
3. Decomposition Into Modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Overview of Chapter 3 163

Overview of Chapter 3:
Decomposition Into Modules

3.1 the criteria to be used in decomposing systems into

modules

3.2 structuring complex software with the module guide

3.3 time and space decomposition of complex structures

3.4 designing software for ease of extension and contraction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



3.1 The Criteria to be Used in
Decomposing Systems into

Modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Text for Chapter 3.1 165

Text for Chapter 3.1

[Par72] Parnas, D. L. On the criteria to be used in

decomposing systems into modules. Commun. ACM

15(12), 1053–1058 (1972).

Seminal paper on information hiding and modularization.

Still valid.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 3.1 166

Additional Background for Chapter 3.1

[HoWe01] Hoffman, D. M. and Weiss, D. M., editors.

Software Fundamentals – Collected Papers by David L.

Parnas. Addison-Wesley (Mar. 2001).

A collection of important Parnas papers. With

introductions on their history and current relevance.

Includes [Par72].

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



What is a Module? 167

What is a Module?

• historically: a unit of measure
◦ e.g., 2,54 cm

• manufacturers learned to build parts

that were one unit large

• word now: the parts themselves

• modules: relatively self-contained systems,

combined to make a larger system

• design: often is assembly of many previously designed

modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Constraints on Modules 168

The Constraints on Modules

• if modules are hardware:
obvious how to put them together
◦ well-known physical constraints

◦ well-identified time for module assembly

• if modules are software:
no obvious constraints
◦ software modules can be arbitrarily large

◦ their interfaces can be arbitrarily complex

• during software development:

several different times at which parts are combined,

several different ways of putting parts together

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Modules of Software – When are Parts Put Together? 169

Modules of Software – When are Parts
Put Together?

1. while writing software
◦ parts: work assignments for programmer(s)

◦ when: before compilation or execution

2. when linking object programs
◦ parts: separately compiled (or assembled) programs

◦ when: before execution

3. while running a program in limited memory
◦ parts: executable programs or data

◦ when: during run-time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Modules of Software – When are Parts Put Together? 170

• literature: uses “module” for all three!

• this ambiguity leads to confusion

• this lecture: only the first meaning (“while writing SW”)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Constraints on the Three Structures 171

The Constraints on the Three Structures

what constrains our choice of “modularization”?

• for write-time “modules”:
◦ intellectual coherence for programmer

◦ ability to understand, verify

◦ ease of change

• for link-time “modules”:
◦ duplicate names

◦ time needed to re-compile and link

• for run-time “modules”:
◦ memory size

◦ frequency of references to items outside module

◦ time needed to load into memory

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Constraints on the Three Structures 172

• these three sets of constraints are independent

• only commonality: the word “module”

• three different design concepts

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Old Example for a Confusion 173

Old Example for a Confusion

• TSS/360
◦ time sharing system by IBM, in the 60’s

◦ very slow

• a well-known IBM researcher:
“reason is over-modularization”
◦ memory thrashing

◦ memory management interpretation

• previous popular wisdom:
make modules as small as possible
◦ work assignment interpretation

• two meanings were confused

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Recent Example for a Confusion 174

Recent Example for a Confusion

• a recent book on “software architecture”
◦ presents and compares different styles

for organizing large software

◦ text book

◦ well-known authors

◦ uses Parnas’ KWIC example (see below)

• does not distinguish write-time / link-time modules
◦ e.g., does run-time performance comparisons for write-time modules

• book not used for this lecture. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Effect of Confusing the Meanings 175

The Effect of Confusing the Meanings

• inefficiency, if
◦ forcing write-time modules to be link-time modules:

� overhead for frequently executed call sequences

◦ forcing write-time modules to be run-time modules:

� overhead for frequent memory loads

• high development/maintenance costs, if
◦ forcing run-time modules to be write-time modules:

� difficult to program and to maintain

• write-time modules need not be compiled separately

one may use macro substitution or similar

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Write-Time Modules 176

Write-Time Modules

• we want the following properties:
◦ can be designed and changed independently

◦ can be sub-divided into further modules

• when to stop sub-dividing into modules?
◦ when so small that it is easier

to write a new one than to change it

◦ when the cost of specifying the interface exeeds any future benefit

from having smaller modules

• “module = work assignment” is only a definition,

need guidelines for designing a module structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: A KWIC Index Production System 177

Example: A KWIC Index Production System

• KWIC: “Key Words In Context”

• the KWIC index system accepts an ordered set of lines

• each line is an ordered set of words

• each word is an ordered set of characters

• any line may be “circularly shifted” by repeatedly removing

the first word and appending it to the end of the line

• the KWIC index system outputs a listing of all circular

shifts of all lines in alphabetical order

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example of a KWIC Index 178

Example of a KWIC Index
input output

THE COLOUR OF MAGIC
THE LIGHT FANTASTIC
EQUAL RITES
MORT
MOVING PICTURES

COLOUR OF MAGIC THE
EQUAL RITES
FANTASTIC THE LIGHT
LIGHT FANTASTIC THE
MAGIC THE COLOUR OF
MORT
MOVING PICTURES
OF MAGIC THE COLOUR
PICTURES MOVING
RITES EQUAL
THE COLOUR OF MAGIC
THE LIGHT FANTASTIC

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Output of The Unix ptx Utility 179

Output of The Unix ptx Utility

(ptx: “permuted index”)

THE COLOUR OF MAGIC
EQUAL RITES

THE LIGHT FANTASTIC
THE LIGHT FANTASTIC

THE COLOUR OF MAGIC
MORT
MOVING PICTURES

THE COLOUR OF MAGIC
MOVING PICTURES
EQUAL RITES

THE COLOUR OF MAGIC
THE LIGHT FANTASTIC

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Ideas for a Modularization 180

Ideas for a Modularization

• pretend: programming task is so large that

it must be performed by serveral persons

• how should we modularize the KWIC index software?
◦ which modules?

◦ which interfaces between modules?

(discussion) editor

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



What are the Criteria for a Modularization? 181

What are the Criteria for a Modularization?

• well, what are they? editor

• does our modularization meet them?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conventional Modularization 182

“Conventional” Modularization

1. Input Module

• reads data lines from input medium

• stores them in memory, packed four to a word

• end of word marker: an otherwise unused character

• makes index to show start address of each line

input interface: input format, marker conventions

output interface: memory format

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conventional Modularization 183

2. Circular Shift Module

• called after input module

• makes index with addresses of first char. of shifts

• output is array of pairs of words (start of line, start of shift)

input interface: memory format

output interface: memory format, perhaps the same

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conventional Modularization 184

3. Alphabetizing Module

• takes the arrays of modules 1 and 2

• produces an array in format of module 2

• the result is ordered alphabetically

input interface: memory format

output interface: memory format

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conventional Modularization 185

4. Output Module

• takes the arrays of module 3 and 1

• produces formatted output listing

• maybe: mark start of line, . . .

input interface: memory format

output interface: paper format, conventions, . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conventional Modularization 186

5. Master Control Module

• controls the sequencing of the other modules

• handles error messages, memory allocation, . . .

interface: names of the program to be invoked

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Some Likely Changes 187

Some Likely Changes

1. input format
(a) line break characters (\n / \r\n / \r)

(b) word break characters

(c) size of a character (7 bit / 8 bit / Unicode)

2. memory formats
(a) keep all lines in memory?

(b) pack characters four to a word?

(c) store shifts explicitly / as index+offset

3. decision to sort all output before starting to print

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Some Likely Changes 188

4. decision to produce all shifts
(a) eliminate shifts starting with noise words

(b) eliminate shifts not starting with only-words

5. different alphabetizations
(a) ignore case

(b) locale

6. output format
(a) different visual output layouts

(b) truncate overlong lines in output

(c) generate output for different formatting tools

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Parnas’ Modularization 189

Parnas’ Modularization

1. Line Holder Module

• special purpose memory to hold lines of KWIC index

interface programs:

• GET CHAR(lineno, wordno, charno)

• SET CHAR(lineno, wordno, charno, char)

• CHARS(lineno, wordno)

• WORDS(lineno)

• LINES

• DELETE LINE(lineno)

• DELETE WORD(lineno, wordno)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Parnas’ Modularization 190

2. Input Module

• reads from input medium

• calls line-holder programs to store in memory

interface program:

• INPUT

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Parnas’ Modularization 191

3. Circular Shift Module

• creates “virtual” list of circular shifts

• uses line holder programs to get data from memory

• may or may not create an actual table

interface programs:

• CS SETUP

• CS CHAR(lineno, wordno, charno)

• . . . (analogs to the other programs of the input module)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Parnas’ Modularization 192

4. Alphabetizer Module

• does actual sorting of the shifts

• may or may not produce a new list

• if it doesn’t, it makes a directory

interface programs:

• ALPH

• ITH(lineno)

• . . . (some more supporting programs)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Parnas’ Modularization 193

5. Output Module

• does the actual printing

• calls ITH and circular shift programs

interface program:

• OUTPUT

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Parnas’ Modularization 194

6. Master Control Module

• links all modules together to do the job

• is the main program, but very simple

• calls INPUT, CS SETUP, ALPH, and OUTPUT

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Comparison of the Two Modularizations 195

Comparison of the Two Modularizations

• both:
◦ small, manageable programs,

to be programmed independently

◦ may use same data representations

◦ may use same algorithms

◦ may result in identical code after compilation

• different:
◦ way of cutting up the system

◦ interfaces

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Comparison of the Two Modularizations 196

• changeability:
◦ 2nd modularization better changeable (compare list on slide 187)

• independent development:
◦ 1st: cooperation of all teams until best data representation is found

◦ 2nd: teams can start independently early

• comprehensibility:
◦ 1st: output module can be understood only by understanding some

constraints of the alphabetizer, shifter, and input module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Criteria 197

The Criteria

criteria for designing information-hiding modules:
• identify the design decisions that are likely to change
◦ requires experience and judgement

◦ is additional work up-front

• have a module for each that is very likely to change

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Secret of a Module 198

The Secret of a Module

• the design decision that might change
◦ only the implementor needs to know what decision was made

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Examples for Module Secrets 199

Examples for Module Secrets

• line holder module
◦ how lines are represented in memory

• input module
◦ input format

• circular shift module
◦ how shifts are represented

• alphabetizer module
◦ sorting algorithm

◦ time when alphabetization is done

• output module
◦ output format

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Some Specific Criteria 200

Some Specific Criteria

the following should be hidden in a single module:

• a data structure, its access and modyfying procedures

• a routine and its assembly call sequence

• control block formats (into a control block module)

• character codes, alphabetic orderings, . . .

• sequence of processing

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Interface Between Modules 201

Interface Between Modules

• the assumptions that they make about each other

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Module Structure 202

Module Structure

system structure:
• a system’s parts and their connections
◦ connections: the modules’ interfaces (i.e., assumptions)

◦ parts: work assignments (modules)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Efficiency and Implementation 203

Efficiency and Implementation

• frequency of switching between modules at run-time:
◦ steps-in-processing approach: low frequency

◦ information-hiding approach: high frequency

• module access programs need not be subroutines
◦ the usual space-time tradeoffs apply

◦ supporting language constructs:

� macros (in C, C++, not in Java)

� inline functions/methods (in C++, not in Java)

� templates (in C++, not in Java)

◦ automatically optimizing compilers

� they know size of code, but not frequency of calls

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Information Hiding and Abstract Data Types 204

Information Hiding and Abstract Data Types

• data abstraction is a special case of information hiding
◦ algorithms can be hidden as well

• data types allow many copies of the hidden structure
◦ each variable has one copy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Information Hiding and Object-Orientation 205

Information Hiding and Object-Orientation

• both: group data and programs together

• information hiding: no inheritance

• OO: often no distinction of write-time/link-time modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Information Hiding and Program Families 206

Information Hiding and Program Families

• designing not a single program, but a program family

• early: decisions shared by all members

• postpone: decisions likely to change

• see Chapters 3.4 and 5

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	3. Decomposition Into Modules
	Overview of Chapter 3

	3.1 The Criteria to be Used in Decomposing Systems into Modules
	Text for Chapter 3.1
	Additional Background for Chapter 3.1
	What is a Module?
	The Constraints on Modules
	Modules of Software -- When are Parts Put Together?
	The Constraints on the Three Structures
	Old Example for a Confusion
	Recent Example for a Confusion
	The Effect of Confusing the Meanings
	Write-Time Modules
	Example: A KWIC Index Production System
	Example of a KWIC Index
	Output of The Unix ptx Utility
	Ideas for a Modularization
	What are the Criteria for a Modularization?
	Conventional Modularization
	Some Likely Changes
	Parnas' Modularization
	Comparison of the Two Modularizations
	The Criteria
	The Secret of a Module
	Examples for Module Secrets
	Some Specific Criteria
	Interface Between Modules
	Module Structure
	Efficiency and Implementation
	Information Hiding and Abstract Data Types
	Information Hiding and Object-Orientation
	Information Hiding and Program Families


