programs
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LD Relation

→ blackboard. . .
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Documenting by LD Relations

• for specification of program

• for actual behaviour of program

• notations:
many, depending on application area
◦ “displays” proposed by Parnas et.al.

were never used much
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Communication: The Service Specification
Document

• communication system often implemented as a hierarchy

of services

• each level can be viewed as a module

• black-box behaviour of a module = service specification
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Communication: The Protocol Design
Document

• implementation = protocol design
◦ using lower-level services

◦ using local data structures

• is a kind of internal module design document
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