
Third-Level Decomposition: Extended Computer Module 250

Third-Level Decomposition:
Extended Computer Module

1. data type module

2. data structure module

3. input/output module

4. computer state module

5. parallelism control module

6. sequence control module

7. diagnostics module (R)

8. virtual memory module (H)

9. interupt handler module (H)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Data Type Module 251

Data Type Module

• implements variables and operators for real numbers,

time periods, and bit strings

• primary secrets: data representations and data

manipulation instructions built into the computer hardware

• secondary secrets:
◦ how range and resolution requirements are used to determine

representation

◦ procedures for performing numeric operations

◦ procedures for performing bitstring operations

◦ how to compute the memory location of an array index given the

array name and the element index

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Computer State Module 252

Computer State Module

• keeps track of current state of extended computer

(operating / off / failed)

• signals relevant state changes to user programs
◦ after extended computer is initialized,

signals the event that starts initialization of the rest of the software

• primary secret: the way that the hardware detects and

causes state changes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Diagnostics Module R 253

Diagnostics Module (R)

• provides diagnostic programs to test
◦ the interrupt hardware

◦ the I/O hardware

◦ the memory

• use is restricted

because it reveals secrets of the extended computer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Virtual Memory Module H 254

Virtual Memory Module (H)

• presents a uniformly addressable virtual memory
for use by
◦ data type module

◦ input/output module

◦ sequence control module

• allows using virtual addresses for data and subprograms

• primary secrets:
◦ hardware addressing methods for data and instructions in real

memory

◦ differences in the way that different areas of memory are addressed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Virtual Memory Module H 255

• secondary secrets:
◦ policy for allocating real memory to virtual addresses

◦ programs that translate from virtual address references to real

instruction sequences

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Device Interface Module 256

Third-Level Decomposition:
Device Interface Module

1. air data computer

◦ how to read barometric altitude, true airspeed, and Mach number

2. angle of attack sensor

◦ how to read angle of attack

3. audible signal device

4. computer fail device

5. Doppler radar set

6. flight information displays

7. forward looking radar

8. head-up display (HUD)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Device Interface Module 257

9. inertial measurement set (IMS/IMU)

10. panel

11. projected map display set (PMDS)

12. radar altimeter

13. shipboard inertial navigation system (SINS)

14. slew control

15. switch bank

16. TACAN

17. visual indicators

18. waypoint information system

19. weapon characteristics

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Device Interface Module 258

20. weapon release system

◦ how to ascertain weapon release actions the pilot has requested

21. weight on gear

• almost corresponds to hardware structure
◦ exceptions are closely linked devices

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Function Driver Module 259

Third-Level Decomposition:
Function Driver Module

1. air data computer functions

2. audible signal functions

3. computer fail signal functions

4. Doppler radar functions

5. flight information display functions

6. forward looking radar functions

7. head-up display (HUD) functions

8. inertial measurement set (IMS/IMU) functions

9. panel functions

10. projected map display set (PMDS) functions

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Function Driver Module 260

11. ships inertial navigation system (SINS) functions

12. visual indicator functions

13. weapon release functions

14. ground test functions

• input-only modules are missing here:
◦ angle of attack sensor

◦ radar altimeter

◦ . . .

• each module can be divided further

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Head-Up Display Functions 261

Head-Up Display Functions

• primary secrets:
◦ where the movable HUD symbols should be placed

◦ whether a HUD symbol should be on, off, or blinking

◦ what information should be displayed on the fixed-position displays

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Inertial Measurement Set Functions 262

Inertial Measurement Set Functions

• primary secrets:
◦ rules determining the scale to be used for the IMS velocity

measurements

◦ when to initialize the velocity measurements

◦ how much to rotate the IMS for alignment

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Panel Functions 263

Panel Functions

• primary secrets:
◦ what information should be displayed on panel window

◦ when the enter light should be turned on

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Shared Services Module 264

Third-Level Decomposition:
Shared Services Module

1. mode determination module

2. stage director module

3. shared subroutine module

4. system value module

5. panel I/O support module

6. diagnostic I/O support module

7. event tailoring module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Mode Determination Module 265

Mode Determination Module

• determines system modes

(as defined in the requirements document)

• signals the occurence of mode transitions

• makes the identity of the current modes available

• primary secrets:

the mode transition tables in the requirements document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



System Value Module 266

System Value Module

• has a set of sub-modules

• each sub-module computes a set of values,

some of which are used by more than one function driver

• primary secrets: the rules in the requirements that define
the value that it computes
◦ selection among several alternative sources

◦ applying filters to values produced by other modules

◦ imposing limits on a value calculated elsewhere

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Application Data Type Module 267

Third-Level Decomposition:
Application Data Type Module

• examples:
◦ angles (several versions)

◦ distances

◦ temperatures

◦ local data types for device modules

◦ STE (state transition event) variables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Physical Model Module 268

Third-Level Decomposition:
Physical Model Module

1. earth model module

2. aircraft motion module

3. spatial relations module

4. human factors module

5. weapon behaviour module

6. target behaviour module

7. filter behaviour module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Earth Model Module 269

Earth Model Module

• primary secrets: models of the earth and its atmosphere
◦ local gravity

◦ curvature of the earth

◦ pressure at sea level

◦ magnetic variation

◦ local terrain

◦ rotation of the earth

◦ coriolis force

◦ atmospheric density

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Aircraft Motion Module 270

Aircraft Motion Module

• primary secrets: models of the aircraft’s motion

• used to calculate aircraft position, velocity, attitude

from observable inputs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Spatial Relations Module 271

Spatial Relations Module

• primary secrets: models of three-dimensional space

• used to perform coordinate transformations,

angle calculations, distance calculations

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Human Factors Module 272

Human Factors Module

• primary secrets: models of pilot reaction time and

perception of simulated continuous motion

• determines the update frequency for symbols on a display

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Weapon Behaviour Module 273

Weapon Behaviour Module

• primary secrets: models used to predict weapon behaviour

after release

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Data Banker Module 274

Third-Level Decomposition:
Data Banker Module

• one for each real-time data item

• value always up-to-date

• secret: when to compute up-to-date value

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: System Generation Module 275

Third-Level Decomposition:
System Generation Module

• . . .
◦ (these programs do not run on on-board computer)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Third-Level Decomposition: Software Utility Module 276

Third-Level Decomposition:
Software Utility Module

• resource monitor module

• other shared resources
◦ square root

◦ logarithm

◦ . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Results of the A-7E Module Guide 277

Results of the A-7E Module Guide

• module guide is < 30 pages
◦ every project member must and can read it

• experience:
◦ important to organize the guide by secrets,

not by interfaces or by roles

◦ software requirements document was essential

for disambiguating choices in the guide’s structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Results of the A-7E Module Guide 278

• implementation of several subsets on a flight simulator

• integration testing of the first “minimal useful subset”:
◦ took a week only

◦ nine bugs found

� each in a single module only

� each quickly fixed

Dave Weiss: “like a breeze!”

• guide often used as a document template for other projects

applying the method

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



3.3 Hierarchical Software
Structures

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Text for Chapter 3.3 280

Text for Chapter 3.3

[Par74] Parnas, D. On a ‘buzzword’: Hierarchical structure.

In “IFIP Congress 74”, pp. 336–339. North-Holland

(1974). Reprinted in [HoWe01].

[HoWe01] Hoffman, D. M. and Weiss, D. M., editors.

Software Fundamentals – Collected Papers by David L.

Parnas. Addison-Wesley (Mar. 2001).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 3.3 281

Additional Background for Chapter 3.3

[Cou85] Courtois, P.-J. On time an space decomposition of

complex structures. Commun. ACM 28(6), 590–603 (June

1985).

“Courtois hierarchy” of structures which are complex in

time and space.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Structure 282

Structure

• partial description of a system, showing
◦ a division into parts

◦ a relation between the parts

• graphs can describe a structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Hierarchical Structure 283

Hierarchical Structure

• a structure with no loops in its relation’s graph:
◦ P0 = {α ∈ P | ¬∃ β ∈ P . R(α, β)}
◦ Pi = {α ∈ P | ∃ β ∈ Pi−1 . R(α, β) ∧

¬∃ j ∈ N, γ ∈ Pj . R(α, γ) ∧ j ≥ i}

• note: hierarchy 6= tree

• meaning of “hierarchical structure”?
◦ meaning of parts?

◦ meaning of relation?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Different Kinds of Software Hierarchies 284

Different Kinds of Software Hierarchies

• module decomposition hierarchy

• calls hierarchy

• uses hierarchy

• Courtois hierarchy

• gives-work-to hierarchy

• created hierarchy

• resource allocation hierarchy

• can-be-accessed-by hierarchy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Module Decomposition Hierarchy 285

Module Decomposition Hierarchy

• kind of structure:
◦ parts: write-time modules

◦ relation: part-of

• time: early design time

• this structure is always a hierarchy
◦ never loop in “part-of”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Calls Hierarchy 286

Calls Hierarchy

• kind of structure:
◦ parts: programs

◦ relation: calls

• time: design time

• hierarchical relation forbids recursion
◦ usually not a useful hierarchy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Uses Hierarchy 287

Uses Hierarchy

• kind of structure:
◦ parts: programs

◦ relation: uses (i.e., requires-the-presence-of)

• time: design time

• definition of “uses”:

Given a program A with specification S and a program B,

A uses B iff

A cannot satisfy S unless B is present and functioning

correctly

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Uses Hierarchy 288

• example: list insert routine
◦ uses getNextElem, setNextElem routines

◦ calls nullPointerException routine

◦ does not “use” nullPointerException routine

• example: window manager with call-backs
◦ application passes address of draw() program to window manager

◦ application responsible for drawing sub-area when draw() called

◦ window manager calls draw()

◦ window manager does not “use” draw()

• example: layers of communication services
◦ the higher layer uses the services of the lower layer

◦ messages are passed in both directions

(reqest, indication, response, confirm)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Uses Hierarchy 289

• if a structure is a uses hierarchy:

levels define virtual machines

• useful for “ease of subsetting” (see later)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Courtois Hierarchy 290

Courtois Hierarchy

• kind of structure:
◦ parts: operations

◦ relation: takes more time and occurs less frequently than

• time: run time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Courtois: Decomposition of Complex Structures 291

Courtois: Decomposition of Complex
Structures

• domains with complex structures:
◦ physics

◦ social science

◦ economy

◦ computer science

• sometimes easily decomposable in time and space
◦ concentrations in chemical reactions

� differential equation suitable

� large number of molecules allows to assume continuum

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Courtois: Decomposition of Complex Structures 292

• hierarchical decomposition difficult when
◦ time or size scales are not far apart

◦ interesting behavioural properties are related to rare events caused by

weak interactions within the system

◦ events at many scales of time or size from each other

nevertheless have a non-negligible influence on each other

• a hierarchical decomposition should ideally have:
◦ time and size scales far apart between levels

◦ . . .

• (Courtois describes how one can model structures even

when they are not easily decomposable)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Some More Kinds of Software Hierarchies 293

Some More Kinds of Software Hierarchies

• module decomposition hierarchy

• calls hierarchy

• uses hierarchy

• Courtois hierarchy

some more kinds:

• gives-work-to hierarchy

• created hierarchy

• resource allocation hierarchy

• can-be-accessed-by hierarchy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Gives-Work-To Hierarchy 294

Gives-Work-To Hierarchy

• kind of structure:
◦ parts: processes

◦ relation: gives an assignment to

• time: run time

• found in T.H.E. operating system
◦ organized as set of parallel sequential processes

◦ processes exchange work assignments and information

by message passing

◦ processes are in hierarchical gives-work-to relation

• useful for guaranteeing termination, but neither necessary

nor sufficient for this

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Created Hierarchy 295

Created Hierarchy

• kind of structure:
◦ parts: processes

◦ relation: created

• time: run time

• must be a hierarchy (parent is older than child)

• is a tree
◦ why? (team work in creating progeny is accepted practice)

• sometimes implies unnecessary restrictions
◦ example: parent cannot die until all progeny die

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Resource Allocation Hierarchy 296

Resource Allocation Hierarchy

• kind of structure:
◦ parts: processes

◦ relation: allocate-a-resource-to or

owns-the-resources-of

• time: run time

• applicable with dynamic resource administration only

• “allocate to” vs. “controls”: the question of pre-emption

• example: hierarchical money budgets for country, state,

university, department, . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Resource Allocation Hierarchy 297

• advantages:
◦ interference reduced or eliminated

◦ deadlock possibilities reduced

• disadvantages:
◦ poor utilization when load unbalanced

◦ high overhead when resources are tight

(especially with many levels)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Can-Be-Accessed-By Hierarchy 298

Can-Be-Accessed-By Hierarchy

• kind of structure:
◦ parts: programs

◦ relation: can-be-accessed-by

• time: design time

• important to security and reliability

• example: the “rings” of Multics
◦ generalization of supervisor/user level of CPU execution

◦ is even complete ordering

• a hierarchy prevents some useful accessability patterns

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Many Kinds of Software Hierarchies Possible 299

Many Kinds of Software Hierarchies Possible

• not all of these relations must form a hierarchy!

• you may choose some of these relations

to form a hierarchy

• if you confuse these relations,
you will mess up your design
◦ you then force a hierarchy on a relation

that should not be a hierarchy

� T.H.E.: uses hierarchy and gives-work-to hierarchy coincided

� write-time module hierarchy and uses hierarchy

of course should not coincide

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Many Kinds of Software Hierarchies Possible 300

� write-time module hierarchy and created hierarchy

should not coincide if the latter imposes constraints

(object creation in OO!)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: ISO OSI Basic Reference Model 301

Example: ISO OSI Basic Reference Model

• basic reference model for communication systems
◦ 7 layers

• is a uses hierarchy

• should not be implemented as a gives-work-to hierarchy
◦ then lots of message passing between layers

◦ much too inefficient

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Uses Hierarchy and Courtois Hierarchy 302

Uses Hierarchy and Courtois Hierarchy

• in practice they usually coincide
◦ programs that require few or no other programs to function

run short and are executed often

◦ programs that run long and only a few times

require many other programs to function

• except: the handling of exceptions
◦ interrupts

◦ reboot (seldom, needed by all programs)

◦ . . .

• if the above is not the case

then usually something is wrong!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	Third-Level Decomposition: Extended Computer Module
	Data Type Module
	Computer State Module
	Diagnostics Module R
	Virtual Memory Module H
	Third-Level Decomposition: Device Interface Module
	Third-Level Decomposition: Function Driver Module
	Head-Up Display Functions
	Inertial Measurement Set Functions
	Panel Functions
	Third-Level Decomposition: Shared Services Module
	Mode Determination Module
	System Value Module
	Third-Level Decomposition: Application Data Type Module
	Third-Level Decomposition: Physical Model Module
	Earth Model Module
	Aircraft Motion Module
	Spatial Relations Module
	Human Factors Module
	Weapon Behaviour Module
	Third-Level Decomposition: Data Banker Module
	Third-Level Decomposition: System Generation Module
	Third-Level Decomposition: Software Utility Module
	Results of the A-7E Module Guide
	3.3 Hierarchical Software Structures
	Text for Chapter 3.3
	Additional Background for Chapter 3.3
	Structure
	Hierarchical Structure
	Different Kinds of Software Hierarchies
	Module Decomposition Hierarchy
	Calls Hierarchy
	Uses Hierarchy
	Courtois Hierarchy
	Courtois: Decomposition of Complex Structures
	Some More Kinds of Software Hierarchies
	Gives-Work-To Hierarchy
	Created Hierarchy
	Resource Allocation Hierarchy
	Can-Be-Accessed-By Hierarchy
	Many Kinds of Software Hierarchies Possible
	Example: ISO OSI Basic Reference Model
	Uses Hierarchy and Courtois Hierarchy


