
3.4 Designing Software for Ease
of Extension and Contraction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Text for Chapter 3.4 304

Text for Chapter 3.4

[Par79] Parnas, D. L. Designing software for ease of

extension and contraction. IEEE Trans. Softw. Eng.

SE-5(2), 128–138 (Mar. 1979).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 3.4 305

Additional Background for Chapter 3.4

[Par76] Parnas, D. L. On the design and development of

program families. IEEE Trans. Softw. Eng. 2(1), 1–9 (Mar.

1976).

Stepwise refinement vs. information hiding; families of

programs.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Motivation 306

Motivation

some common complaints about software systems:

• deliver early release with subset of functionality?

→ the subset won’t work until everything works

• add simple capability?

→ rewrite most of the current code

• remove unneeded capability?

→ rewrite much of the current code

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



A Family of Programs 307

A Family of Programs

• usually you don’t write a single program,

but a family of programs

• families of systems: Chapter 5

• here special case:
families of programs where
◦ some members are subsets of other members, or

◦ several members share a large common subset

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Alternatives for the Software Producer 308

Alternatives for the Software Producer

• a “super” system
◦ generality costs

� memory, speed: still important for embedded systems

� difference to mathematics

• a system for the “average” user
◦ doesn’t really fit for anybody

• a set of independently developed systems
◦ with subtle differences → maintenance nightmare

• a subsettable “super” system
◦ each family member offers a subset

of services of the largest member

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



A Subsettable System 309

A Subsettable System

• individual installations only pay for what they need
◦ computer resources

◦ marketing

• incremental implementation possible

• allows for fail-soft subsets

• ability to contract by deleting whole programs,

not by modifying programs

• ability to extend by adding programs,

without changing programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Uses Hierarchy, Again 310

The Uses Hierarchy, Again

• is the key to subsets!

• kind of structure:
◦ parts: programs (not modules)

◦ relation: uses (i.e., requires-the-presence-of)

• time: design time

• definition of “uses”:

Given a program A with specification S and a program B,

A uses B iff

A cannot satisfy S unless B is present and functioning

correctly

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Design Error: Loops in the Uses Relation 311

Design Error: Loops in the Uses Relation

example:
use
allocated memory for tables

use
tables to keep track of memory

table handling
programs

memory
allocator

• neither works until both work

• if either is removed, the other no longer works

• should memory allocator build own tables?
◦ code duplication

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Design Error: Loops in the Uses Relation 312

example (from Multics):

• virtual memory uses file system

• file system uses virtual memory

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Basic Steps in the Design of a Subsettable System 313

Basic Steps in the Design
of a Subsettable System

1. identify the subsets

2. make list of programs belonging to each module

3. decide on uses matrix for the programs

4. construct the uses hierarchy from the matrix

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Identify the Subsets 314

Identify the Subsets

• during requirements definition

• search for minimal useful subset

• search for minimal useful increments
◦ even if it appears trivial now

• each increment later becomes a

write-time module in the design

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Make List of Programs Belonging to Each Module 315

Make List of Programs
Belonging to Each Module

• access programs

• internal programs
◦ cannot be used directly by outside programs

◦ can use other programs

• main programs
◦ cannot be used (are top-level)

◦ can use other programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Basic Steps in the Design of a Subsettable System [2] 316

Basic Steps in the Design
of a Subsettable System

1. identify the subsets

2. make list of programs belonging to each module

3. decide on uses matrix for the programs

4. construct the uses hierarchy from the matrix

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Decide on Uses Matrix for the Programs 317

Decide on Uses Matrix for the Programs

• three possibilities for each pair (A, B)
◦ A may use B

◦ B may use A

◦ neither may use the other

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conditions for Allowing Program A to Use Program B 318

Conditions for Allowing
Program A to Use Program B

• A is simpler because it uses B

• B is not more complex because it is not allowed to use A

• there is a useful subset containing B and not A

• there are no useful subsets containing A and not B

• all conditions must be satisfied

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Construct the Uses Hierarchy from the Matrix 319

Construct the Uses Hierarchy from the Matrix

• could be done by a tool
◦ see Ada’s “with” clause to make the uses relation explicit

• make list of programs at level 0
◦ they don’t use other programs

• work up from there
◦ level 1 programs use only level 0 programs

◦ level 2 programs . . .

• the uses matrix and hierarchy must be maintained,

of course

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conflict Removal: Sandwiching 320

Conflict Removal: Sandwiching

use
allocated memory for tables

use
tables to keep track of memory

memory
allocator

programs
table access

table handling
programs

variable sized tables

fixed sized tables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Conflict Removal: Sandwiching 321

• message:

a level (in the uses hierarchy)
is not a module (in the write-time hierarchy)

◦ uses relationship is between programs, not modules

◦ there are no “layers of abstraction”

◦ in a subsetted system,

there may be subsets of the programs in the modules

� the designer of each module must identify the useful subsets

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Deriving Subsets from the Uses Relation 322

Deriving Subsets from the Uses Relation

• any level is a subset

0

1

2

3

• can also omit parts of levels

0

1

2

3

0

1

2

3

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Levels and Virtual Machines 323

Levels and Virtual Machines

• def. virtual machine: a set of variables and operations,

implemented in software

• each level is a virtual machine
◦ applications programs are simpler:

they use virtual machine programs

• upper level machines are less powerful
◦ resources used to implement a VM

must not be available to a program that uses the VM

◦ upper level machines more specialized

• upper level machines are more convenient and safer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Evaluation Criteria for a Uses Hierarchy 324

Evaluation Criteria for a Uses Hierarchy

1. all desirable subsets?

2. no duplicated or almost alike programs?

3. is it simple?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Getting All Desirable Subsets 325

Getting All Desirable Subsets

• principle of minimal steps
◦ start with minimal useful subset

◦ minimal useful increments

• examples of violation:
◦ RC4000 operating system combined

synchronization and message passing

◦ Hydra operating system combined

parameter passing and run-time type checking

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The One, Fixed, Variable Pattern 326

The One, Fixed, Variable Pattern

• a common, useful pattern for designing a uses hierarchy

• three levels of operations:
◦ operations on one item

◦ operations on a fixed number of similar items

◦ operations on a variable number of similar items

• you might want to have three subsets

• language/library support

for “fixed”, “variable” supersets
of “one” data element
◦ C++, Java, . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: an Address Processing System 327

Example: an Address Processing System

• read, store, and write out lists of addresses

• example taken from [Par79]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Information in an Address 328

Information in an Address

• last name

• given names

• organization

• internal identifier

• street address or P.O. box

• city or mail unit identifier

• state

• Zip code

• title

• branch of service if military

• GS grade if civil service

• each field may be empty

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Basic Assumptions 329

Basic Assumptions

• the items on previous slide will be processed by all

application programs

• the input formats are subject to change

• the output formats are subject to change

• choice of input/output format for different systems:
◦ fixed format

 (one/fixed/variable)◦ run-time choice from a fixed set

◦ user-specified format definition language

• representation of addresses in main memory will vary

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Basic Assumptions 330

• most systems: only a subset of addresses in main memory
at any one time
◦ number needed may vary

◦ some systems: number needed may vary at run-time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Proposed Design Decisions 331

Proposed Design Decisions

• input and output programs will be table driven
◦ table specifies format

◦ secret of input and output modules:

content and organization of format tables

• secret of address storage module (ASM):
representation of addresses in main memory
◦ changing a part of an address is cheaper than

growing or shrinking the address table

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Proposed Design Decisions 332

• address file module (AFM):
used if more addresses than main memory
◦ interface compatible to ASM

◦ provides additional operations for efficient sequential iteration

• implementation of AFM has ASM, BFM as submodule
◦ block file module (BFM):

stores data blocks (size of at least an address),

does not look at content

◦ the ASM within the AFM has two interfaces:

� “normal” interface: addresses and their fields

� interface for blocks of contiguous storage, input/output

◦ BFM might be part of operating system

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Access Programs of “Normal” Interface of ASM 333

Access Programs of “Normal” Interface
of ASM

addTit: asm× integer× string→ asm
addGN: asm× integer× string→ asm
addLN: asm× integer× string→ asm
addServ: asm× integer× string→ asm
addBOrC: asm× integer× string→ asm
addCOrA: asm× integer× string→ asm
addSOrP: asm× integer× string→ asm
addCity: asm× integer× string→ asm
addState: asm× integer× string→ asm
addZip: asm× integer× string→ asm
addGsL: asm× integer× string→ asm
setNum: asm× integer → asm

fetTit: asm× integer→ string
fetGN: asm× integer→ string
fetLN: asm× integer→ string
fetServ: asm× integer→ string
fetBOrC: asm× integer→ string
fetCOrA: asm× integer→ string
fetSOrP: asm× integer→ string
fetCity: asm× integer→ string
fetState: asm× integer→ string
fetZip: asm× integer→ string
fetGsL: asm× integer→ string
fetNum: asm× integer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Component Programs of Address Input Module 334

Component Programs of
Address Input Module

InAd: Reads in an address in the currently selected format and calls ASM or
AFM programs to store it.

InFSel: Selects a format from an existing set of format tables for InAd. There is
always a format selected.

InFCr: Adds a new format to the tables used by InFSel. The format is specified
in a “format language”. Selection is not changed.

InTabExt: Adds a blank table to the set of input format tables.
InTabChg: Rewrites a table in the input format tables. Selection is not changed.
InFDel: Deletes a table from the set of format tables. The selected format cannot

be deleted.
InAdSel: Reads in an address using one of a set of formats. Choice is specified by

an integer parameter.
InAdFo: Reads in an address in a format specified as one of its parameters (a

string in the format definition language). The format is selected and
added to the tables and subsequent addresses could be read in using InAd.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Component Programs of Address Output Module 335

Component Programs of
Address Output Module

OutAd: Prints out an address in the currently selected format. The information is
in an ASM and identfied by its position there.

OutFSel: Selects a format from an existing set of format tables for OutAd. There
is always a format selected.

OutFCr: Adds a new format to the tables used by OutFSel. The format is
specified in a “format language”. Selection is not changed.

OutTabExt: Adds a blank table to the set of output format tables.
OutTabChg: Rewrites a table in the output format tables. Selection is not changed.
OutFDel: Deletes a table from the set of format tables. The selected format cannot

be deleted.
OutAdSel: Prints out an address using one of a set of formats. Choice is specified by

an integer parameter.
OutAdFo: Prints out an address in a format specified as one of its parameters (a

string in the format definition language). The format is selected and
added to the tables and subsequent addresses could be printed using OutAd.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Component Programs of Address Storage Module 336

Component Programs of
Address Storage Module

Fet<CompName>: Read information from an address store. (See Slide 333.)
Add<CompName>: Write information in an address store. (See Slide 333.)
GetBlock: Takes an integer parameter, returns a storage block.
SetBlock: Takes a storage block and an integer. Changes the contents

of an address store – reflected by the Fet<CN> programs.
AsmExt: Extends an address store by appending a new address with

empty components at the end of the address store.
AsmShr: “Shrinks” the address store.
AsmCr: Creates a new address store. The parameter specifies the

number of components. All components are initially empty.
AsmDel: Deletes an existing address store.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Component Programs of Block File Module 337

Component Programs of
Block File Module

BlFet: Takes an integer and returns a “block”.
BlSto: Takes a block and an integer and stores the block.
BfExt: Extends BFM by adding additional blocks to its capacity.
BfShr: Reduces the size of the BFM by removing some blocks.
BfMCr: Creates a file of blocks.
BfMDel: Deletes an existing file of blocks.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Component Programs of Address File Module 338

Component Programs of
Address File Module

• provides all ASM programs except GetBlock and SetBlock.

• the programs are renamed as follows:

AfmFet<CompName>: As in ASM.
AfmAdd<CompName>: As in ASM.
AfmExt: As in BFM.
AfmShr: As in BFM.
AfmCr: As in BFM.
AfmDel: As in BFM.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Uses Relation of the System 339

Uses Relation of the System
AfmFet<CN> AfmAdd<CN> AfmExt AfmShr AfmDel AfmCr

F
et

<
C

N
>

A
dd

<
C

N
>

G
et

B
lo

ck

S
et

B
lo

ck

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

C
r

B
fM

D
el

InAdFo

In
F

D
el

In
T

ab
C

hg

In
T

ab
E

xt

In
F

S
el

In
A

d

InAdSel InFCr

OutAdFo

OutAdSel OutFCr

O
ut

F
D

el

O
ut

T
ab

C
hg

O
ut

T
ab

E
xt

O
ut

F
S

el

O
ut

A
d

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Subset: Addresses in a Single Format 340

Subset: Addresses in a Single Format
AfmFet<CN> AfmAdd<CN> AfmExt AfmShr AfmDel AfmCr

F
et

<
C

N
>

A
dd

<
C

N
>

G
et

B
lo

ck

S
et

B
lo

ck

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

C
r

B
fM

D
el

O
ut

A
d

In
A

d

In
T

ab
E

xt

In
T

ab
C

hg

In
F

D
el

In
F

S
el

InFCr

InAdFo

InAdSel OutAdSel

OutAdFo

OutFCr

O
ut

F
S

el

O
ut

T
ab

E
xt

O
ut

T
ab

C
hg

O
ut

F
D

el

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Subset: Small Set of Addresses 341

Subset: Small Set of Addresses
F

et
<

C
N

>

A
dd

<
C

N
>

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

InAdFo

In
F

D
el

In
T

ab
C

hg

In
T

ab
E

xt

In
F

S
el

In
A

d

InAdSel InFCr

OutAdFo

OutAdSel OutFCr

O
ut

F
D

el

O
ut

T
ab

C
hg

O
ut

T
ab

E
xt

O
ut

F
S

el

O
ut

A
d

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

D
el

B
fM

C
r

AfmExt AfmShr AfmDel AfmCrAfmAdd<CN>AfmFet<CN>

G
et

B
lo

ck

S
et

B
lo

ck

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Subset: Query-Only System 342

Subset: Query-Only System
AfmFet<CN> AfmAdd<CN> AfmExt AfmShr AfmDel AfmCr

F
et

<
C

N
>

A
dd

<
C

N
>

G
et

B
lo

ck

S
et

B
lo

ck

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

C
r

B
fM

D
el

InAdFo

In
F

D
el

In
T

ab
C

hg

In
T

ab
E

xt

In
F

S
el

In
A

d

InAdSel InFCr

OutAdFo

OutAdSel OutFCr

O
ut

A
d

O
ut

F
S

el

O
ut

T
ab

E
xt

O
ut

T
ab

C
hg

O
ut

F
D

el

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	3.4 Designing Software for Ease of Extension and Contraction
	Text for Chapter 3.4
	Additional Background for Chapter 3.4
	Motivation
	A Family of Programs
	Alternatives for the Software Producer
	A Subsettable System
	The Uses Hierarchy, Again
	Design Error: Loops in the Uses Relation
	Basic Steps in the Design of a Subsettable System
	Identify the Subsets
	Make List of Programs Belonging to Each Module
	Basic Steps in the Design of a Subsettable System [2]
	Decide on Uses Matrix for the Programs
	Conditions for Allowing Program A to Use Program B
	Construct the Uses Hierarchy from the Matrix
	Conflict Removal: Sandwiching
	Deriving Subsets from the Uses Relation
	Levels and Virtual Machines
	Evaluation Criteria for a Uses Hierarchy
	Getting All Desirable Subsets
	The One, Fixed, Variable Pattern
	Example: an Address Processing System
	Information in an Address
	Basic Assumptions
	Proposed Design Decisions
	Access Programs of ``Normal'' Interface of ASM
	Component Programs of Address Input Module
	Component Programs of Address Output Module
	Component Programs of Address Storage Module
	Component Programs of Block File Module
	Component Programs of Address File Module
	Uses Relation of the System
	Subset: Addresses in a Single Format
	Subset: Small Set of Addresses
	Subset: Query-Only System


