
2. What Information
Should Be Provided
in Computer System

Documentation?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Text for Chapter 2 113

Text for Chapter 2

[PaMa95] Parnas, D. L. and Madey, J. Functional

documents for computer systems. Sci. Comput.

Programming 25(1), 41–61 (Oct. 1995).

Structure of the requirements documentation and software

documentation.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 2 114

Additional Background for Chapter 2

[PaCl86] Parnas, D. L. and Clements, P. C. A rational design

process: how and why to fake it. IEEE Trans. Softw. Eng.

12(2), 251–257 (Feb. 1986).

Structure of the documentation vs. structure of the

development process.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Overview of Documents 115

Overview of Documents

• system requirements document

• system design document

• software requirements document

• software behaviour specification

• software module guide

• module interface specification

• uses-relation document

• module internal design document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Overview of Documents 116

• communication: service specification document

• communication: protocol design document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Specification Form vs. Specification Content 117

Specification Form vs. Specification Content

• this overview: concerned with content only

• formalism must be adapted to situation

• choice of some formalism alone does not guarantee
completeness of content!
◦ “formal” vs. “rigorous”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The System Requirements Document 118

The System Requirements Document

description of:

• environmental quantities of concern

• association of env. quantities to math. variables

• relationships between values of these

due to environmental constraints (NAT)

• relationships between values of these

due to new system (REQ)

• descriptions are black-box

• details: see Chapter 1.1

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Structure of the System Requirements Document 119

Structure of the
System Requirements Document

required sections:

• environmental quantities

• environmental constraints

• system behaviour

• dictionary
◦ definitions of:

� math. functions and relations

� words that are not common natural language

� words that have special meaning in application domain

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Structure of the System Requirements Document 120

optional sections:
• system overview
◦ informal

◦ possibly including non-behavioural requirements

• notational conventions
◦ if non-standard notation used

◦ variable naming

◦ special variable mark-up

◦ . . .

• anticipated changes
◦ important to reduce effort for later changes

◦ see also Chapter 5

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The System Design Document 121

The System Design Document

• introduces input and output variables

description of:

• relationships between monitored and input variables (IN)

• relationships between output and controlled vars. (OUT)

• relationships between input and output variables (SOF)
(software requirements)
◦ in separate document, see below

• details: see Chapter 1.2

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Software Requirements Document 122

The Software Requirements Document

• software requirements (SOFREQ) implicitly determined by
◦ system requirements document

}
= software requirements doc.

◦ system design document

(NAT, REQ, IN, OUT)

• usually design step:

explicit, more deterministic

software behaviour specification (SOF)

• details: see Chapter 1.2

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Software Behaviour Specification 123

The Software Behaviour Specification

• SOF

• details: see Chapter 1.2

• particularly important for
multi-processor / multi-computer / network systems
◦ allocation of tasks to individual computers

◦ hierarchy of software behaviour specifications

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Software Modules 124

Software Modules

Definition 12 (Module)

A module is a programming work assignment.

• (see other definitions of “module” later in lecture)

• assume information hiding principle was used (see below)

• black-box description of module’s behaviour

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Software Module Guide 125

The Software Module Guide

• division of of software into modules

• states responsibilities of each module

• informal “guide”
◦ rigorous module interface specification necessary

to start implementation

• details: see Chapter 3.2 later in lecture

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Module Interface Specification 126

The Module Interface Specification

• each module implements one or more
finite state machines (FSMs)
◦ FSMs also called objects or variables

• description of module interface is
black-box description of these objects
◦ every “program” (= method/function/. . . )

belongs to exactly one module

◦ programs use objects created by other modules

as components of their data structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Writing Module Interface Specifications 127

Writing Module Interface Specifications

• similar to documenting software requirements

• simplifications possible
◦ many software modules are entirely internal

� no environmental quantities

� all communication through

external invocation of the module’s programs

◦ state set finite

◦ state transitions can be treated as discrete events

◦ often: real-time can be neglected,

only the sequence of events matters

� replace time-functions by traces

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Writing Module Interface Specifications 128

• details: see Chapter 4 later in lecture

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Formalisms for Module Interface Specifications 129

Formalisms for
Module Interface Specifications

• “Trace Assertion Method” proposed by Parnas et.al.
was never used much

• many other formalisms known and in use:
◦ CSP

}
see lecture Safety-Critical Systems 3

◦ Z (/ Object-Z)

◦ SDL

◦ StateCharts

◦ . . .

advantages/disadvantages depend on application domain

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Uses-Relation Document 130

The Uses-Relation Document

• range and domain of “uses” relation:
subsets of set of access-programs of the modules
◦ (P, Q) in relation if program P uses program Q

• document often is a binary matrix

• constrains work of programmers

• determines viable subsets of the software

• for details, see Chapter 3.4 later in lecture

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Module Internal Design Document 131

The Module Internal Design Document

• for each module

• describe module’s data structure

• state intended interpretation of data structure

(in terms of external interface)

• specify effect of each access-program on data structure

• “clear-box description”

• sufficiently precise to verify the workability of the design

(together with module interface specification)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Information in the Module Internal Design Document 132

Information in the
Module Internal Design Document

1. complete description of data structure

(may include objects implemented by other modules)

2. abstraction function

from values of objects

to descriptions in terms of external program calls

3. program function:

an LD relation specifying each program as a

mapping from states before to states after execution

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Abstraction Function 133

Abstraction Function

for deterministic programs; using CSP:

program function
for event e

for event e
CSP process transformation

P2

abstraction
function

ds2

P1

abstraction
function

ds1

• if design correct, then diagram commutes for all events

• if program non-deterministic, program funct. is LD relation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Programs 134

Programs

Definition 13 (Program)

A program is a text describing a set of state sequences in
a digital (finite state) machine.

• Each state sequence is called an execution of the program.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Documenting the Effect of Individual Programs 135

Documenting the Effect of
Individual Programs

• execution
◦ starting state

◦ final state (if finite)

◦ or infinite sequence

• intermediate states often not interesting, only:
◦ termination possible?

 LD relation◦ termination guaranteed?

◦ if termination possible, then in which final states?

• if with parameters, then

functions from parameters to programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



LD Relation 136

LD Relation

→ blackboard. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Documenting by LD Relations 137

Documenting by LD Relations

• for specification of program

• for actual behaviour of program

• notations:
many, depending on application area
◦ “displays” proposed by Parnas et.al.

were never used much

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Communication: The Service Specification Document 138

Communication: The Service Specification
Document

• communication system often implemented as a hierarchy

of services

• each level can be viewed as a module

• black-box behaviour of a module = service specification

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Communication: The Protocol Design Document 139

Communication: The Protocol Design
Document

• implementation = protocol design
◦ using lower-level services

◦ using local data structures

• is a kind of internal module design document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	2. What Information Should Be Provided in Computer System Documentation?
	Text for Chapter 2
	Additional Background for Chapter 2
	Overview of Documents
	Specification Form vs. Specification Content
	The System Requirements Document
	Structure of the System Requirements Document
	The System Design Document
	The Software Requirements Document
	The Software Behaviour Specification
	Software Modules
	The Software Module Guide
	The Module Interface Specification
	Writing Module Interface Specifications
	Formalisms for Module Interface Specifications
	The Uses-Relation Document
	The Module Internal Design Document
	Information in the Module Internal Design Document
	Abstraction Function
	Programs
	Documenting the Effect of Individual Programs
	LD Relation
	Documenting by LD Relations
	Communication: The Service Specification Document
	Communication: The Protocol Design Document
	A Rational Design Process: How and Why to Fake It


