
3.5 Design of Abstract
Interfaces

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Text for Chapter 3.5 344

Text for Chapter 3.5

[HBPP81] Heninger Britton, K., Parker, R. A., and Parnas,

D. L. A procedure for designing abstract interfaces for

device interface modules. In “Proc. of the 5th Int’l. Conf.

on Software Engineering – ICSE 5”, pp. 195–204 (Mar.

1981).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 3.5 345

Additional Background for Chapter 3.5

[Par77] Parnas, D. L. Use of abstract interfaces in the

development of software for embedded computer systems.

NRL Report 8047, Naval Research Lab., Washington DC,

USA (3 June 1977). Reprinted in Infotech State of the Art

Report, Structured System Development, Infotech

International, 1979.

A predecessor report of [HBPP81] with more examples.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 3.5 346

[PaWe85] Parnas, D. L. and Weiss, D. M. Active design

reviews: Principles and practices. In “Proc. of the 8th Int’l

Conf. on Software Engineering – ICSE 8”, London (Aug.

1985).

How to organize the review of documentation.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Applying Information Hiding to Embedded Systems 347

Applying Information Hiding
to Embedded Systems

• the external interface is what is likely to change

• use an abstract interface to hide the actual interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Motivation for Abstract Interface Design Rules 348

Motivation
for Abstract Interface Design Rules

• much of the complexity of embedded real-time software:
special-purpose hardware devices
◦ example A-7 avionics:

� 21 devices, arbitrary interfaces (value encodings, timing quirks)

� changes during and after development

� device “adequate” but does not meet specification exactly

� device replaced by better one

� new connections between devices

• hide details inside device interface modules

• but which details?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Device Interface Modules 349

Device Interface Modules

• software module structure:
1. hardware-hiding module

1.1 extended computer module
1.2 device interface module

1.2.1 air data computer

1.2.2 angle of attack sensor

. . .

2. behaviour-hiding module

3. software decision module

• provide virtual devices
◦ example: virtual altimeter

� provides value of type range instead of bit string

� raw data is read, scaled, corrected, and filtered

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Design Goals for Device Interface Modules 350

Design Goals for Device Interface Modules

• confine changes

• simplify the rest of the software

• enforce disciplined use of resources

• code sharing

• efficient use of devices

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Definitions 351

Definitions

for:

• interface

• abstraction

• abstract interface

• device interface module

• secret of a device interface module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Definition: Interface 352

Definition: Interface

Definition 15 (Interface)

The interface between two programs consists of
the set of assumptions that each programmer
needs to make about the other program in order to
demonstrate the correctness of his own program.

• more than syntax

• analogous definition for the interface program–device

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Definition: Abstraction 353

Definition: Abstraction

Definition 16 (Abstraction)

An abstraction of a set of objects is
a description that applies equally well to any one of them.

• each object is an instance of the abstraction

• an abstraction models some aspects, but not all

• example: differential equations

(electrical circuits, collections of springs and weights, . . . )

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Appropriateness of an Abstraction 354

Appropriateness of an Abstraction

• appropriate for a given purpose:
easier to study the abstraction than the actual system
◦ example: map map

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Definition: Abstract Interface 355

Definition: Abstract Interface

Definition 17 (Abstract interface)

An abstract interface is
an abstraction that represents more than one interface.

• exactly the assumptions included in all of the interfaces

that it represents

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Definition: Device Interface Module 356

Definition: Device Interface Module

Definition 18 (Device interface module)

A device interface module is a set of programs that
translate between the abstract interface and
the actual hardware interface.

• implementation possible only if all assumptions

in abstract interface are true of actual interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Definition: Secret of a Device Interface Module 357

Definition: Secret of a Device Interface
Module

Definition 19 (Secret of a device interface module)

A secret of a device interface module is
an assumption about the actual device
that user programs is not allowed to make.

• secret is an information about the current device

which needs not be true for others

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Undesired Event Assumptions 358

Undesired Event Assumptions

• interface between programs A, B includes assumptions of

A about B and of B about A

• B′: does not make any assumptions about A
◦ extra error checking and reporting in B′; more expensive

• development version of A-7:

device interface modules that assume

undesired events by user programs can occur

• production version of A-7: checking omitted
◦ compiler switch

• error checks in the requirements: never omitted

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Design Approach 359

Design Approach

• two partially redundant descriptions of the interface:
1. assumption list characterizing the virtual device

2. programming constructs embodying the assumptions

• review and iterate

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Description 1: Assumption List Characterizing the Virtual Device 360

Description 1: Assumption List
Characterizing the Virtual Device

• study devices available or under development
◦ advertisements of vendors

◦ journals

◦ . . .

• make list of common characteristics
◦ device capabilities

◦ modes

◦ information requirements

◦ behaviour

◦ proper use

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Description 1: Assumption List Characterizing the Virtual Device 361

• these are the assumptions

• example:
“The device provides information from which barometric
altitude can be determined.”
◦ only devices satisfying this assumption

will replace the current barometric altitude sensor

◦ no common assumption on the format of the information

• many assuptions appear inocuous
◦ record anyway

◦ review might prove them false

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Description 2: Programming Constructs Embodying the Assumptions 362

Description 2: Programming Constructs
Embodying the Assumptions

• access programs
◦ name, parameter types, value returned

◦ limitations

◦ effect on the device

• signalling events

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Descriptions are Partially Redundant 363

The Descriptions are Partially Redundant

• specifications for the programming constructs

imply the assumptions

• access program specifications additionally provide
form of data exchange
◦ example:

altimeter device interface module

might not provide barometric altitude directly,

but two or three quantities from which it can be computed

◦ a design change would change the access program specification

but not the assumption list

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Different Purposes of the Two Descriptions 364

Different Purposes of the Two Descriptions

1. assumption list: state assumptions explicitly
◦ explicit: invalid assumptions are easier to detect

◦ prose: easier to review for non-programmers

◦ review by programmers, users, hardware engineers

� valid?

� general enough?

2. programming constructs: direct use in user programs
◦ review by programmers

who have worked with similar programs

� typical user programs supported well?

� efficient implementation possible?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Different Purposes of the Two Descriptions 365

• consistency is essential
◦ assumptions clearly embodied in the programming construct

specifications

◦ programming construct specifications should not imply additional

capabilities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Reviews 366

Reviews

• ask the expert why something cannot change
◦ “active design review”

◦ for details see [PaWe85]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Iterative Process for the A-7 367

Iterative Process for the A-7

• tried to list assumptions first

• many subtle assumptions became apparent only

when designing programming constructs

• review of assumptions revealed errors

in programming constructs

• several cycles of review
◦ internally at NRL (several times)

◦ by A-7 maintenance team (informal, then formal)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Example: Development of the Air Data Computer 368

Example: Development of the
Air Data Computer (ADC)

• a sensor that measures
◦ barometric altitude

◦ true airspeed

◦ the mach number representation of airspeed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Excerpt of an Early Draft 369

Excerpt of an Early Draft
assumption list

1. The ADC provides a measure of barometric altitude, mach number, and true
airspeed.

2. The above measurements are based on a common set of sensors. Therefore an
inaccuracy in one ADC sensor may affect any of these outputs.

3. The ADC provides an indication if any of its sensors are not functioning properly.

4. The measurements are made assuming a sea level pressure of 29.92 inches of
mercury.

access program table

program name parameter type parameter information
G ADC ALTITUDE p1:distance;O altitude assuming 29.92 inches sea

level pressure
G ADC MACH INDEX p1:mach;O mach
G ADC TRUE AIRSPEED p1:speed;O true airspeed
G ADC FAIL INDICATOR p1:logical;O true if ADC failed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Problems with This Early Draft 370

Problems with This Early Draft

• current ADC hardware and most replacement devices

have built-in test capability – no access

• when ADC is in failed state,

no values specified for access functions

• ranges of measured values not specified

• user programs must poll to detect changes in validity

• not clear whether module performs device-dependent

corrections to the raw sensor values

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Excerpt of Draft for Formal Review 371

Excerpt of Draft for Formal Review
assumption list

1. The ADC provides measurements of the barometric altitude, true airspeed, and the
mach number representation of the airspeed of the aircraft. Any known
measurement errors are compensated for within the module. Altitude measurements
are made assuming that the air pressure at sea level is 29.92 inches of mercury.

2. All of these measurements are based on a common set of sensors; therefore an
inaccuracy in one ADC sensor will affect all measurements.

3. User programs are notified by means of an event when the ADC hardware fails. If
the access programs for barometric altitude, true airspeed, and mach number are
called during an ADC failure, the last valid measurements (stale values) are provided.

4. The ADC is capable of performing a self-test upon command from the software. The
result of this test is returned to the software.

5. The minimum measureable value for mach number and true airspeed is zero. The
minimum barometric altitude measureable is fixed after system generation time, as
are the maximum value and resolution for all measurements.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Excerpt of Draft for Formal Review 372

access program table

program name parameter type parameter information
G ADC BARO ALTITUDE p1:distance;O corrected altitude assuming sea

level pressure = 29.92 inches
mercury

G ADC MACH INDEX p1:mach;O corrected mach
G ADC RELIABILITY p1:logical;O true if ADC reliable
G ADC TRUE AIRSPEED p1:speed;O corrected true airspeed
TEST ADC p1:logical;O true if ADC passed self test

event table

event when signalled
@T(ADC unreliable) When “ADC reliable” changes from true to false

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Problems with the Later Draft 373

Problems with the Later Draft

• correction for actual sea level pressure is device-dependent
◦ therefore better do inside DIM

◦ future hardware may do this automatically

• only one reliability indicator for three values
◦ current hardware: only one indicator; OK

◦ future hardware: might have independent sensors

• some devices might not be able to measure

speeds as low as zero

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Excerpt of Published Version 374

Excerpt of Published Version
assumption list

1. The ADC provides measurements of the barometric altitude, true airspeed, and the
mach number representation of the airspeed of the aircraft (mach index). Any
known measurement errors are compensated for within the module. <deleted>

<deleted>

2. User programs are notified by means of events when one or more of the outputs are
unavailable. A user program can also inquire about the reliability of individual
outputs. If the access programs for barometric altitude, true airspeed, and mach
number are called while the values are unreliable, the last valid measurements (stale
values) are provided.

3. The ADC is capable of performing a self-test upon command from a user program.
The result of this test is returned to the user program.

4. The minimum, maximum, and resolution of all ADC measurements are fixed after
system generation time.

5. The ADC will compute its outputs on the basis of a value for Sea Level Pressure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Excerpt of Published Version 375

(SLP) supplied to it by a user program. If no value is provided, an SLP of 29.92 will
be assumed.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Excerpt of Published Version 376

access program table

program name parameter type parameter information
G ADC ALTITUDE p1:distance;O corrected altitude assuming

SLP=29.92 or user supplied
SLP

p2:logical;O true if altitude valid
G ADC MACH INDEX p1:mach;O corrected mach

p2:logical;O true if mach valid
G ADC TRUE AIRSPEED p1:speed;O corrected true airspeed

p2:logical;O true if true airspeed valid
S ADC SLP p1:pressure;I sea level pressure
TEST ADC p1:logical;O true if ADC passed self test

event table

event when signalled
@T(altitude invalid) When “altitude valid” changes from true to false
@T(airspeed invalid) When “true airspeed valid” changes from true to false
@T(mach invalid) When “mach valid” changes from true to false

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Design Problems – Tradeoffs and Compromises 377

Design Problems – Tradeoffs and
Compromises

• design goals in conflict:
◦ small device interface modules

◦ device-independent user programs

◦ efficiency

• ultimate goal:

minimize expected cost of the software

over its entire period of use

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Major Variations Among Available Devices 378

Major Variations Among Available Devices

• sometimes differences are more than skin deep
◦ example: Inertial Measurement Set (IMS)

• full simulation does not separate concerns

• solution: two modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Devices with Characteristics that Change Independently 379

Devices with Characteristics that Change
Independently

• failure to fully separate
◦ example: Projected Map Display Set (PMDS)

• solution: module within module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Virtual Device Characteristics that are Likely to Change 380

Virtual Device Characteristics that are Likely
to Change

• they cannot be hidden:
user programs must behave differently if these
characteristics change
◦ examples:

� measurement resolutions

� number of positions on switches

� max. displayable value

• a solution: symbolic constants
◦ are system generation parameters

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Virtual Device Characteristics that are Likely to Change 381

• problem:

initial assumption wrong that

all values known at system generation time

• solutions:

cost for

variability

likelihood

of change

solution

low ∗ run-time variable (+ access prgs.)

high low system generation parameter

high high run-time variable

with option to bind earlier

conservative value for all devices,

bind early

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Device Dependent Data to/from Other Modules 382

Device Dependent Data to/from Other
Modules

• device dependent characteristics that vary at run-time
◦ example: enter drift rate of IMS at run-time through panel

• reporting and displaying device dependent errors

• solution: restricted interface
◦ mark these assumptions and and access programs as “restricted”

◦ append to normal interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Removable Interconnections Between Devices 383

Removable Interconnections Between Devices

• device interdependences for hardware convenience
◦ example: Doppler and Ship Inertial Navigation Set share a data path

� someone assumed the software never needs both simultaneously

◦ can hide nature but not existence of connection

• hardware connection might be removed later

• similar: concurrent access to capabilities restricted

within a single module

• solution: upward compatible interface
◦ show interdependence now

◦ maybe remove later

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Interconnections Through Possible Failures? 384

Interconnections Through Possible Failures?

• device A provides information, device B uses it

• device A can fail, invalidating the data of B

• if computer can detect failure of A:
◦ device interface module of B can and should hide interconnection

by simulating the detection of a failure of B

• if computer cannot detect failure of A:
◦ users of B must expect undetectable failures

◦ the interconnection itself can and should be hidden

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Reporting Changes in Device State 385

Reporting Changes in Device State

• by signalling events or by access programs?
◦ problem: depends on the (changing) requirements of user programs

• solution:

specify always both,

implement only what is used

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Devices That Need Software Supplied Information 386

Devices That Need Software Supplied
Information

• information from outside device interface module
◦ example: current IMS device needs to know whether aircraft

is above 70◦ latitude

� latitude not calculated within IMS module

• how to get information?
(a) device interface module provides access program

(b) device interface module programs call other programs

• solution: depends on whether information requirement
is common to the replacement devices
◦ if yes: provide access program

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Virtual Devices that Do not Correspond to Hardware Devices 387

Virtual Devices that Do not Correspond to
Hardware Devices

• a 1-to-1 relationship not always gives clear interfaces
◦ some related capabilities scattered among several hardware devices

� example: weapons-related capabilities of A-7

◦ some unrelated capabilities occur in the same device

for physical convenience

� example: weapons release device fills two roles

◦ some groupings explained by history only

• solution:
◦ one virtual device for weapons release

◦ one virtual device for weapon data

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Bottom Line 388

Bottom Line

• the basic definition of abstraction gives good guidelines

even in hard design problems

• we can do a better job with a systematic procedure

and a principle

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



When Won’t It Work? 389

When Won’t It Work?

success depends on:
• the oracle assumption
◦ our ability to predict change

• existence of commonality between actual interfaces
◦ interface programs smaller than applications programs

• the Big “Big-Box” Assumption
◦ the application is big enough to justify

the effort for an abstract interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Abstract Interface Design as an Application of Fundamental Principles 390

Abstract Interface Design as an Application of
Fundamental Principles

• being explicit about assumptions and design decisions

• encapsulation of likely change

• abstract interface module can solve

the embedded computer system problem

by hiding the embedding from the computer

• external interface modules are just a special case
◦ use same method for other information hiding modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	3.5 Design of Abstract Interfaces
	Text for Chapter 3.5
	Additional Background for Chapter 3.5
	Applying Information Hiding to Embedded Systems
	Motivation for Abstract Interface Design Rules
	Device Interface Modules
	Design Goals for Device Interface Modules
	Definitions
	Definition: Interface
	Definition: Abstraction
	Appropriateness of an Abstraction
	Definition: Abstract Interface
	Definition: Device Interface Module
	Definition: Secret of a Device Interface Module
	Undesired Event Assumptions
	Design Approach
	Description 1: Assumption List Characterizing the Virtual Device
	Description 2: Programming Constructs Embodying the Assumptions
	The Descriptions are Partially Redundant
	Different Purposes of the Two Descriptions
	Reviews
	Iterative Process for the A-7
	Example: Development of the Air Data Computer
	Excerpt of an Early Draft
	Problems with This Early Draft
	Excerpt of Draft for Formal Review
	Problems with the Later Draft
	Excerpt of Published Version
	Design Problems -- Tradeoffs and Compromises
	Major Variations Among Available Devices
	Devices with Characteristics that Change Independently
	Virtual Device Characteristics that are Likely to Change
	Device Dependent Data to/from Other Modules
	Removable Interconnections Between Devices
	Interconnections Through Possible Failures?
	Reporting Changes in Device State
	Devices That Need Software Supplied Information
	Virtual Devices that Do not Correspond to Hardware Devices
	Bottom Line
	When Won't It Work?
	Abstract Interface Design as an Application of Fundamental Principles


