Second-Level Decomposition: Hardware-Hiding Module

- 1. extended computer module
- 2. device interface module

Extended Computer Module

- hides that part of the HW/SW interface that is likely to change
 - $\circ\,$ when computer modified
 - \circ when computer replaced
 - $\circ\,$ same for operating system, if used
- example A-7E computer:
 - floating point unit or software simulation?
 - o single / multi-processor?
- extended computer provides a virtual machine that can be implemented efficiently on all likely platforms

- primary secrets for A-7E computer:
 - $\circ\,$ number of processors
 - $\circ\,$ instruction set of the computer
 - $\circ\,$ capacity for concurrent operations

Device Interface Module

- hides that part of peripheral devices that is likely to change
 - each device might be replaced by an improved one capable of the same tasks
- example A-7E:
 - all angle-of-attack sensors measure angle between reference line on aircraft and the velocity of the air
 - they differ in: input format, timing, amount of noise

- module provides virtual devices
 - $\circ\,$ sometimes one virtual device corresponds to several hardware devices
 - sometimes the capabilities of a physical unit may change independently: then hide in different modules
- primary secrets for A-7E:
 - $\circ\,$ those characteristics of the present devices that
 - \vartriangleright are documented in the requirements document
 - \vartriangleright are not likely to be shared by replacement devices

Second-Level Decomposition: Behaviour-Hiding Module

- 1. function driver module
- 2. shared services module
 - \circ supports function driver module

Function Driver Module

- a set of individual modules ("function drivers")
- each function driver is sole controller of a set of closely related outputs
 - outputs related closely: if it is easier to describe their values together than individually
 - example: sine of an angle, cosine of same angle
- these outputs go to the virtual devices
- primary secrets: the rules determining the values of the outputs

Shared Services Module

- some aspects are common to two or more function drivers
 - $\circ\,$ A-7E: they control the same aircraft
 - odometer example: the display mode
- a shared services module hides one such aspect

Searching for a Behaviour-Hiding Module

- documentation users: will not know which aspects are shared
- documentation for the function driver modules: must have a reference to the shared services modules used
- start search:

always with function driver

Second-Level Decomposition: Software Decision Module

- 1. application data type module
 - hides implementation of certain variables
- 2. physical model module
 - $\circ\,$ hides algorithms that simulate physical phenomena
- 3. data banker module
 - $\circ\,$ hides data-updating policies
- 4. system generation module
 - $\circ\,$ hides decisions that are postponed until system generation time
- 5. software utility module
 - $\circ\,$ hides algorithms used in several other modules

Application Data Type Module

- supplements data types by extended computer module
- provides data types useful for avionics that do not require a computer dependent implementation
- primary secrets: the data representation of the variables
 variables can be used without units
 - where necessary, the modules provide unit conversion operators which deliver or accept values in specified units

Physical Model Module

- software requires estimates of quantities that cannot be measured directly, but can be computed from other observables
- primary secrets: the physical models
- secondary secrets: the implementations of the models

Data Banker Module

• most data:

produced by one module and consumed by another

- usually: consumer gets value as up-to-date as practical
- data banker: middle-man, determines update policy
- if update policy changes: change neither producer nor consumer
- don't use data banker if consumer requires . . .
 o specific members of value sequence
 - \circ values with a specific time (e.g., when an event occurs)

Some Data Update Policies

name	store	when new value produced
on demand	no	whenever a consumer requests the
		value
periodic	yes	periodically. consumer gets most
		recently stored value
event driven	yes	whenever data banker is notfied by
		an event of a possible change
conditional	yes	whenever a consumer requests the
		value, provided certain conditions
		are true.
		otherwise: previously store value

Choice of Updating Policies

- consumers' accuracy requirements
- how often consumers require the value
- max. wait that consumers can accept
- how often the value changes
- cost of producing a new value
- the policy decision does not depend on coding details of consumer or producer
 - data banker usually not rewritten
 - if producer or consumer change

System Generation Module

- primary secrets: decisions that are postponed until system generation time
 system generation parameters
 - $\circ\,$ choice among alternative implementations
- secondary secrets:
 - $\circ\,$ method used to generate executable code
 - $\circ\,$ representation of the postponed decisions
- these programs do not run on on-board computer
 A-7E: cross-platform build

Software Utility Module

- primary secrets: the algorithms implementing common software functions and mathematical routines
 resource monitor
 - square root, logarithm, . . .