Second-Level Decomposition: Hardware-Hiding Module

1. extended computer module
2. device interface module
Extended Computer Module

- hides that part of the HW/SW interface that is likely to change
 - when computer modified
 - when computer replaced
 - same for operating system, if used

- example A-7E computer:
 - floating point unit or software simulation?
 - single / multi-processor?

- extended computer provides a virtual machine that can be implemented efficiently on all likely platforms
• primary secrets for A-7E computer:
 ○ number of processors
 ○ instruction set of the computer
 ○ capacity for concurrent operations
Device Interface Module

• hides that part of peripheral devices that is likely to change
 ◦ each device might be replaced by an improved one capable of the same tasks

• example A-7E:
 ◦ all angle-of-attack sensors measure angle between reference line on aircraft and the velocity of the air
 ◦ they differ in: input format, timing, amount of noise
• module provides virtual devices
 ◦ sometimes one virtual device corresponds to several hardware devices
 ◦ sometimes the capabilities of a physical unit may change independently: then hide in different modules

• primary secrets for A-7E:
 ◦ those characteristics of the present devices that
 ▶ are documented in the requirements document
 ▶ are not likely to be shared by replacement devices
Second-Level Decomposition: Behaviour-Hiding Module

1. function driver module

2. shared services module
 - supports function driver module
Function Driver Module

- a set of individual modules ("function drivers")
- each function driver is sole controller of a set of closely related outputs
 - outputs related closely: if it is easier to describe their values together than individually
 - example: sine of an angle, cosine of same angle
- these outputs go to the virtual devices
- primary secrets: the rules determining the values of the outputs
Shared Services Module

• some aspects are common to two or more function drivers
 ◦ A-7E: they control the same aircraft
 ◦ odometer example: the display mode

• a shared services module hides one such aspect
Searching for a Behaviour-Hiding Module

• documentation users:
 will not know which aspects are shared

• documentation for the function driver modules:
 must have a reference to the shared services modules used

• start search:
 always with function driver
Second-Level Decomposition: Software Decision Module

1. application data type module
 ◦ hides implementation of certain variables
2. physical model module
 ◦ hides algorithms that simulate physical phenomena
3. data banker module
 ◦ hides data-updating policies
4. system generation module
 ◦ hides decisions that are postponed until system generation time
5. software utility module
 ◦ hides algorithms used in several other modules
Application Data Type Module

- supplements data types by extended computer module
- provides data types useful for avionics that do not require a computer dependent implementation
- primary secrets: the data representation of the variables
 - variables can be used without units
 - where necessary, the modules provide unit conversion operators which deliver or accept values in specified units
Physical Model Module

- software requires estimates of quantities that cannot be measured directly, but can be computed from other observables
- primary secrets: the physical models
- secondary secrets: the implementations of the models
Data Banker Module

• most data:
 produced by one module and consumed by another
• usually: consumer gets value as up-to-date as practical
• data banker: middle-man, determines update policy
• if update policy changes:
 change neither producer nor consumer
• don’t use data banker if consumer requires . . .
 ○ specific members of value sequence
 ○ values with a specific time (e.g., when an event occurs)
Some Data Update Policies

<table>
<thead>
<tr>
<th>name</th>
<th>store</th>
<th>when new value produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>on demand</td>
<td>no</td>
<td>whenever a consumer requests the value</td>
</tr>
<tr>
<td>periodic</td>
<td>yes</td>
<td>periodically. Consumer gets most recently stored value</td>
</tr>
<tr>
<td>event driven</td>
<td>yes</td>
<td>whenever data bank is notified by an event of a possible change</td>
</tr>
<tr>
<td>conditional</td>
<td>yes</td>
<td>whenever a consumer requests the value, provided certain conditions are true. Otherwise: previously store value</td>
</tr>
</tbody>
</table>
Choice of Updating Policies

- consumers’ accuracy requirements
- how often consumers require the value
- max. wait that consumers can accept
- how often the value changes
- cost of producing a new value

- the policy decision does not depend on coding details of consumer or producer
 - data banker usually not rewritten
 - if producer or consumer change
System Generation Module

• primary secrets:
 decisions that are postponed until system generation time
 ○ system generation parameters
 ○ choice among alternative implementations

• secondary secrets:
 ○ method used to generate executable code
 ○ representation of the postponed decisions

• these programs do not run on on-board computer
 ○ A-7E: cross-platform build
Software Utility Module

- primary secrets: the algorithms implementing common software functions and mathematical routines
 - resource monitor
 - square root, logarithm, ...