
3.2 Structuring Complex
Software with the Module

Guide

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Text for Chapter 3.2 208

Text for Chapter 3.2

[PCW85] Parnas, D. L., Clements, P. C., and Weiss, D. M.

The modular structure of complex systems. IEEE Trans.

Softw. Eng. 11(3), 259–266 (Mar. 1985).

Information hiding; the modules to decompose into.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 3.2 209

Additional Background for Chapter 3.2

[Lam88] Lamb, D. A. Software Engineering: Planning for

Change. Prentice-Hall (1988).

Chapter 5: information hiding; the modules to decompose

into.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Why the Gap Between Information Hiding in Theory and in Practice? 210

Why the Gap Between Information Hiding in
Theory and in Practice?

(before start of SCR project)

1. idea is impractical for real problems?

2. responsible managers unwilling to bet on unproven idea?

(startup problem)

3. examples in papers too unlikely to practical problems?

4. idea needs refinement or extension for complex projects?

5. practitioners not intellectually capable of application?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Why the Gap Between Information Hiding in Theory and in Practice? [2] 211

Why the Gap Between Information Hiding in
Theory and in Practice?

1. idea is impractical for real problems?
◦ no

2. responsible managers unwilling to bet on unproven idea?

(startup problem)

3. examples in papers too unlikely to practical problems?

4. idea needs refinement or extension for complex projects?

5. practitioners not intellectually capable of application?
◦ no

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Bridging the Gap 212

Bridging the Gap

2. responsible managers unwilling to bet on unproven idea?
(startup problem)
◦ started SCR project as an example

3. examples in papers too unlikely to practical problems?
◦ SCR: A-7E flight operational program is realistic

4. idea needs refinement or extension for complex projects?
◦ see below

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Structuring Complex Software Systems into Modules 213

Structuring Complex Software Systems
Into Modules

• many implementation decisions, many details

• therefore many modules

• ≤ 25 modules:
◦ not difficult to know:

� which modules affected by a change

� whether coverage complete

◦ careful inspection

• hundreds of modules??
◦ information hiding alone does not work here!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Needed: the Software Module Guide Document 214

Needed: the Software Module Guide
Document

• tree-structured hierarchy

• additional goals by hierarchy and guide:
◦ well-defined concern: easily find relevant modules

without looking at all the others

◦ number of branches at each node small enough

such that designers can argue convincingly that

� no overlapping responsibilities of submodules

� all responsibilities of module are covered

◦ again: understand responsibility of a module without

understanding its internal design

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Software Module Guide Document 215

The Software Module Guide Document

• how responsibilities are allocated among the major modules

• the criteria used to assign a particular responsibility

• scope and contents of the individual design documents

• large example will follow

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



When to Write the Software Module Guide 216

When to Write the Software Module Guide

• start after SW behaviour specification (SOF) is complete

• refine top-level modules as concurrent work assignments
◦ each refinement step renders more concurrent design work

assignments

• the module interface specification writers

work out the details

• the module internal design follows

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Tracing Requirements 217

Tracing Requirements

• software module guide derived from

SW behaviour specification (SOF)

• easy to trace requirements to modules

• easy to trace back a design decision to the requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Access to a Module’s Access Programs 218

Access to a Module’s Access Programs

• any program may use any access program of
any module in the guide
◦ independent of relative positions in hierarchy

◦ but see also the “uses hierarchy” in Chapter 3.4 later on!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Module Interfaces May Change 219

Module Interfaces May Change

• module interfaces are (higher-level) design decisions
◦ may change

◦ like module contents are design decisions

• encapsulate these interfaces in higher-level modules

• don’t mention these sub-modules in guide
◦ don’t use sub-modules outside this module

• additional local module guide for this module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Difficulties During Structuring 220

Difficulties During Structuring

• unstable information that cannot be encapsulated
◦ → “restricted” modules

• need to locate “secret” modules in the guide
◦ → “hidden” modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Restricted Modules 221

Restricted Modules

• a problem:
◦ we should confine information about hardware that could be replaced

◦ diagnostic information about that hardware

must be communicated to display modules

• restrict use of such modules
◦ mark by “(R)” in module guide

◦ try to avoid using restricted modules

because of potentially high costs of change

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Hidden Modules 222

Hidden Modules

• often: existence of certain sub-modules is a secret
◦ not in the global guide

◦ no use outside this module

• sometimes: existence of sub-module is a secret, but
guide should clearly state where certain functionality is
◦ mention these sub-modules in guide

� mark by “(H)” as hidden

◦ still no use outside the module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Two Kinds of Module Secrets 223

Two Kinds of Module Secrets

• primary secret
◦ hidden information specified to the software designer

• secondary secrets
◦ implementation decisions made by the designer when implementing

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Classes of Modules in the A-7E Software Module Structure 224

The Classes of Modules in the A-7E
Software Module Structure

top-level decomposition:

1. hardware-hiding module
}

secret is in software

requirements document2. behaviour-hiding module

3. software decision module
}

secret is not a requirement

• this top-level decomposition is

valid for nearly all SW systems!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Classes of Modules in the A-7E Software Module Structure 225

• hardware-hiding module
◦ any programs affected by replacing a device

� with different interface

� with same general capabilities

◦ implements virtual hardware used by rest of software

◦ even for “non-embedded” software

� any programs affected by likely changes in the operating system

◦ primary secrets:

� the hardware-software interfaces

described in the requirements document

◦ secondary secrets:

� data structures and algorithms used to implement

the virtual hardware

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Classes of Modules in the A-7E Software Module Structure 226

• behaviour-hiding module
◦ any programs affected by changes of the required behaviour

◦ these programs determine the values to be sent to the

“virtual hardware” output devices

◦ primary secrets:

� the required behaviour

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Classes of Modules in the A-7E Software Module Structure 227

• software decision module
◦ hides software design decisions based upon

� mathematical theorems

� physical facts

� programming considerations (efficiency, accuracy)

◦ secrets and interfaces determined by software designers

� secrets are not in the requirements document

◦ likely reason for changes here:

� improve performance

� not: externally imposed changes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Fuzziness in the Top-Level Classification 228

Fuzziness in the Top-Level Classification

1. line between requirements and design
decided when requirements are written
◦ example: requirements can specify an explicit weapon trajectory

model or just accuracy requirements

2. line between hardware characteristics and software design
◦ software tasks could be cast into hardware

◦ software decision module or hardware-hiding module?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Fuzziness in the Top-Level Classification 229

3. software design decisions may not be appropriate anymore
because of changes in
◦ the hardware

◦ the behaviour of the system

◦ the behaviour of its users

4. all software modules include software design decisions
◦ changes in any module may be motivated by efficiency or accuracy

considerations

• such fuzziness is not acceptable!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Eliminating Fuzziness in the Top-Level Classification 230

Eliminating Fuzziness in the Top-Level
Classification

• by referring to a precise software requirements document
◦ specifies the lines between behaviour, hardware, and software

decisions

ad 1: line between requirements and design
◦ if requirements specifies algorithm:

algorithm is not software design decision

◦ if requirements specifies constraints only:

program that implements algorithm is part of

software design decision module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Eliminating Fuzziness in the Top-Level Classification 231

ad 2: line between hardware characteristics and software
design
◦ interface specified in software requirements document

◦ draw line based on likelihood of changes

� if likely to cast this software in hardware:

classify as hardware-hiding module

� otherwise: software design module

◦ conservative stance in SCR project:

� drastic changes less likely than evolutionary changes

� slight changes to hardware:

hardware-hiding modules affected only

� radical changes software→hardware:

some software decision modules eliminated or reduced in size

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Eliminating Fuzziness in the Top-Level Classification 232

ad 3: software design decisions may not be appropriate
anymore because of changes in [. . . ]
◦ module only in software decision module if

it remains useful even when requirements document is changed

(although possibly less efficient)

ad 4: all software modules include software design decisions
◦ module only in software decision module if

its secrets do not include information from the requirements document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	3.2 Structuring Complex Software with the Module Guide
	Text for Chapter 3.2
	Additional Background for Chapter 3.2
	Why the Gap Between Information Hiding in Theory and in Practice?
	Why the Gap Between Information Hiding in Theory and in Practice? [2]
	Bridging the Gap
	Structuring Complex Software Systems into Modules
	Needed: the Software Module Guide Document
	The Software Module Guide Document
	When to Write the Software Module Guide
	Tracing Requirements
	Access to a Module's Access Programs
	Module Interfaces May Change
	Difficulties During Structuring
	Restricted Modules
	Hidden Modules
	Two Kinds of Module Secrets
	The Classes of Modules in the A-7E Software Module Structure
	Fuzziness in the Top-Level Classification
	Eliminating Fuzziness in the Top-Level Classification


